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ABSTRACT

Biomolecules could be engineered to solve many societal challenges, including disease

diagnosis and treatment, environmental sustainability, and food security. However,

our limited understanding of how mutational variants alter molecular structures and

functional performance has constrained the potential of important technological ad-

vances, such as high-throughput sequencing and gene editing. Ribonuleic Acid (RNA)

sequences are thought to play a central role within many of these challenges. Their

continual discovery throughout all domains of life is evidence of their significant bio-

logical importance (Weinreb et al., 2016). The self-cleaving ribozyme is a class of non-

coding Ribonuleic Acid (ncRNA) that has been useful for relating sequence variants

to structural features and their associated catalytic activities. Self-cleaving ribozymes

possess tractable sequence spaces, perform easily identifiable catalytic functions, and

have well documented structures. The determination of a self-cleaving ribozyme’s

structure and catalytic activity within the laboratory is typically a slow and expensive

process. Most current explorations of structure and function come from these empir-

ical processes. Computational approaches to the prediction of catalytic activity and

structure are fast and inexpensive, but have failed both to achieve atomic accuracy or

to correctly identify all base-pair interactions (Watkins et al., 2018). One prominent

impediment to computational approaches is the lack of existing structural and func-

tional data typically required by predictive models (Jumper et al., 2021). Using data

v



from deep-mutational scanning experiments and high-throughput sequencing tech-

nology, it is possible to computationally map mutational variants to their observed

catalytic activity for a range of self-cleaving ribozymes. The resulting map reveals

important base-pairing relationships that, in turn, facilitate accurate predictions of

higher-order variants. Using sequence data from three experimental replicates of five

model self-cleaving ribozymes, I will identify and map all single and double mutation

variants to their observed cleavage activity. These mappings will be used to identify

structural features within each ribozyme. Next, I will show within a training tool

how observed cleavage for multiple reaction times can be used to identify the cat-

alytic rates of our model ribozymes. Finally, I will predict the functional activity for

model ribozyme variants of various mutational orders using machine learning models

trained only on functionally labeled sequence variants. Together, these three disser-

tation chapters represent the kind of analysis needed to further the implementation

of more accurate structural and functional prediction algorithms.
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1

CHAPTER 1:

INTRODUCTION

1.1 Research Motivation

Continued advancements in DNA sequencing technology have caused a revolution in

molecular biology. The wide availability of high-throughput sequencing means that

millions of genetic observations are commonly available to researchers (Levy & Boone,

2019). The genetic sequencing data contains clues to the causes of rare medical con-

ditions, desirable crop characteristics, and the essential features of environmental

habitats. When combined with modern methods for DNA synthesis and gene edit-

ing, these technologies form a bio-engineering toolkit capable of identifying genetic

opportunities and implementing desired modifications (Gupta & Shukla, 2017; Mao

et al., 2019; Bak et al., 2018). Standing in the way of the toolkit’s full utility is an

uncharted molecular complexity that pervades even the simplest of organisms. New

discoveries, however, continue to reveal and explain this complexity and within each

discovery comes the potential to engineer molecules that eliminate disease, improve

food security, or reduce environmental damage.

All living organisms are distinguished by a unique genetic sequence that encodes

their physical features and processes. DNA stores this genetic encoding within a poly-

mer sequence composed from just four nucleotide monomers (guanine (G), cytosine
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(C), adenine (A), and thymine (T)). Base-pairing between DNA’s two complemen-

tary polymer strands gives DNA a stable storage structure and its familiar double

helical form. The DNA sequence is copied into molecularly similar, single stranded

RNA sequences, in a process termed transcription. These RNA sequences serve as

intermediaries between DNA and translated amino-acid sequences, called proteins

(Figure 1.1). Proteins are commonly known for their prominent role in life’s essen-

tial biological processes. But more recently, a class of untranslated RNA molecules

called non-coding Ribonuleic Acid (ncRNA) are also being found to play substantial

functional roles. Combined, proteins and ncRNAs provide many of the biological

functions necessary for life.

Figure 1.1: a) RNA polymerase transcribes DNA into a single-stranded
RNA sequence of nucleotides. b) Mature mRNA are translated into pro-
teins. non-coding Ribonuleic Acid (ncRNA) are RNA sequences that
are not translated into proteins but instead fold into functionally active
molecules.
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Proteins are polymeric sequences composed from twenty distinct amino acid monomers.

These protein sequences fold into complex, three-dimensional structures, each pos-

sessing some functional capability. The protein’s physical structure is primarily de-

termined by its sequence and the inter-molecular hydrogen bonds that stabilize its

folds. Millions of distinct proteins have been identified.

ncRNA share characteristics of both DNA and protein molecules. Like DNA,

ncRNA sequences are composed from a similar set of four nucleotide monomers and

form structures as a consequence of complementary base-pairing (Figure 1.2). Like

proteins, ncRNA spontaneously fold into complex, three-dimensional structures that

perform an array of cellular functions. And, also like proteins, mutations to ncRNA

sequences can alter their structure and functional abilities. However, unlike proteins,

many ncRNAs are still being identified and, as a result, far fewer active structures

are known (Figure 1.3).

Figure 1.2: DNA’s double-stranded helix is formed by complementary
base-pairing between nucleotides. In DNA, A pairs with T and G with
C. RNA forms complex structures through complementary base-pairing
between nucleotides along its single-strand. In RNA, uracil (U) replaces
T to base-pair with adenine
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Figure 1.3: The number of characterized RNA molecules cataloged annu-
ally in the Protein Data Bank is far fewer than the number of proteins
(Berman et al., 2007; wwPDB consortium et al., 2019).

The ncRNA sequences that have been characterized clearly demonstrate their im-

portance to gene expression. For example, transfer Ribonuleic Acid (tRNA) is a 76-90

nucleotide ncRNA that physically links an mRNA molecule to a protein’s chain of

amino acids during translation (Figure 1.1b). The RNA components of ribosomal

Ribonuleic Acid (rRNA) also participates in translation by carrying out protein syn-

thesis. Ribozymes are another type of ncRNA molecule that catalyzes biochemical

reactions such as the ligation and cleavage activities used in gene expression (Fedor &

Williamson, 2005). ncRNA are common genetic actors, representing a large majority

of a cell’s pool of RNA (Figure 1.4).
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Figure 1.4: Some RNA transcripts are further translated into pro-
teins while others remain RNA that possess functional capabilities (also,
ncRNA).

Because of their roles in gene expression, the lack of data characterizing their ac-

tive structures, and a limited understanding of how mutations affect these structures,

ncRNA represent a significant unmet opportunity to explain biological complexity. A

well developed understanding of how ncRNA can be used to regulate an organism’s

genome could be a critical precursor to achieving a wide array of bio-engineering

objectives. This dissertation seeks to contribute tools, methods, and data to the ex-

ploration of how ncRNA sequence variants relate to structural features and functional

activity. My hope is that these contributions provide useful insight into the complexi-

ties of ncRNA and are helpful to those seeking to incorporate their functional abilities

into bio-engineered molecules.

1.2 Research Objectives

Many valuable contributions to our understanding of how mutations affect active

structures are accomplished in the laboratory using slow and expensive experimen-

tal processes. Consequently, considerable interest has developed in the application

of computational algorithms to speed up discovery by supplementing or replacing

experimental processes. Recently, algorithms have successfully predicted previously
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unknown protein structures from sequences using machine learning models (Jumper

et al., 2021). However, structural predictions of ncRNA has been far less successful

and the functional consequences of ncRNA mutations remain an unresolved area of

study.

This dissertation focuses on the implementation of computational approaches to

reveal relationships between ncRNA sequences and their active structures, using ri-

bozymes as model systems. Ribozymes are ncRNA molecules that catalyze chemical

reactions. Self-cleaving ribozymes are a common and naturally occurring class of ri-

bozymes that catalyze a reaction which breaks the chemical bonds at a specific site

along their phosphodiester backbone. Sequence mutations within a self-cleaving ri-

bozyme can affect base-pair relationships, resulting in structural changes that affect

its catalytic rate. In Chapter Two, we explore the effects of all possible single and

double mutational variants found within experimental replicates of five, self-cleaving

ribozymes. A variety of different cleavage metrics for each of these variants is position-

ally mapped to reveal structural relationships within the sequences. This extensive

mapping represents a valuable contribution to a currently limited pool of ncRNA

data. I was involved in conceptualizing the project, managed data, performed all

computational work for formal analysis and visualization, and reviewed and edited

the published manuscript. In Chapter Three, we use cleavage counts to calculate the

catalytic rates for all single and double mutation variants of the Twister self-cleaving

ribozyme. Using observed data at multiple time periods, we fit an exponential decay

function to reveal activity across a larger dynamic range. This algorithm is incorpo-

rated into a documented set of training materials for use by future lab members. I

was involved in conceptualizing the project, managed data, performed computational
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work for formal analysis and visualization, and wrote the Jupyter book. In Chapter

Four, we use cleavage activity data from two Cytoplasmic Polyadenylation Element

Binding Protein 3 (CPEB3) self-cleaving ribozyme libraries to predict the cleavage

activity of higher-order mutational variants using a variety of machine learning meth-

ods. Such predictions are a critical tool for identifying active ncRNA structures

within the immensity of possible mutational variants. I was involved in conceptual-

izing the project, managed data, performed computational work for formal analysis

and visualization, and reviewed and edited the published manuscript. Together, these

chapters contribute tools and methods for assessing the impact of mutations on active

ncRNA structures and important mutational data for five, self-cleaving ribozymes to

the research community.

1.3 Self-Cleaving Ribozymes

Self-cleaving ribozymes are being used to engineer biological systems. In addition to

their natural roles, self-cleaving ribozymes have been synthetically incorporated into

molecules designed to control gene expression. These engineered systems can adjust

expression by affecting, positively or negatively, the ribozyme’s cleavage rate. This

is accomplished by introducing mutations to the ribozyme’s sequence that modifies

its structure, resulting in a changed catalytic rate. Because of this direct connection

between sequence, structure, and function, self-cleaving ribozymes are a particularly

interesting model system for bio-engineering.

Self-cleaving ribozymes also have several physical properties that are well-suited

for exploring the connections between sequences, structures, and functional activities.

First, there exists a variety of self-cleaving ribozymes possessing known structures

from which base-pairs, tertiary contacts, and catalytically involved nucleotides have
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been identified. Second, each typically has a sequence length that is sufficiently small

enough to easily synthesize mutational variants. Third, each cleaves spontaneously

upon achieving a folded conformation and requires no other molecules to catalyze

their reaction. And fourth, each cleaves during the transcription reaction. Upon the

reaction’s conclusion, a fraction cleaved can be calculated for each ribozyme variant by

counting the number of times it exists in either a cleaved or uncleaved state (Equation

A.2).

The fraction cleaved for each sequence variant can be used to relate positional

mutations to catalytic effects. Mutations that impact structurally or chemically im-

portant nucleobases are indicated by changes in their activity (Figure 1.5). Mutations

that maintain or improve upon active structures retain a high fraction cleaved. Muta-

tions that disrupt active structures, on the other hand, cause a lower fraction cleaved.

Mutations that reduce fraction cleaved typically break base pairs within critical struc-

tures or alter required nucleotides at catalytically important positions.
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Figure 1.5: Sequence mutations cause structural changes that impact the
fraction cleaved. Measuring this functional change in relationship to spe-
cific mutations indicates the positional importance to the catalytic reac-
tion.

The observed fraction cleaved is also time dependent. Self-cleaving ribozyme

variants that require more time to fold into an active state will cleave given sufficient

time. Those variants that don’t cause structural defects will fold more quickly into

an active state than those that do. A longer reaction time will cause variants to skew

towards a higher fraction. If all mutations produce relatively high activity levels, then

structural changes caused by mutations will be difficult to discern. Consequently, the

selected reaction time can limit the visibility of structure within a sequence.

This dissertation uses a heatmap representation to examine mutational effects.

The combined affects of mutations can be explored by their positions within the

sequence to locate functionally important structures. For example, Figure 1.6 displays

the catalytic rate (kobs) for all possible mutations at position one and two of the
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Twister self-cleaving ribozyme sequence. A sequence possessing two mutations can

take on any one of nine (i.e., 32) possible nucleotide variants. Within a three-by-three

grid, each individual pixel shows how a different mutational combination affects its

observed cleavage rate. Obvious differences can be seen in how specific mutations are

tolerated at these positions.

Figure 1.6: Catalytic rate (kobs) for all nine possible double mutations
at position 1 and 2 of the twister ribozyme. Dark shades reflect higher
catalytic rates. Lighter shades reflect lower catalytic rates.

This same technique can be used to evaluate all possible single and double mu-

tations for an entire ribozyme. Figure 1.7 shows the fraction cleaved for all single

and double mutations within the Twister ribozyme sequence. Here, adjacent three-

by-three grids on any anti-diagonal represent contiguous mutational combinations

occurring throughout the sequence.
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Figure 1.7: Relative fitness for all possible single and double mutations of
the Twister self-cleaving ribozyme. Relative fitness normalizes the fraction
cleaved for a specific variant to that of the naturally occurring variant.
Dark shades reflect higher relative fitness. Lighter shades reflect lower
relative fitness.

1.4 Experimental Data

This dissertation utilizes extensive experimental data that has been recently produced

by our lab. Experiments in the lab have produced many copies of every possible sin-

gle and double mutation for the CPEB3, Hepatitis D Virus Ribonuleic Acid (HDV),

Hairpin, Hammerhead, and Twister self-cleaving ribozymes. This was done by first
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synthesizing DNA templates for each ribozyme using 97% of the wildtype nucleotides

and 1% of each of the remaining nucleotide alternatives, yielding a large array of mu-

tated variants. The low probability of an incorrect base ensures that most sequences

contain only one or two incorrect bases and that all possible single and double mu-

tations were created. To evaluate the activity of all the single and double mutant

variants simultaneously, the mutated DNA was transcribed into RNA. During this

transcription, the RNA molecules produced had the opportunity to self-cleave. Be-

cause the transcription, and ribozyme cleaving was stopped at thirty minutes, all

sequence variants had the same opportunity to self-cleave. The RNA was converted

back to DNA for sequencing through a process called reverse-transcription polymerase

chain reaction (PCR).

The resulting DNA was sent for sequencing on an Illumina HiSeq 4000. On this

platform, the DNA sequences are attached to a flow cell were their individual sequence

monomers are determined by measuring the emission wavelength of complementary

fluorescent-tagged nucleotides. This process occurs at both ends of the sequence so

that we obtain a pair of reads starting from each side of the ribozyme. The sequenc-

ing output is stored in two FastQ files, each containing all the replicate ribozyme’s

reads from one side of the sequence. Each replicate ribozyme’s two FastQ files are

then merged using a software application called Fast Length Adjustment of Sort reads

(FLASh) that identifies overlapping sequence segments and combines sequences pos-

sessing these overlaps into a single ribozyme sequence. The joined ribozyme files, also

in a FastQ file format, are then surveyed for mutational variants and cleavage status.

By aggregating the counts of cleaved and uncleaved sequences of a particular muta-

tional variant, each variant’s observed fraction cleaved is determined(Equation A.2).
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This process of identifying the functional activity of numerous sequenced variants is

known as ”deep mutational scanning”.

1.5 Research Challenges

The precision of an observed cleavage rate is dependent, in part, on whether the

experimental data has a sufficient number of variant copies from which a fraction

cleaved can be determined - a limitation that commonly arises when counting bi-

nary outcomes. Because structure is revealed by differences in the observed cleavage

rates of positionally adjacent mutations, low variant counts restrict the appearance

of structural details (Figure 1.8). Consequently, variant search algorithms should ro-

bustly identify mutated sequences. The more identified copies per variant, the more

confidence we can have in the precision of our observed cleavage activity.

Figure 1.8: Relative activity of HDV ribozyme using restricted counting
algorithm (left) and deep counting algorithm (right). Insufficient counts
on the left hide structural features.

While too few variant copies will limit our ability to identify structure, the extraor-
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dinarily large number of possible mutational variants limits our ability to explore all

mutational effects on structure. Each mutated sequence can be thought of as member

of a sequence space containing a set of mutational possibilities. A sequence contain-

ing n nucleotides has 4n possible sequences with
(
n
k

)
3k possible combinations of k

mutations of the naturally occurring sequence (Equation A.1). As a consequence of

this exponential growth, even moderately sized ribozymes have a sequence space that

can not be completely assessed. For example, the 69-nucleotide CPEB3 sequence

has 3.4841 possible variants with 207 single mutants, 21, 114 double mutants, and

1, 414, 638 triple mutants. The computational and experimental power necessary to

comprehensively report function for most higher-order variants is currently unfeasi-

ble. Because of this, only a relatively small portion of any sequence space will be

available to assess structural and functional features. Consequently, the sequence

space elements that provide reliable explanatory power should be selected.

One obvious sequence space choice is that which includes all single and double-

order variants. The production of all double and single-order variants for each ri-

bozyme in sufficient quantity to accurately determine each variants cleaved rate is

experimentally achievable. The consequences of single and double mutations on base

pairing is well understood. Single mutations break base-pairs and double mutations

have the potential to restore base-pairs (e.g., U-A replaced with a G-C). Double

mutation variants can further be compared to their single mutation components to

identify positive or negative epistasis - a result where the activity of two individ-

ual single mutations doesn’t produce the expected additive activity of the combined

double mutation (Figure 1.9). The sequence space of all single and double-order vari-

ants, therefore, strikes an acceptable balance. The space is manageably sized and
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has an explanatory power that reveals the important base pair relationships that are

fundamental to molecular structure. But, this limited portion of the sequence space

may not reflect the full complexity underlying the tightly compacted ncRNA struc-

tures and, therefore, may be unable to accurately predict the activity associated with

higher-order mutations.

Figure 1.9: Single nucleotide mutations (C in position 1 or G in position 2)
break base-pairing. A double mutation consisting of both single mutations
retain base-pairing. Epistasis measures the non-linear result of the double
mutant in relation to the component single mutations.

The full complexity of ncRNA sequence space involves base-pair arrangements

that can’t be understood by solely evaluating single and double mutational variants.

While the building of higher-order mutants from single and double mutants is ap-

pealing, epistatic affects become difficult to untangle when involving large numbers

of mutations. Additionally, higher-order mutations have more opportunities to break
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base pairs and, as a result, are more functionally restricted. For this reason, some

additions to the mutational diversity of sequence space in the form of active, higher-

order variants may be necessary for predictive models to incorporate the complexity

of effective alternatives.

Models that have successfully predicted protein structures rely on such diverse,

structural databases (Jumper et al., 2021). These databases serve to guide predic-

tions toward structures commonly supported by nature. And because ncRNA share

important similarities with proteins, there is reason to believe that similar meth-

ods for predicting ncRNA structures and functional rates would also require such a

large, diverse database ncRNA structures. Unfortunately, such ncRNA databases are

currently insufficient (Watkins et al., 2018) to cover the enormous array of possible

unique, compact RNA structures thought to exist in nature (Rother et al., 2011;

Chang et al., 2013; Geisler & Coller, 2013; Huppertz et al., 2022).

These challenges reflect the relatively early state of ncRNA research. We do not

currently have available wide explorations of ncRNA sequence space from which we

can asses structure and function. We lack libraries containing all the unique conforma-

tions from which we can predict ncRNA structures. Methods for relating mutations

to functional performance are not fully settled. Consequently, the computational

prediction of ncRNA structure and function has been limited.

1.6 Scientific Contribution

This dissertation makes three contributions to the exploration of how ncRNA se-

quences relate to their active structures. First, in Chapter Two, we built functional

dictionaries for five model, self-cleaving ribozymes. These dictionaries contain all

single and double mutational variants for the specified ribozyme. Each ribozyme’s
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sequence variants were obtained by an algorithmic search, written in the Julia lan-

guage, that quickly aggregates each variant according to its cleavage state. The Julia

code identified approximately four times the number of variants in one-fifteenth the

time as previously used Python code. The cleavage activity for each variant was used

to formulate a wide array of functional measurements that were employed to visu-

alize structural features within each ribozyme. Combined these activities contribute

valuable code and data to the exploration of mutational effects on active ncRNA

structures.

Second, in Chapter Three, we built code to handle the more complex, time depen-

dent self-cleavage data that is often used in biochemistry experiments. The code fits a

non-linear catalytic rate curve to observed cleavage data for the Twister self-cleaving

ribozyme at multiple time points. The rates extracted using this code overcomes the

limited dynamic range associated with observed cleavage rates (i.e., ranging from 0.0

to 1.0) by fitting an exponential decay function to each variant’s fraction cleaved.

This calculated catalytic rate possesses a significantly larger dynamic range (i.e.,

Twister’s range 10−6 to 10−3) and reveals reaction time periods that maximize the

difference in rates between specific sequences. Consequently, variants with function-

ally different rates may be more easily distinguished. We further built a training

tool that implements this analysis for use in future deep mutational scanning exper-

iments. This web-based, Jupyter book is available for those looking to understand

how parameter selection affects catalytic activity. While kinetics experiments are

commonly performed in ribozyme biochemistry, there was no prior method to ex-

tract this data from high-throughput sequencing based approaches. The novel code

developed enables a highly parallel analysis of this classic biochemical approach.
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Finally, in Chapter Four, we develop a machine learning approach to predicting the

fraction cleaved of higher-ordered CPEB3 mutants using only nucleotide sequences ob-

tained from high-throughput, deep mutational scanning experiments. While machine

learning models are commonly employed to make structural predictions, its utility for

functional predictions has only recently been considered. Such models have been used

to predict the functional activity associated with select positional mutations (Schmidt

& Smolke, 2021), to predict the ligand class of 32 riboswitch families (Premkumar

et al., 2020), and to guide evolutionary algorithms that optimize engineered proteins

(Yang et al., 2019). These approaches all employ narrowly tailored data sets to the

achieve of a specific catalytic objective. We, however, employ a novel approach that

uses a complete set of labeled, single and double mutation sequences combined with

small sets of higher-order mutants to predict the fraction cleaved of any CPEB3 mu-

tant. My approach is designed to take advantage of high-throughput data sets that

are experimentally practicable in order to search the impracticable size of sequence

space. Additionally, we report the first description of how a small set of higher-order

mutations can be used to improve the predictive capability of a tractable and com-

plete set of lower-order mutants. This suggests that a mapping of active sequences

for bio-engineering purposes is achievable.

1.7 Future Directions

Together, the data, methods, and algorithms included above advance the study of how

active ncRNA structures arise from sequence mutations and offers a path by which

researchers could contribute their data to improve predictive algorithms. There are

other, obvious directions for additional research into the structural and functional

impact of ncRNA sequence mutations. For example, there are a variety of calculated
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relationships that could be incorporated as additional predictive ncRNA features.

Here we’ve calculated measurements of epistasis, relative fitness, fitness rescue, and

Gibb’s free energy for each of our studied ribozymes. We also know from existing

crystal structures the secondary structures contained within each ribozyme. These

measures and structures could be incorporated as additions to the input vectors of

future models and used to evaluate their predictive capacities.

Another interesting questions is how ncRNA sequences are arranged in a map of

sequences of any length. In our analysis, we only looked at how select sequence mu-

tations within a ribozyme of a given length altered functional activity. But ribozyme

sequences can also be lengthened or shortened by nucleotide insertions and deletions.

Consequently, one could think of sequence space as the set of all sequences possess-

ing some range of lengths. A lower dimensional mapping of known active ribozyme

sequences within that range could reveal useful structural information in terms of po-

sition (where certain functional types aggregate) or composition (how combinations

of secondary structure is arranged).

Finally, while we have here implemented machine learning algorithms to predict

functional activity of easily measured self-cleaving ribozymes, there should be no

reason why such a technique could not be applied to ncRNA possessing other, more

difficult to measure activities. These ncRNA should be included in future machine

learning algorithms to determine how to generalize such methods to other functional

categories.
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CHAPTER 2:

RNA SEQUENCE TO STRUCTURE ANALYSIS

FROM COMPREHENSIVE PAIRWISE

MUTAGENESIS OF MULTIPLE

SELF-CLEAVING RIBOZYMES

Jessica M. Roberts, James D. Beck, Tanner B. Pollock, Devin P. Bendixsen, and

Eric J. Hayden

doi: https://doi.org/10.1101/2022.05.17.4923491

Abstract

Self-cleaving ribozymes are RNA molecules that catalyze the cleavage of their own

phosphodiester backbones. These ribozymes are found in all domains of life and are

also a tool for biotechnical and synthetic biology applications. Self-cleaving ribozymes

are also an important model of sequence to function relationships for RNA because

their small size simplifies synthesis of genetic variants and self-cleaving activity is an

accessible readout of the functional consequence of the mutation. Here we used a

high-throughput experimental approach to determine the relative activity for every

1Accepted for publication in eLife - Roberts et al. (2022)
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possible single and double mutant of five self-cleaving ribozymes. From this data, we

comprehensively identified non-additive effects between pairs of mutations (epistasis)

for all five ribozymes. We analyzed how changes in activity and trends in epistasis

map to the ribozyme structures. The variety of structures studied provided opportu-

nities to observe several examples of common structural elements, and the data was

collected under identical experimental conditions to enable direct comparison. Heat-

map based visualization of the data revealed patterns indicating structural features

of the ribozymes including paired regions, unpaired loops, non-canonical structures

and tertiary structural contacts. The data also revealed signatures of functionally

critical nucleotides involved in catalysis. The results demonstrate that the data sets

provide structural information similar to chemical or enzymatic probing experiments,

but with additional quantitative functional information. The large-scale data sets

can be used for models predicting structure and function and for efforts to engineer

self-cleaving ribozymes.

2.1 Introduction

Challenges with predicting the functional effects of changing an RNA sequence con-

tinues to limit the study and design of RNA molecules. Recently, machine learning

approaches have made considerable advancements in predicting an RNA structure

from a sequence. However, these approaches rely heavily on crystal structures of

RNA molecules and sequence conservation of homologs, both of which are limited

for RNA molecules compared to proteins (Calonaci et al., 2020; Townshend et al.,

2021). In addition, describing an RNA molecule as a single structure can be inaccu-

rate, and regulatory elements such as riboswitches demonstrate the importance of an

ensemble of structures for an RNA function. It is unclear that predictions based on
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individual structures alone will be able to predict functional effects of mutations with

the precision needed for many biotechnical and synthetic biology applications, or to

predict disease-associated mutations in RNA molecules (Halvorsen et al., 2010). This

suggests that new experimental data types might be important for understanding,

designing, and manipulating the transcriptome.

Self-cleaving ribozymes provide a useful model to study sequence-structure-function

relationships in RNA molecules. Self-cleaving ribozymes are catalytic RNA molecules

that cleave their own phosphodiester backbone. They were first discovered in viruses

and viroids, but numerous families of self-cleaving ribozymes have since been discov-

ered in all domains of life (Prody et al., 1986). The CPEB3 ribozyme, for example,

was discovered in the human genome and found to be highly conserved in mammals

(Bendixsen et al., 2021; Salehi-Ashtiani et al., 2006). Other self-cleaving ribozymes,

such as the hammerhead and twister ribozymes, are found broadly distributed across

eukaryotic and prokaryotic genomes (Perreault et al., 2011; Roth et al., 2014). The bi-

ological roles of ribozymes in different genomes and different genetic contexts remain

an active area of investigation (Jimenez et al., 2015). In addition to being widespread

across the tree of life, self-cleaving ribozymes have also been used for several bio-

engineering applications (Liang et al., 2011; Peng et al., 2021; Wei & Smolke, 2015;

Zhong et al., 2016). For example, self-cleaving ribozymes are being combined with

aptamers to develop synthetic gene regulatory devices, which have biotechnical and

biomedical applications where ligand dependent control of gene expression is desired

(Kobori et al., 2017, 2015; Stifel et al., 2019; Townshend et al., 2015).

The testing of mutational effects in ribozyme sequences has been accelerated by

high-throughput experimental approaches. Most self-cleaving ribozymes are fairly
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small (¡200 nt) and genetic variants can be made by chemical synthesis of a single

PCR oligonucleotide that is then used as a template for in vitro transcription. The

self-cleavage activity of the ribozyme requires a precise three-dimensional structure,

and therefore activity can be used as a sensitive indirect readout of native struc-

ture. Mutations that disrupt the native structure are detected as reduced activity

compared to the unmutated “wild-type” ribozyme. Several methods have been devel-

oped to enable the detection of ribozyme function by high-throughput sequencing of

biochemical reactions (Bendixsen et al., 2019; Hayden, 2016; Kobori & Yokobayashi,

2016; Shen et al., 2021). For self-cleaving ribozymes, each read from the data re-

ports both the mutations and whether or not that molecule was reacted (cleaved)

or unreacted (uncleaved). Therefore, high-throughput sequencing allows numerous

genetic variants to be pooled together and still observed hundreds to thousands of

times in the data. This provides confidence in the fraction cleaved for each genetic

variant in a given experiment, and genetic variants are compared to determine rela-

tive activity. Importantly, the data is internally controlled because both reacted and

unreacted molecules are observed, which controls for differences in their abundance

due to synthesis steps (chemical PCR synthesis, transcription, reverse-transcription,

PCR).

A common approach to confirm structural interactions in RNA and proteins is

through analysis of pairs of mutations (Dutheil et al., 2010; Olson et al., 2014). In

this context, it can be useful to calculate pairwise epistasis, which measures deviations

in the mutational effects of double mutants relative to the effects of each individual

mutation (assuming an additive model of mutational effects). For example, in the case

of a base-pair, each single mutation would disrupt the base-pairing interaction, desta-
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bilizing the catalytically active RNA structure and reducing activity. However, if two

mutants together restore a base-pair, the relative activity of the double mutant would

have much higher activity than expected from the additive effects of the individual

mutations (positive epistasis). In contrast to paired nucleotides, double mutants at

non-paired nucleotides tend to have a more reduced activity than expected from each

individual mutation (negative epistasis) (Bendixsen et al., 2017; Li et al., 2016). In

the case of two mutations that create a different base pair (i.e. G-C to A-U), it is

known that the stacking with neighboring base pairs is also structurally important,

and some base pair substitutions will not be equivalent in a given structural context.

This creates a range of possible epistatic effects even for two mutations at paired nu-

cleotide positions. In addition, some non-canonical base interactions within tertiary

contacts may also show epistasis even when they do not involve Watson-Crick or GU

wobble base pairing interactions. Nevertheless, the propensity for positive epistasis

between physically interacting nucleotides suggests that a comprehensive evaluation

of pairwise mutational effects should contain considerable structural information.

Here, we report comprehensive analysis of mutational effects for all single and

double mutants for five different self-cleaving ribozymes. Relative activity effects of

all single and double mutations were determined by high-throughput sequencing of

co-transcriptional self-cleavage reactions, and this data was used to calculate epista-

sis between pairs of mutations. The ribozymes studied include a mammalian CPEB3

ribozyme, a Hepatitis Delta Virus (HDV) ribozyme, a twister ribozyme from Oryza

sativa, a hairpin ribozyme derived from the satellite RNA from tobacco ringspot virus,

and a hammerhead ribozyme (Bendixsen et al., 2021; Burke & Greathouse, 2005;

Chadalavada et al., 2007; Liu et al., 2014; Müller et al., 2012). For each reference
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ribozyme, a single DNA oligo template library was synthesized with 97% wild-type

nucleotides at each position, and 1% of each of the three other nucleotides. This

mutagenesis strategy was expected to produce all possible single and double mutants,

as well as a random sampling of combinations of three or more mutations. The mu-

tagenized templates were transcribed in vitro, all under identical conditions, where

active ribozymes had the opportunity to self-cleave co-transcriptionally. All ribozyme

constructs studied cleave near the 5’-end of the RNA, and a template switching re-

verse transcription protocol was used to append a common primer binding site to

both cleaved and uncleaved molecules. Subsequently, low cycle PCR was used to

add indexed Illumina adapters for high-throughput sequencing. Each mutagenized

ribozyme template was transcribed separately and in triplicate, and amplified with

unique indexes so that all replicates could be pooled and sequenced together on an

Illumina sequencer. The sequencing data was then used to count the number of times

each unique sequence was observed as cleaved or uncleaved, and this data was used

to calculate the fraction cleaved. The fraction cleaved of single and double mutants

was normalized to the unmutated reference sequence to determine relative activity.

The relative activity values of the single and double mutants were used to calculate

all possible pairwise epistatic interactions in all five ribozymes. We mapped epis-

tasis values to each ribozyme structure to evaluate correlations between structural

elements and patterns of pairwise epistasis values. The results indicated that struc-

tural features of the ribozymes are revealed in the data, suggesting that these data

sets will be useful for developing models for predicting sequence-structure-function

relationships in RNA molecules.
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2.2 Results and Discussion

2.2.1 Evaluation of read depth and mutational coverage

The accuracy of our relative activity measurements depends on the number of reads

we observe that map to each unique ribozyme sequence (read depth). Each reference

ribozyme has a different nucleotide length resulting in different numbers of possible

single and double mutants. In addition, the pooling of experimental replicates for

sequencing does not result in equal mixtures of each replicate. In order to determine

read depth, we mapped reads to the reference sequences and counted the number of

reads that matched each ribozyme, while allowing for 1 or 2 mutations. We observed

every single and double mutant for all ribozymes in each replicate, indicating 100%

coverage of these mutant classes for all of our data sets. The distributions of observa-

tions for each single and double mutant of each ribozyme are shown in Supplementary

Figure 1. The HDV data showed the lowest depth, possibly because it is a larger ri-

bozyme (87 nt), and fewer reads mapped to the single and double mutants (Table

2.1). Nevertheless, from this analysis we conclude that the data contains complete

coverage of all single and double mutants and ample read depth for all five ribozymes.
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Name Length Single Mutants Double Mutants Mapped Reads Fraction Cleaved

CPEB3 69 207 21,114 9,238,603 0.68

HDV 87 261 33,669 3,316,380 0.60

Twister 48 144 10,152 7,762,863 0.31

Hairpin 71 213 22,365 5,067,216 0.23

Hammerhead 45 135 8,910 8,054,498 0.19

Table 2.1: Summary of the lengths of each self-cleaving ribozyme used in
this study, and the number of single and double mutants whose cleavage
activity was analyzed.

2.2.2 Epistatic effects in paired nucleotide positions show

stability-dependent signatures.

In order to evaluate how the effects of mutations mapped to the ribozyme struc-

tures, we plotted the relative activity values as heat maps (Figures 2.1-2.3). We then

used this data to calculate epistasis between pairs of mutations. We first inspected

nucleotide positions known to be involved in base-paired regions of the secondary

structure of each ribozyme. In this heatmap layout, many paired regions showed an

anti-diagonal line of high activity double mutant variants with strong positive epis-

tasis (Figures 2.1-2.3, insets). In addition, pairs of mutations off the anti-diagonal

tended to show negative or non-positive epistasis. Pseudoknot elements that involve

Watson-Crick base pairs also showed this pattern, including the single base pair T1

element in CPEB3 (Figure 2.1) and the two base pair T1 element in HDV (Figure

2.2). The layout of mutations in the heatmap places paired nucleotide positions along

the anti-diagonal and compensatory double mutants that change one Watson-Crick
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base pair to another are found on this anti-diagonal. Individual mutations that break

a base pair will often reduce ribozyme activity, but the activity can be restored by

a second compensatory mutation resulting in positive epistasis. In contrast, dou-

ble mutants off-diagonal usually disrupt two base pairs (unless they result in a GU

wobble base pair). It is expected that breaking two base pairs in the same paired

region would be more deleterious to ribozyme activity than breaking one base pair,

but it appears that two non-compensatory mutations in the same paired region are

more deleterious than expected from an additive assumption, and frequently create

negative epistasis off-diagonal within paired regions.
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Figure 2.1: Effects of mutations and pairwise epistasis in a CPEB3 ri-
bozyme. A) Relative activity heatmap depicting all possible pairwise ef-
fects of mutations on the cleavage activity of a mammalian CPEB3 ri-
bozyme. Base-paired regions P1, P2, P3, P4, and T1 are highlighted and
color coordinated along the axes, and surrounded by black squares within
the heatmap. Pairwise epistasis interactions observed for each paired re-
gions are each shown as expanded insets for easy identification of the
specific epistatic effects measured for each pair of mutations. Instances
of positive epistasis are shaded blue, and negative epistasis is shaded red,
with higher color intensity indicating a greater magnitude of epistasis.
Catalytic residues are indicated by stars along the axes. B) Secondary
structure of the CPEB3 ribozyme used in this study. Each nucleotide is
shaded to indicate the average relative cleavage activity of all single muta-
tions at that position. C) Histogram showing the distributions of epistasis
in the paired regions of CPEB3. The distribution for double mutants
within a paired region that are not involved in a base-pair is shown in
grey, and the distribution for nucleotides involved in a base-pair is shown
in blue.
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Figure 2.2: Comprehensive pairwise epistasis landscape for a HDV self-
cleaving ribozyme. A) Relative activity heatmap depicting all possible
pairwise effects of mutations on the cleavage activity of an HDV ribozyme.
Base-paired regions P1, P2, P3, P4, and T1 are highlighted and color co-
ordinated along the axes, and surrounded by black squares within the
heatmap. Pairwise epistasis interactions observed for each paired regions
are each shown as expanded insets for easy identification of the specific
epistatic effects measured for each pair of mutations. Instances of posi-
tive epistasis are shaded blue, and negative epistasis is shaded red, with
higher color intensity indicating a greater magnitude of epistasis. Cat-
alytic residues are indicated by stars along the axes. B) Secondary struc-
ture of the HDV ribozyme used in this study. Each nucleotide is shaded
to indicate the average relative cleavage activity of all single mutations
at that position. C) Histogram showing the distributions of epistasis in
the paired regions of HDV. The distribution for double mutants within a
paired region that are not involved in a base-pair is shown in grey, and
the distribution for nucleotides involved in a base-pair is shown in blue.



31

Figure 2.3: Comprehensive pairwise epistasis landscape for a hammerhead
self-cleaving ribozyme. A) Relative activity heatmap depicting all possi-
ble pairwise effects of mutations on the cleavage activity of a hammerhead
ribozyme. Base-paired regions P1, and P2 are highlighted and color co-
ordinated along the axes, and surrounded by black squares within the
heatmap. Pairwise epistasis interactions observed for each paired region
are each shown as expanded insets for easy identification of the specific
epistatic effects measured for each pair of mutations. Instances of posi-
tive epistasis are shaded blue, and negative epistasis is shaded red, with
higher color intensity indicating a greater magnitude of epistasis. Catalytic
residues are indicated by stars along the axes. B) Secondary structure of
the hammerhead ribozyme used in this study. Each nucleotide is shaded
to indicate the average relative cleavage activity of all single mutations
at that position. C) Histogram showing the distributions of epistasis in
the paired regions of hammerhead. The distribution for double mutants
within a paired region that are not involved in a base-pair is shown in
grey, and the distribution for nucleotides involved in a base-pair is shown
in blue.
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To quantify the observed difference in epistasis between nucleotide positions that

form a base pair and two that do not, we plotted the distribution of epistasis val-

ues for double mutants on and off the anti-diagonal within the paired regions of

each ribozyme. Statistical analysis indicated that the distributions were significantly

different (p¡0.001, Mann-Whitney U-test), and the epistasis values between paired nu-

cleotide positions (on-diagonal) were consistently more positive than two mutations

in positions that are not directly base paired (off-diagonal). This analysis was con-

sistent for every individual paired region in each ribozyme (Figures 2.1-2.3, panel C).

This pattern of epistasis in paired regions demonstrates the utility of comprehensive

double-mutant activity data for identifying base paired regions in RNA structures.

It is interesting to note that the magnitude of the difference in the distributions of

epistasis values for double mutants at paired and non-paired positions was different

for different paired regions (Supplementary Figure 2.7). Specifically, short paired

elements with fewer base pairs seemed to show large differences in the distributions

of epistatic effects for paired and unpaired positions, while longer paired elements

showed small differences in these distributions. For example, the short P3 (3 bp) in

CPEB3 and HDV, and T1 (4 bp) in the twister ribozyme showed very large differences

between the distributions of epistasis values at paired versus non-paired positions.

These small regions are highly sensitive to mutations, and most pairs of mutations

within this region result in almost no detectable activity except when they create a

different Watson-Crick base pair (Figures 2.1-2.3). These structural elements have

positive epistasis along the anti-diagonal, and negative epistasis off diagonal, resulting

in large differences between the distributions of epistasis (Supplementary Figure 2.7).

In contrast, the P4 stem in HDV has the most base pairs of any paired region in
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this data set (14), and losing one of these base pairs was not deleterious to riboyzme

activity in our experiments (Figure 2.2). Because the single mutations had little

effects on the self-cleavage activity, a compensatory mutation restoring a base pair

did not result in positive epistasis (Figure 2.2). Further, only weak negative epistasis

is observed off-diagonal indicating that the loss of two base pairs in P4 was somewhat

tolerated compared to shorter paired regions. The distributions for epistasis for paired

and unpaired positions in P4 of HDV show only a small difference (Supplementary

Figure 2.7). Together, the differences between epistasis in short and long base paired

regions suggests that the thermodynamic stability of each paired region is important

for the observed activity differences contributing to epistasis, which might ultimately

affect the utility of this data for identifying paired regions in RNA structures.

In order to quantify the influence of thermodynamic stability on epistasis in dif-

ferent paired regions, we calculated the minimum free energy for each paired region

and compared mutational effects. We split each paired region into two separate RNA

sequences that contained only the base paired nucleotides and used nearest neighbor

rules to calculate the minimum free energy of their interaction (NUPACK). This ap-

proach neglects thermodynamic contributions from terminal loops, but allowed for

a consistent approach to compare internal and terminal paired regions. We found a

significant negative correlation between the median deleterious effects of single muta-

tions and the minimum free energy of the paired regions (Supplementary Figure 2.8).

This analysis indicates that more stable structural elements may be harder to identify

from epistatic effects. However, it is possible that more stable elements would show

stronger epistasis under different experimental conditions, such as different tempera-

tures or magnesium concentrations (Peri et al., 2022).
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2.2.3 Catalytic residues do not have any high-activity mu-

tants, and do not exhibit epistasis.

Self-cleaving ribozymes often utilize a concerted acid base catalysis mechanism where

specific nucleobases act as proton donors (acid) or acceptors (base) (Jimenez et al.,

2015), and mutations at these positions abolish activity. Analyzing the effects of

individual mutations will not distinguish catalytic nucleotides from structurally im-

portant nucleotides. Comprehensive pairwise mutations, on the other hand, can po-

tentially distinguish between structurally important nucleotides involved in paired

regions that show positive epistasis from compensatory effects. The catalytic cy-

tosines of the CPEB3 (C57) and HDV (C75) act as proton donors due to perturbed

pKa values (Nakano et al., 2000; Skilandat et al., 2016). For the twister ribozyme

(Figure 2.4) the guanosine at position G39 acts as a general base, and the adenosine at

position A1 acts as a general acid (Wilson et al., 2016). The catalytic nucleotides for

the Hammerhead ribozyme (Figure 2.3) are the Guanosines located at positions G25

and G39 (Scott et al., 2013). The hairpin ribozyme (Figure 2.5aps, the columns and

rows associated with these nucleotides result in low activity values (Figures 2.1-2.3,

Supplementary Figure 2.9). It is important to note that because there is complete

coverage of all double mutants in this data set, we can be certain that there are no

possible compensatory mutations. These results show how catalytic residues can be

identified in the comprehensive pairwise mutagenesis data.
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Figure 2.4: Comprehensive pairwise epistasis landscape for a twister self-
cleaving ribozyme. A) Relative activity heatmap depicting all possible
pairwise effects of mutations on the cleavage activity of a twister ribozyme.
Base-paired regions P2, P4, T1, and T2 are highlighted and color coordi-
nated along the axes, and surrounded by black squares within the heatmap.
Pairwise epistasis interactions observed for each paired region are each
shown as expanded insets for easy identification of the specific epistatic
effects measured for each pair of mutations. Instances of positive epistasis
are shaded blue, and negative epistasis is shaded red, with higher color in-
tensity indicating a greater magnitude of epistasis. Catalytic residues are
indicated by stars along the axes. B) Secondary structure of the twister
ribozyme used in this study. Each nucleotide is shaded to indicate the
average relative cleavage activity of all single mutations at that position.
C) Histogram showing the distributions of epistasis in the paired regions
of twister. The distribution for double mutants within a paired region that
are not involved in a base-pair is shown in grey, and the distribution for
nucleotides involved in a base-pair is shown in blue.
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Figure 2.5: Comprehensive pairwise epistasis landscape for a hairpin self-
cleaving ribozyme. A) Relative activity heatmap depicting all possible
pairwise effects of mutations on the cleavage activity of a hairpin ribozyme.
Base-paired regions P1, P2, and P3 are highlighted and color coordinated
along the axes, and surrounded by black squares within the heatmap.
Pairwise epistasis interactions observed for each paired region are each
shown as expanded insets for easy identification of the specific epistatic
effects measured for each pair of mutations. Instances of positive epistasis
are shaded blue, and negative epistasis is shaded red, with higher color
intensity indicating a greater magnitude of epistasis. Catalytic residues are
indicated by stars along the axes. B) Secondary structure of the hairpin
ribozyme used in this study. Each nucleotide is shaded to indicate the
average relative cleavage activity of all single mutations at that position.
C) Histogram showing the distributions of epistasis in the paired regions
of hairpin. The distribution for double mutants within a paired region
that are not involved in a base-pair is shown in grey, and the distribution
for nucleotides involved in a base-pair is shown in blue. D) Violin plots
showing the distributions of epistasis in all terminal stem loops across all
five ribozymes, and epistasis observed within loop A, loop B, and between
loop A and loop B in the hairpin ribozyme.
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2.2.4 Unpaired nucleotides show tertiary structure depen-

dent mutational effects.

Mutations to nucleotides found in terminal loops that are not involved in tertiary

structure elements showed high relative activity for most single and double mutants,

and essentially no epistasis. This is not surprising if these loops reside on the periphery

of the ribozyme and are not involved in structural contacts with other nucleotides.

This is the case for L4 of the CPEB3 and HDV ribozymes (Figure 2.1, Figure 2.2), and

L1 and L3 of the hairpin ribozyme (Figure 2.5). Two mutations within these loops

do not reduce activity, and mutations in these loops do not rescue other deleterious

mutations such as those that break a base pair (Figures 2.1, 2.2, and 2.5).

The internal loops (LA and LB) of the hairpin ribozyme are structurally important

(Figure 2.5). Interactions between nucleotides within LB include six non-Watson-

Crick base pairing interactions that are important for the formation of an active

ribozyme structure (Fedor, 2000). Several non-canonical base-base and sugar-base

hydrogen bonds between nucleotides within LA are also important for the formation

of the active site (Fedor, 2000; Wilson et al., 2006). Docking between LA and LB

is necessary for the formation of a catalytically active ribozyme and is facilitated by

a Watson-Crick base pair between G1 and C46 in the version of the ribozyme used

here (Rupert & Ferré-D’Amaré, 2001). In contrast to terminal loop regions, most

single mutations within LA and LB resulted in low self-cleavage activity in our data

(Figure 2.5). In addition, the double mutants within and between loop A and loop

B show several instances of strong positive epistasis (Figure 2.5, Insets), and the dis-

tributions of epistasis within and between these loops are significantly different than

the terminal loops that are not structurally important (Figure 2.5D). This positive
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epistasis indicates that many of the important structural contacts can be facilitated

by other specific pairs of nucleotides. For example, the double mutant G1C and

C46G shows strong epistasis suggesting that swapping a C-G base pair for the G-C

base pair can restore activity by facilitating docking between the two loops. Several

double mutants at positions that form non-canonical interactions in LB show positive

epistasis. For example, mutation A41G shows positive epistasis when the interacting

nucleotide C65 is mutated to a G or U. The non-canonical base pair G42:A64 shows

positive epistasis for the mutations G42U A64G. The non-canonical A45:A59 interac-

tion shows positive epistasis for several pairs of mutations (A45U A59C, A45C A59C,

A45G A59U). Finally, the non-canonical base pair A47:G57 in LB, and C3:A28 in

LA, both show positive epistasis for double mutants that result in an AU base pair.

This analysis indicates that important structural contacts can be achieved with sev-

eral different nucleotide combinations. The difference between terminal loops and

loops with structural importance highlights how activity-based data can help identify

non-canonical structures that are challenging to predict computationally, and that

might be difficult to identify by other common approaches, such as chemical probing

experiments (Walter et al., 2000).

Another example of structurally important unpaired regions can be found in the

CUGA uridine turn (U-turn) motif in the hammerhead ribozyme (Figure 2.3). This

CUGA turn forms the catalytic pocket and positions a catalytic cytosine (-1C) at

the cleavage site (Doudna, 1995). A crystal structure of the sTRSV ribozyme showed

a base pair between the nucleotides corresponding to C20 and G25 in the ribozyme

construct used for our experiments (Chi et al., 2008). These two nucleotides showed

strong positive epistasis for the mutations C20G and G25C, which substitutes a G:C
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base pair for the original C:G base pair. All other single and double mutants in

this region showed low activity, and no instances of strong positive epistasis within

or between this motif (Figure 2.3). The low activity resulting from mutations in

this region confirms the functional importance of this motif, and indicates that this

motif cannot be easily formed or rescued by sequences with up to two mutational

differences, except for the G:C base pair swap.

Tertiary interactions between loops in the hammerhead ribozyme provide another

example of structurally important loop regions. Type III hammerhead ribozymes,

like the one used in this study, contain tertiary interactions between nucleotides in

the loops of P1 and P2 that are implicated in structural organization of the catalytic

core. A crystal structure of this loop-loop interaction showed a network of interhelical

non-canonical base pairs and stacks, with several nucleobases in stem-loop I interact-

ing with more than one nucleobase in stem-loop II (Chi et al., 2008; Martick & Scott,

2006). However, there are numerous different loop sequences in naturally occurring

hammerhead ribozymes indicating that this loop-loop interaction can be formed by a

variety of different sequences (Burke & Greathouse, 2005; Perreault et al., 2011). We

therefore anticipated that the we would observe a significant level of positive epista-

sis between these two loops for double mutations that were capable of maintaining

these tertiary interactions. Surprisingly, however, we found that most individual and

double mutations do not reduce activity (Figure 2.3), and double mutants do not

show positive epistasis (Supplementary Figure 2.10). This indicates that the multiple

interactions between the loops compensate for mutations that break a single interac-

tion. It is interesting to note that the mutational robustness of these loops has been

exploited in bioengineering applications, where insertion of an aptamer into one of
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the loops and randomization of the other allowed for the selection of synthetic ri-

boswitches (Townshend et al., 2015). The identification of robust structural elements

though high-throughput mutational data could be useful for identifying better targets

for aptamer integration in other ribozymes.

2.2.5 Epistasis plots are an informative approach to visual-

izing high-throughput activity data

Previous studies have reported comprehensive pairwise mutagenesis of ribozymes that

provide interesting opportunities for comparison to the data presented here. For ex-

ample, all pairwise mutations in a 42-nucleotide region of the same twister ribozyme

were previously reported (Kobori & Yokobayashi, 2016). Compared to our experi-

ments, these previous experiments used a later transcriptional time point (2h) and

lower magnesium concentration (6mM). They did not calculate epistasis, and re-

ported the Relative Activity of all double mutants using heatmaps similar to the

figures presented here. The results were highly similar, and the authors were able

to identify paired regions in the data. The similarity between the results illustrates

the reliability of this sequencing-based approach, which is promising for future data

sharing and meta-analysis efforts. In another prior work, all pairwise mutations in

the glmS ribozyme were analyzed using a custom-built fluorescent RNA array (An-

dreasson et al., 2020). The power of this approach is that they were able to monitor

self-cleavage over short and long time scales, which enables differentiating both very

slow and very fast self-cleaving variants. While the authors did not calculate pairwise

epistasis, they reported relative activity heatmaps and also “rescue effects” when the

activity of a double mutant is sufficiently higher than the activity of a single mutant.

This rescue analysis is very similar to positive epistasis, but only takes into account
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one mutation at a time. This analysis was also able to identify many of the know

base-pair interactions and some tertiary contacts in the glmS ribozyme. In addition,

they were able to observe some minor secondary structure rearrangement, where mu-

tations in some nucleotides were able to rescue neighboring nucleotides by shifting

the base-pairing slightly. The pairwise epistasis analysis presented here adds an addi-

tional approach to extract information from such high-throughput sequencing-based

analysis of self-cleaving ribozymes. Unlike the rescue analysis, which can only identify

positive interactions, the ability to detect negative epistatic interactions may help fur-

ther identify structurally important regions for RNA sequence design and engineering

efforts.

2.2.6 Conclusion

We have determined the relative activity for all single and double mutants of five

self-cleaving ribozymes and use this data to calculate epistasis for all possible pairs

of nucleotides. The data was collected under identical co-transcriptional conditions,

facilitating direct comparison of the data sets. The data revealed signatures of struc-

tural elements including paired regions and non-canonical structures. In addition, the

comprehensiveness of the double mutants enabled identification of catalytic residues.

Recently, there has been significant progress towards predicting RNA structures from

sequence using machine learning approaches. The machine learning models are typi-

cally trained on structural biology data from x-ray crystallography, chemical probing

(SHAPE), and natural sequence conservation. Self-cleaving ribozymes have been

central to this effort. Our approach is similar to SHAPE in that it can be obtained

with common lab equipment and commercially available reagents. The activity data

presented provides information similar to natural sequence conservation, except that
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it provides quantitative effects of mutations, not just frequency. We hope that the

activity-based data presented here will provide information not present in these other

training data sets and help advance computational predictions.

2.3 Materials and Methods

Mutational library design and preparation of self-cleaving ribozymes Single-stranded

DNA molecules used as templates for in vitro transcription were synthesized with 97%

of the base of the reference sequence and 1% of the three other remaining bases at each

position (Keck Oligo Synthesis Resource, Yale). The single-stranded Deoxyribose

Nucleic Acid (ssDNA) library was made double stranded to allow for T7 transcription

via low cycle PCR using Taq DNA polymerase.

2.3.1 Co-transcriptional self-cleavage assay

The co-transcriptional self-cleavage reactions were carried out in triplicate by com-

bining 20 µL 10X T7 transcription buffer (500 µL 1M Tris pH 7.5, 50 µL 1M DTT,

20 µL 1M Spermidine, 150 µL 1M MgCl2, 280 µL RNase Free water), 4 µL rNTP

(25mM, NEB, Ipswich, Ma), 8 µL T7 RNA Polymerase-Plus enzyme mix (1,600 U,

Invitrogen, Waltham, Ma), 160 µL nuclease free water, and 8 µL of double stranded

DNA template (4 pmol, 0.5 µM PCR product) at 37°C for 30 minutes. The tran-

scription and co-transcription self-cleavage reactions were quenched by adding 60 uL

of 50 mM EDTA. The resulting RNA was purified and concentrated using Direct-zol

RNA MicroPrep Kit with TRI-Reagent (Zymo Research, Irvine, Ca), and eluted in

7µL nuclease free water. Concentrations were determined via absorbance at 260 nm

(ThermoFisher NanoDrop, Waltham, Ma), and normalized to 5µM. Reverse tran-

scription reactions used 5 picomoles RNA and 20 picomoles of reverse transcription
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primer in a volume of 10 µL. RNA and primer were heated to 72 °C for 3 mins and

cooled on ice. Reverse transcription was initiated by adding 4 µL SMARTScribe 5x

First-Strand Buffer (TaKaRa, San Jose, Ca ), 2 µL dNTP (10 mM), 2 µL DTT (20

mM), 2 µL phased template switching oligo mix (10 µM), and 2 µL SMARTScribe

Reverse Transcriptase (200 units, TaKaRa) (Bendixsen et al., 2020). The mixture

was incubated at 42 °C for 90 mins and the reaction was stopped by heating to 72

°C for 15 mins. The resulting cDNA was purified on a silica-based column (DCC-5,

Zymo Research) and eluted into 7 µL water. Illumina adapter sequences and indexes

were added using high-fidelity PCR. A unique index combination was assigned to each

ribozyme and for each replicate. The PCR reaction contained 3 µL purified comple-

mentary Deoxyribose Nucleic Acid (cDNA), 12.5 µL KAPA HiFi HotStart ReadyMix

(2X, KAPA Biosystems, Wilmington, Ma), 2.5 µL forward, 2.5 µL reverse primer

(Illumina Nextera Index Kit) and 5 µL water. Several cycles of PCR were examined

using gel electrophoresis and a PCR cycle was chosen that was still in logarithmic

amplification, prior to saturation. Each PCR cycle consisted of 98 °C for 10 s, 63 °C

for 30 s and 72 °C for 30 s. PCR PCR was purified on silica-based columns (DCC-5,

Zymo Research) and eluted in 22.5 µL water. The final product was then verified

using gel electrophoresis.

2.3.2 High-throughput sequencing

The indexed PCR products for all replicates were pooled together at equimolar con-

centrations based off of absorbance at 260 nm. Paired end sequencing reads were

obtained for the pooled libraries using an Illumina HiSeq 4000 (Genomics and Cell

Characterization Core Facility, University of Oregon).
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2.3.3 Sequencing data analysis

Paired-end sequencing reads were joined using Fast Length Adjustment of Sort reads

(FLASh), allowing ‘outies’ due to overlapping reads. The joined sequencing reads were

analyzed using custom Julia scripts that implement a sequence- length sliding window

to screen for double mutant variants of a reference ribozyme. Nucleotide identities

for each mutant were identified and then counted as either cleaved or uncleaved

based on the presence or absence of the 5’-cleavage product sequence. The relative

activity (RA) was calculated as previously described (Kobori & Yokobayashi, 2016).

Briefly, a fraction cleaved (FC) was calculated for each genotype in each replicate

as FC= Nclv/(Nclv + Nunclv). This value was normalized to the reference/wild

type fraction cleaved as RA = FC/FCwt. The RA values were averaged across the

three replicates and then plotted as a heatmap. Epistasis interactions for each double

mutant (i, j) were quantified as previously described (Bendixsen et al., 2017), where

Epistasis (ϵ) = log(i,j)
log(i)log(j)

. In order to eliminate false positive detection of epistasis

interactions, values were filtered to eliminate instances where the difference between

the double and any of the single mutants was less than 1-3σ of the overall distribution

of differences between the single and double mutant relative activities. Values greater

than 1 indicate positive epistasis, and values less than zero indicate negative epistasis.

Mann-Whitney U-test was used to determine the probability that epistasis or activity

values of different structural elements were from the same distribution.In order to

eliminate false positive epistasis values where the .
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2.3.4 Correlation of thermodynamic stability of paired re-

gions and observed mutational effects.

Each base paired region was split into two separate RNA sequences containing only

the nucleotides involved in base pairing, omitting nucleotides belonging to stem loops.

Complex formation between each pair of strands at was analyzed in Nupack using

Serrra and Turner RNA energy parameters in order to obtain minimum free energy

values for each paired region (37°C, [1µM]). Using custom Julia scripts, the median

relative activity for single mutations to each paired region was plotted as a function

of the calculated free energy and a Pearson correlation coefficient was calculated.
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2.3.8 Supplementary Materials

Figure 2.6: Histogram of the distributions of read counts (read depth) for
the single and double mutants matching to each ribozyme analyzed in this
study (HDV, CPEB3, hammerhead, hairpin, twister
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Figure 2.7: Distributions for epistasis values seen on and off anti-diagonal
in the epistasis heatmaps. The distributions of epistasis values along the
anti-diagonal corresponding to double mutations between nucleotides in-
volved in a Watson-Crick base-pair are shown in blue, and the epistasis
values seen off diagonal are shown in gray.
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Figure 2.8: Relationship between the Gibbs free energy (∆G) of each base
paired region belonging to the hairpin, hammerhead, CPEB3, HDV, and
twister ribozymes, and the median relative activity of all single mutants
within each base paired region (Pearson Correlation = -0.53).



49

Figure 2.9: Distributions of relative self-cleavage activity observed for se-
quences containing mutations to the catalytic nucleotides in the CPEB3,
HDV, twister, hairpin, and hammerhead ribozymes.
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Figure 2.10: Distribution of pairwise epistasis observed between the loops
of P1 and P2 in the hammerhead ribozyme.
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Name Sequence Notes
HDV template GAACCGGACCGAAGCCCGATTTGGA

TCCGGCGAACCGGATCGATGGGTCC

CATTCGCCATTACCGAGGGGACGGT

CCCCTCGGAATGTTGCCCAGCCGGC

GCCAGCGAGGAGGCTGGGACCATGC

CGGCCATCAGGCCTATAGTGAGTCGT

ATTAGCCG

*

CPEB3 template GAACCGGACCGAAGCCCGATTTGGA

TCCGGCGAACCGGATCGAACAGCAG

AATTCGCAGATTCACCAGAATCTGA

CAGGGGCTGCGACGTGAACGCTTCT-

GCTGTGGCCCCCGAATGGTCCTTTT

CCTATAGTGAGTCGTATTAGCCG

*

Twister template GAACCGGACCGAAGCCCGATTTGGA

TCCGGCGAACCGGATCGACCGCCCC

CTCCACTTTTATCCGGGCTTGGGAC

CGGCATTGGCAGTGTTAGGCGGCCC

TTTTCCTATAGTGAGTCGTATTAGCCG

*

Hairpin template GAACCGGACCGAAGCCCGATTTGGA

TCCGGCGAACCGGATCGATACCAGG

TAATATACCACAACGTGTGTTTCTC

TGGTTCACTTCTCTCTTTCACGCGC

ACGTGAAAGAGGACTGTCATTTTCC

TATAGTGAGTCGTATTAGCCG

*

HH template GAACCGGACCGAAGCCCGATTTGGA

TCCGGCGAACCGGATCGACTGTTTC

GTCCTCACGGACTCATCAGACCGGA

AAGCACATCCGGTGACAGTTTTCCT

ATAGTGAGTCGTATTAGCCG

*

T7 top strand CGGCTAATACGACTCACTATAG PCR primer
RT primer TCGTCGGCAGCGTCAGATGTGTATAAGA

GACAGCATGCATGCrGrGrG

**1

RT primer TCGTCGGCAGCGTCAGATGTGTATAAGA

GACAGTGCATGCATGCATGCrGrGrG

**2

RT primer TCGTCGGCAGCGTCAGATGTGTATAAGA

GACAGATGCATGCATGCrGrGrG

**3

RT primer TCGTCGGCAGCGTCAGATGTGTATAAGA

GACAGCATGCATGCrGrGrG

**4

Table 2.2: Oligonucleotides used in this study. * DNA template for in vitro
transcriptions. ** Phase template switching oligo. Bolded nucleotides in-
dicate positions synthesized using doped phosphoramidites (3% mutation
rate)
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CHAPTER 3:

ANALYSIS OF CATALYTIC ACTIVITY FOR

THE SELECTION OF TIME PARAMETERS

FOR TWISTER SELF-CLEAVING RIBOZYMES

James D. Beck, Jessica M. Roberts, Jeremy Herrera, and Eric J. Hayden

A Jupyter Book1

Abstract

Ribozymes are ncRNA molecules that catalyze biochemical reactions. Because a

ribozyme’s structure relates to its catalytic abilities, a further area of inquiry seeks to

correlate structure and catalytic abilities to mutational variation. One well studied

class of ribozyme that is particularly suited to such an inquiry is the self-cleaving

ribozyme, a molecule that catalyzes the cleavage of its phosphodiester backbone. The

affects of mutations on self-cleaving activity can be easily measured by sequencing

many copies of ribozyme variants over multiple experimental replicates and observing

the number of times each variant was found in a cleaved or uncleaved form. The

observed counts serve as the basis for identifying structurally important features

1Accessible at https://bsu.gitlab.io/bio-computing/ribo-k-book/intro.html and doi:

https://doi.org/10.5281/zenodo.7139783

https://bsu.gitlab.io/bio-computing/ribo-k-book/intro.html
doi:https://doi.org/10.5281/zenodo.7139783
doi:https://doi.org/10.5281/zenodo.7139783
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within the ribozyme and to computationally predict the catalytic activity of higher-

order mutants. However, the reactions used to create the sequenced variants produce

only a noisy estimate of each ribzoyme’s catalytic ability.

The reactions generate a fraction cleaved for each ribozyme variant (Equation

A.2). Each reaction synthesizes many individual variant copies that fold into struc-

tures affecting their ability to cleave. Consequently, the reaction duration affects the

fraction cleaved for each self-cleaving ribozyme based on when in the reaction the

ribozyme was synthesized and how quickly the ribozyme folds into an active state.

Some variants will quickly fold into an active state while others will either take longer

to fold or will misfold into an inactive structure. Shorter duration reactions will cause

slow folding variants to have lower fraction cleaved because those synthesized near

the end of the reaction will not have had the time to complete their folding. Longer

duration reactions will cause most variants to have a higher fraction cleaved because

all synthesized sequences will have adequate time to fold. Selecting time parameters

for the reaction, therefore, is an important factor affecting each variant’s fraction

cleaved.

The fraction cleaved can be used to calculate an observed catalytic rate for each

variant (kobs, Equation A.3). kobs is obtained by fitting an exponential decay function

to the fraction cleaved for multiple experimental replicates at multiple time periods.

The kobs value that produces the least square error amongst the fraction cleaved values

is selected.

kobs provides a measure of activity that is not reliant on a variant’s folding speed

at any particular time. Instead, kobs reports a single value that represents the fold-

ing activity over all time periods. Additionally, kobs values can yield a much larger
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dynamic range than can be found using the fraction cleaved (which, by definition,

can only range between 0 and 1). The dynamic range is important to differentiating

structure, particularly when mutations occur in tolerant positions. kobs is, therefore,

preferable when cleavage data is available for multiple time periods.

This chapter was designed to train students on the fundamentals of fitting ob-

served data for multiple time periods to known catalytic functions. The included

code is written and documented in such a way as to provide a basic understanding

of the analysis without reliance on curve fitting software packages. This chapter was

also intended to provide a starting point for researchers to evaluate the many other

experimental parameters that affect kobs. It is my hope that the repository and tools

organized to create this chapter will be expanded for future lab use.
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CHAPTER 4:

PREDICTING HIGHER-ORDER MUTATIONAL

EFFECTS IN AN RNA ENZYME BY MACHINE

LEARNING OF HIGH-THROUGHPUT

EXPERIMENTAL DATA

James D. Beck, Jessica M. Roberts, Joey Kitzhaber, Ashlyn Trapp, Edoardo Serra,

Francesca Spezzano, and Eric J. Hayden

doi: https://doi.org/10.1101/2022.05.31.4940171

Abstract

Ribozymes are RNA molecules that catalyze biochemical reactions. Self-cleaving

ribozymes are a common naturally occurring class of ribozymes that catalyze site-

specific cleavage of their own phosphodiester backbone. In addition to their natural

functions, self-cleaving ribozymes have been used to engineer control of gene expres-

sion because they can be designed to alter RNA processing and stability. However, the

rational design of ribozyme activity remains challenging, and many ribozyme-based

1Accepted for publication in Frontiers in Molecular Biosciences Biological Modeling and Simula-
tion - Beck et al. (2022)
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systems are engineered or improved by random mutagenesis and selection (in vitro

evolution). Improving a ribozyme-based system often requires several mutations to

achieve the desired function, but extensive pairwise and higher-order epistasis pre-

vent a simple prediction of the effect of multiple mutations that is needed for rational

design. Recently, high-throughput sequencing-based approaches have produced data

sets on the effects of numerous mutations in different ribozymes (RNA fitness land-

scapes). Here we used such high-throughput experimental data from variants of the

CPEB3 self-cleaving ribozyme to train a predictive model through machine learn-

ing approaches. We trained models using either a random forest or long short-term

memory (LSTM) recurrent neural network approach. We found that models trained

on a comprehensive set of pairwise mutant data could predict active sequences at

higher mutational distances, but the correlation between predicted and experimen-

tally observed self-cleavage activity decreased with increasing mutational distance.

Adding sequences with increasingly higher numbers of mutations to the training data

improved the correlation at increasing mutational distances. Systematically reducing

the size of the training data set suggests that a wide distribution of ribozyme activity

may be the key to accurate predictions. Because the model predictions are based

only on sequence and activity data, the results demonstrate that this machine learn-

ing approach allows readily obtainable experimental data to be used for RNA design

efforts even for RNA molecules with unknown structures. The accurate prediction

of RNA functions will enable a more comprehensive understanding of RNA fitness

landscapes for studying evolution and for guiding RNA-based engineering efforts.
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4.1 Introduction

RNA enzymes, or ribozymes, are structured RNA molecules that catalyze biochemical

reactions. One well-studied class of ribozymes are the small self-cleaving ribozymes

that catalyze site specific cleavage of phosphate bonds in their own RNA backbone

(Ferre-D’Amare & Scott, 2010). These self-cleaving ribozymes are found in all do-

mains of life, and their biological roles are still being investigated (Jimenez et al.,

2015). In addition to their natural functions, these ribozymes have been used as

the basis for engineering biological systems. For example, several small ribozymes

(hammerhead, twister, pistol and HDV) have been used as genetically encoded gene

regulatory elements by combining them with RNA aptamer and embedding them

into untranslated regions of genes (Groher & Suess, 2014; Dykstra et al., 2022). This

approach continues to gain attention because of the central importance of control-

ling gene expression and the simple design and build cycles of these small RNA

elements. Nevertheless, ribozymes often need optimization for sequence dependent

and cell specific effects. This can be achieved by modifying the sequence of the ri-

bozymes, but this often requires multiple mutational changes and the vast sequence

space requires extensive trial and error. Given this large sequence space, even the

most high-throughput approaches can only find the optimal solutions present in the

sequences that can be explored experimentally, which is a fraction of the total possible

sequences. The engineering of ribozyme-based systems could benefit from accurate

prediction of the effects of multiple mutations in order to narrow the search space

towards optimal collections of sequences.

One way to think of the ribozyme optimization problem is in terms of fitness

landscapes. Molecular fitness landscapes of protein and RNA molecules are studied
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by measuring the effects of numerous mutations on the function of a given reference

molecule (Athavale et al., 2014; Blanco et al., 2019). Recently, the fitness landscapes

of RNA molecules have been studied experimentally by synthesizing large numbers

of sequences and using high-throughput sequencing to evaluate the relative activity

of the RNA in vitro, or the growth effect of the RNA in a cellular system, both

of which are termed “RNA fitness” (Kobori & Yokobayashi, 2016; Li et al., 2016;

Pressman et al., 2019). The goal of in vitro evolution is often to find the highest

peak in the landscape, or one of many high peaks, by introducing random mutations

and selecting for improved activity. However, the RNA fitness landscapes that have

been experimentally studied so far have revealed rugged topographies with peaks of

high relative activity and adjacent valleys of low activity. Landscape ruggedness is

an impediment to finding desired sequences through in vitro evolution approaches

(Ferretti et al., 2018). Epistasis, defined as the non-additive effects of mutations, is

the cause of ruggedness in fitness landscapes, and epistasis has been used to quan-

tify the ruggedness of fitness landscapes (Szendro et al., 2013). More frequent and

more extreme epistasis indicates that a landscape is more rugged. Importantly, more

epistasis also means that the effect of combining multiple mutations is challenging to

predict even if the effects of each individual mutation are known. In addition, exper-

imental fitness landscapes can only study a limited number of sequences, except for

very small RNA molecules (Pressman et al., 2019). It is often not possible to know if

the process of in vitro evolution discovered a sequence that is globally optimal, or just

a local optimum. For these reasons, it has become a goal to accurately predict the

activity of sequences in order to streamline RNA evolution experiments and to study

fitness landscapes in a more comprehensive manner (Groher et al., 2019; Schmidt &
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Smolke, 2021).

Here, we use high-throughput experimental data of mutational variants of a self-

cleaving ribozyme to train a model for predicting the effect of higher-order combi-

nations of three or more mutations. The ribozyme used in this study is the CPEB3

ribozyme (Figure 4.1A). This ribozyme is highly conserved in the genomes of mam-

mals, where it is found in an intron of the CPEB3 gene (Salehi-Ashtiani et al., 2006).

For training purposes, we generated a new data set that includes all possible individ-

ual and pairs of mutations to the reference CPEB3 ribozyme sequence (Figure 4.1B).

These mutations were made by randomization of the CPEB3 ribozyme sequence with

a 3% per nucleotide mutation rate during chemical synthesis of the DNA template.

We reasoned that given the extensive amount of pairwise epistasis in RNA (Bendixsen

et al., 2017), this data set might be sufficient for predicting higher-order mutants. In

addition, we used a second, previously published data set that included 27,647 se-

quences comprised of random permutations of mutations found in mammals that

include up to 13 mutational differences from the same reference ribozyme (Bendixsen

et al., 2021). This second data set not only contains higher-order mutational combi-

nations, but also a broad range of self-cleaving activity (Figure 4.1D). In both data

sets, the relative activity of each sequence was determined by the deep sequencing

of co-transcriptional self-cleavage data, as previously described. Briefly, the mutated

DNA template was transcribed in vitro with T7 RNA polymerase. The transcripts

were prepared for Illumina sequencing by reverse transcription and PCR. Relative

activity was determined as the fraction cleaved, defined by the fraction of sequencing

reads that mapped to a specific sequence variant in the shorter, cleaved form relative

to the total number of reads for that sequence variant.
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Figure 4.1: CPEB3 Ribozyme Structure (A), Relative Activity of Single
and Double Mutants (B), Pairwise Epistasis (C), and Fitness Landscape
(D)

We set the goal of being able to predict the activity of the higher-order mutants in

the phylogenetically derived fitness landscape (Figure 4.1D). In addition, we wanted
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to guide future experiments aimed at producing additional data for training models

of ribozyme-based systems. The number of possible sequences increases exponen-

tially with the number of variable nucleotide positions. In addition, the probability

of finding active ribozymes at higher mutational distances becomes increasingly un-

likely. Experiments aimed at training predictive models will need to choose realistic

numbers of sequences that can have the highest impact on model performance. We

therefore evaluated the effect of adding to the training data sequences with increasing

mutational distances from the wild-type sequence as well as the effect of reducing the

number of sequences in the training data. The results of these experiments were ex-

pected to be useful in guiding the choice of which sequence variants, and how many,

to analyze experimentally in order to produce effective training data sets.

4.2 Results

We first evaluated our new training data set that contained all single and double-

mutants of the CPEB3 ribozyme. We found that the data did in fact contain full

coverage of the possible 207 single mutants and the 21,114 double mutants. While

the number of reads that mapped to each of these sequences varied, we found that,

on average, 170 reads mapped to each double mutant, and 18,000 reads mapped to

each single mutant (Supplemental Figure 4.5). This read depth was sufficient for the

determination of the fraction cleaved for all single and double mutants (Figure 4.1B).

Mapping the fraction cleaved to base paired structural elements showed expected

patterns of activity caused by compensatory base pairs. Mutations that break a base

pair typically showed low activity, but a second mutation that restored the base pair

showed high activity. To further evaluate this data, we calculated the non-additive

pairwise epistasis in this data set (Figure 4.1C). Together, this analysis indicated
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that this data set contained a wide range of ribozyme activity and the effects of all

pairwise intramolecular epistatic interactions.

In order to determine the training potential of the comprehensive double-mutant

data, we first trained models using only the fraction cleaved data for sequences with

two or fewer mutations including the wild-type reference sequence. We then tested

the models’ performance in predicting the fraction cleaved for sequences with in-

creasing numbers of mutations. We trained two models with two approaches (see

Materials and Methods). The first approach used a Random Forest regressor. In the

second approach, we added a Long Short-Term Memory (LSTM) recurrent neural

network to extract hidden features from the data. We then fed the hidden features

with associated fraction cleaved to a Random Forest regressor. We will refer to this

approach as “LSTM”. We found that models trained on 2 or fewer mutations with

Random Forest outperformed LSTM at predicting the activity of sequences with five

or fewer mutations (Figure 4.2 A-C), but LSTM performed better when predicting

the activity of sequences with six or more mutations relative to the wild-type (Figure

4.2 D-I). However, both approaches showed a decrease in the correlation between pre-

dicted and observed when challenged to predict the activity of sequences with higher

numbers of mutations, and both resulted in relatively low correlation (Pearson r <

0.7) for sequences with seven or more mutations when trained only on this double

mutant data (Figure 4.2 and Supplementary Table 4.3). We concluded that models

trained on simple random mutagenesis containing all double mutants can be useful

for predicting lower mutational distances, but we anticipated that additional data

might improve the ability to predict the effect of higher numbers of mutations.
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Figure 4.2: Prediction of of CPEB3 variants with 3 or more mutations
using models trained on two or fewer mutation variants

To determine the effect of adding higher-order mutants to the training data, we

divided the phylogenetic derived sequence data by mutational distance and re-trained

models with increasing orders of mutations in the training set. As expected, adding

higher-order mutants improved the predicted to observed correlation at higher mu-
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tational distances (Figure 4.3 and Supplemental Figures 4.6-4.15). Interestingly, we

found that the Random Forest approach outperformed the LSTM approach when

sequences with more mutations were included in the training data. This is especially

apparent for predicting the activity of sequences with 8-10 mutations. The Random

Forrest approach resulted in models with high correlation between predicted and ob-

served for all mutational distances when trained with data from sequences with four

or more mutations (Figure 4.3 A-C). For both approaches, the largest improvements

in the correlations occurred when sequences with 3 mutations (relative to wild-type)

were added to the data. Subsequently appending additional sequences with greater

numbers of mutations had diminishing improvements on the correlation. We note

that all the testing data was set aside prior to training and identical testing data was

used for all models. The results demonstrate that adding higher order mutants to the

training data improves the Pearson correlation of sequences at higher distances in this

data set. It is important to note that the phylogenetically derived data has different

numbers of sequences for each class of mutations (Table 4.1), and sequences with

higher numbers of mutations in our data show mostly low activity (Supplementary

Figure 4.17). This helps interpret the effect of sequentially adding higher-order mu-

tant sequences to the training data. It is also important to note that the phylogenetic

derived sequences only contain mutations at thirteen different positions. The higher

order sequences in this data are therefore combinations of the lower order sequences.

For example, a sequence with six mutations can be constructed by combining two se-

quences with three mutations, both of which would be in the “3 mutations” training

data. Our model is therefore predicting the effects of combining sets of mutations, and

adding precise sets of lower order mutations that re-occur in higher order mutations
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clearly improves the correlations between prediction and experimental observation in

our data.

Figure 4.3: Prediction of of CPEB3 variants using LSTM and Random
Forest Machine Learning Models
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No. of mutations % Training Testing

1 207 —

2 21114 —

3 414 104

4 1240 310

5 2650 662

6 4162 1040

7 4867 1217

8 4241 1060

9 2720 680

10 1249 312

11 389 97

12 74 18

13 6 2

Table 4.1: Counts of sequences in training and testing data sets.

In order to inform future experiments for collecting training data, we next set

out to determine the effect of decreasing the amount of data in the training sets.

Starting from the 80% of data used as prior training data, we randomly sampled

sequences from this data to create new training data sets with 60%, 40%, 20%, 10%

and 1% of the total data. These subsampled data sets were used to train models
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using the random forest regressor. The same testing data was set aside for all models

and used to compare the Pearson correlation coefficient of each model trained with

decreasing amounts of data. As an illustrative example, we focused on a model trained

with sequences with 5 or fewer mutations relative to wild-type used to predict the

activity of sequences with 7 mutations (Figure 4.4 and Supplementary Table 4.5). We

chose this example because it achieved very high correlation (Pearson r = 0.99) when

trained with 80% (25,733 unique sequences) of the data and therefore provided an

opportunity to observe how rapidly the correlation decreased with less data. We found

that the models trained on 5 or fewer mutations predicted with high correlation when

as little as 40% (12,866) of the data was used for training (Pearson r = 0.97). With

only 20% (6,433) and 10% (3,217) of the data, the model still showed good prediction

accuracy with a Pearson correlation r ≈ 0.9. Surprisingly, we still observed reasonably

high correlation when including only 1% (322) of the training data, and this was

reproducible over five different models trained with different random samples of the

data (Pearson r = 0.81, stdev = 0.046, n = 5). Similar results were observed with

other training and testing scenarios. To illustrate general trends, we have plotted

the Pearson correlation for the same model trained on 5 or fewer mutations when

predicting the activity of sequences with 6, 7, 8 or 9 mutations, and for a model

trained on 9 or fewer mutations used to predict sequences with 5, 6, 7, or 8 mutations

(Figure 4.4). This analysis suggests that the total amount of training data is not

critical for predicting the activity of sequences in our data set. When combined with

the diminishing returns of adding more higher order mutations (Figure 4.3), this

analysis emphasizes the importance of collecting appropriate experimental data sets

for training that include ribozymes with more mutations that still maintain relatively
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high activity. However, given the low probability of finding higher-order sequences

with higher activity, an iterative approach with several cycles of predicting and testing

might be necessary to acquire such data.

Figure 4.4: Prediction of of CPEB3 Variants on Reduced Size Training
Sets

While the primary goal was to predict the relative activity of RNA sequences,
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we wondered if the models might also be useful for predicting structurally important

nucleotides. To address this question, we analyzed the “feature importance” in several

of our Random Forest models. Feature importance is a method to assign importance

to specific input data. Because our data only uses sequence as input, the features

in our data are specific nucleotides (A, G, C or U) at specific positions. We found

that for the Random Forest models, the most important feature all clustered around

the active site of the ribozyme (Supplemental Figures 4.19). Further, the CPEB3

ribozyme uses metal ion catalysis and several of the most important features were

nucleotides that have been observed coordinated to the active site magnesium ion in

the CPEB3 ribozyme, or the analogous nucleotides in the structurally similar HDV

ribozyme (Kapral et al., 2014; Skilandat et al., 2016). For example, for all the models

trained with some higher order mutants, the most important feature was G1, which

positions the cleaved phosphate bond in contact with the catalytic magnesium ion.

The second most important feature was G25, which forms a wobble base pair with

U20, another important feature (top 4-6), and this nucleotide pair coordinates the

active site magnesium ion through outer sphere contacts. The catalytic nucleotide

C57 binds the same catalytic magnesium as the G25:U20 wobble pair, and had a

high feature importance similar to U20. Most of the other important features are

involved in base pairs that stack or interact with the metal ion coordinating bases.

Interestingly, we found that nine of the ten most important features were identical

for models trained with only single and double mutants or with increasing amounts

of higher-order mutants. However, the G1 and G25 features became increasingly

more important as sequences with higher mutational distance were added to the

training data. This indicates that the higher-order mutants in the training data
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helped emphasize structurally critical nucleotides. We conclude that the machine

learning models presented identified nucleotides involved in forming the active sites

of the CPEB3 ribozyme. Because we did not use structural data to train our models,

the results suggest that similar data could identify active sites in RNA molecules with

unknown structures.

4.3 Discussion

We have shown that a model trained on ribozyme activity data can accurately predict

the self-cleavage activity of sequences with numerous mutations. This approach can

be used to guide experiments based on a relatively small set of initial data. Impor-

tantly, the approach did not use structural information such as X-ray crystallography

or cryo-EM, and used only sequence and activity data, which can be obtained with

common molecular biology approaches (in vitro transcription, RT-PCR, and sequenc-

ing). In addition, the training data starts with small amounts of synthetic DNA. The

comprehensive double mutant data and the phylogenetic derived data each started

from a single DNA oligo synthesis that used doped phosphoramidites at the variable

positions. Each data set was collected on a single lane of an Illumina sequencer.

The approach presented in this paper is therefore accessible, rapid and inexpensive

as compared to approaches that use structural data to train their models.

Sequence conservation of naturally occurring RNA molecules has been another

useful data type for training models to predict RNA structure from sequence (De Leonardis

et al., 2015; Weinreb et al., 2016). This approach is based on the observation that

nucleotide positions that form a base pair often show co-evolutionary patterns of se-

quence conservation. In some cases, this co-evolutionary data has been combined

with thermodynamic predictions or structural data from chemical probing, such as
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SHAPE experiments (Calonaci et al., 2020). Numerous ribozymes, aptamers and

aptazymes have been discovered through in vitro evolution experiments and conser-

vation data is not available unless sequencing experiments were applied during the

selection process. Our approach could be used to expand functional information of

non-natural RNA molecules which could then be used to guide structure prediction of

these molecules in a way similar to how naturally occurring sequence conservation has

been used. In addition, sequence conservation does not necessarily predict relative ac-

tivity. For example, while the CPEB3 ribozyme is highly conserved in nature, not all

of the sequence are equally proficient at catalyzing self-cleavage (Chadalavada et al.,

2010; Bendixsen et al., 2021). Our approach using machine learning from experimen-

tally derived data may prove useful for guiding experiments with non-natural RNA

molecules discovered through in vitro selection or SELEX-like approaches. However,

adopting this machine learning approach will require that each experimenter acquire

specific data for their system necessary to train and test sequences with the functions

they are investigating.

With future work, it may be possible to produce more general models of ribozyme

activity. For example, a model trained on data sets from several different self-cleaving

ribozymes with different nucleotide lengths might learn to predict the activity of

sequences of arbitrary length and sequence composition. In fact, recent advances in

RNA structure prediction have used the crystal structures of several different self-

cleaving ribozymes as training data to develop predictive modes that achieve near-

atomic level resolution of arbitrary sequences (Townshend et al., 2021). Alternatively,

models trained on ribozymes with different activities beyond self-cleavage might be

able to classify sequences as ribozymes of various functions. There has been some
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success with generating general models for predicting protein functions. The latent

features identified by deep generative models of protein sequences are being used

to better understand the complex, higher-order amino acid interactions necessary to

achieve a functional protein structure (Riesselman et al., 2018; Detlefsen et al., 2022).

We hypothesize that latent features could aid in the identification of generalized

parameters that govern the epistatic interactions of higher-order mutants of RNA

sequences as well. We hope that the accuracy and accessibility of the approach

presented here will inspire others to carry out similar experiments and initiate the

data sharing that will be needed to develop more general models, similar to what is

being accomplished for protein functional predictions (Biswas et al., 2021).

One challenge to our predictive models appears to be the low frequency of ac-

tive sequences at higher mutational distances. In our phylogenetically derived data

the vast majority of sequences have very low activity (Figure 4.1D), and the prob-

ability of finding sequence with high fraction cleaved decreases with the number of

mutations relative to wild-type. As a consequence, models trained on lower-order

mutant variants tend to overestimate the activity of sequences at higher mutational

distances. It has been previously observed that experimental RNA fitness landscapes

are dominated by negative epistasis, which means that mutations in combination

tend to have lower fitness than would be expected from the additive effects of indi-

vidual mutations (Bendixsen et al., 2017). The overestimation of fraction cleaved at

higher mutational distances suggests that our models have a difficult time learning

to predict negative epistasis. It has been previously observed that mutations with

“neutral” or “beneficial” effects on protein function often have destabilizing effects

on protein structure (Soskine & Tawfik, 2010). We postulate that the same effect is
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causing negative epistasis in the RNA data. This suggests that additional informa-

tion, such as measurements or estimates of thermodynamic stability of helices, might

be necessary for increasing accuracy at even higher distances beyond those offered

by this data set (Groher et al., 2019; Yamagami et al., 2018). For example, we have

recently demonstrated that our sequencing based approach to measuring ribozyme

activity can be extended to include magnesium titrations in order to evaluate RNA

folding/stability (Peri et al., 2022). In the future, combining structural and func-

tional information might be the best approach to accurately design RNA molecules

with desired functional properties.

4.4 Materials and Methods

4.4.1 Ribozyme activity data

Ribozyme activity was determined as previously described (Bendixsen et al., 2021).

Briefly, DNA templates were synthesized with the promoter for T7 RNA polymerase

to enable in vitro transcription. Templates were synthesized with mixtures of phos-

phoramidites at variable positions. For the comprehensive double-mutant data set,

templates were synthesized with 97% wild-type nucleotides and 1% each of the other

three nucleotides. For the phylogenetic derived data set, the template was synthe-

sized with an equal mixture of the naturally occurring nucleotides that were found

at 13 positions that varied across 99 mammalian genomes. During in vitro transcrip-

tion, RNA molecules self-cleaved at different rates. The reaction was stopped at 30

minutes, and the RNA was concentrated and reverse transcribed with a 5’-RACE

protocol that appends a new primer site to the cDNA of both cleaved and uncleaved

RNA (SMARTScribe, Takara). The cDNA was PCR amplified with primers that
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add the adaptors for Illumina sequencing. This procedure was done in triplicate with

unique dual-indexes for each replicate. DNA was combined equimolar and sent for

sequencing (GC3F, University of Oregon). Sequencing was performed on a single lane

of a HiSeq 4000 using paired-end 150 reads.

4.4.2 Ribozyme activity from sequence data

FastQ sequencing data were analyzed using custom Julia and Python scripts. Briefly,

the scripts identified the reverse transcription primer binding site at the 3’-end to

determine nucleotide positions and then determined if the sequence was cleaved or

uncleaved by the absence or presence of the 5’-upstream sequence. For the single

and double mutants, all possible sequences were generated and stored in a list, and

reads that matched the list elements were counted and cleaved or uncleaved was

determined by the presence or absence of the 5’-upstream sequence. For the phy-

logenetically derived data, nucleotide identities were determined at the expected

13 variable positions by counting the string character position from the fixed re-

gions. Sequencing reads were discarded if they contained unexpected mutations in

the primer binding site, the uncleaved portion, or the ribozyme sequence. For each

unique genotype in the library the number of cleaved and uncleaved sequences were

counted and ribozyme activity (fraction cleaved) was calculated as fractioncleaved =

countscleaved/(countscleaved + countsuncleaved).

4.4.3 Machine Learning

Random Forest regression uses an ensemble of decision trees to improve prediction

accuracy. Each tree in the ensemble is created by partitioning the sequences within a

sample into groups possessing little variation. Each sample is drawn with replacement

and the resulting trees are aggregated into forests that best predict the cleavage rates
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of the sequences. The Random Forest regression was performed using the python

package scikit-learn. Each sequence was transformed into a 69 by 4 one-hot encoding

representation of the sequence. Each of the four possible nucleotides within the

sequence was represented by a vector of length 4 possessing a uniquely located “1”

within the vector to signify the nucleotide’s identity. Each sequence in the training

set was fit using scikit-learn’s RandomForestRegressor ensemble module.

LSTM is a recurrent neural network commonly used for the predictive modeling

of written text data, which has sequential dependencies. Here we used an LSTM to

compute a set of hidden features given a set of nucleotide sequences. These hidden

features are learned by the LSTM in a supervised way for the purpose of relating

the nucleotide sequence to the corresponding ribozyme activity (fraction cleaved).

The LSTM network has an architecture where each cell C outputs the next state

ht (1 ≤ t ≤ n) by taking in input from the previous state ht−1 and the embedding

xt of the current nucleotide in the sequence. The output hn of the last cell of the

LSTM is then used as input to a Random Forest regressor to predict the sequence

functional activity rate. The LSTM model was built using PyTorch’s open-source

machine learning framework. Sequences were trained using an LSTM layer with 32

hidden dimensions and a dropout rate of 0.2. Each sequence was embedded in a 69 by

4 tensor (where 4 is the size of the nucleotide embedding) and then batched in groups

of 64 sequences for input to the model. The gradient descent was performed using

PyTorch’s built-in Adam optimizer and MSELoss criterion. Twenty-five training

epochs were performed on each training set.
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4.4.4 Training and Test Data

The data set containing the fraction cleaved data from the 27,647 phylogenetically

derived sequences was binned based on the number of mutations relative to the wild-

type ribozyme. For each bin, a portion of the data (20%) was chosen at random and

set aside as test data. This resulted in test data sets that were also separated by

the number of mutations relative to the wild-type sequence. Training data sets were

created from the 80% of data in each mutational bin that was not set aside for testing.

Training data sets were created by combining bins at a given number of mutations

to all the bins with lower numbers of mutations. Training data included 100% of the

single and double mutant data. For reduced training sets were created by randomly

sampling different numbers of sequences from the original full training data sets.

4.4.5 Data Availability

Sequencing reads in FastQ format are available at ENA (PRJEB51631). Sequence

and activity data and computer code is available at GitLab (https://gitlab.com/

bsu/biocompute-public/ml-ribo-predict.git).
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4.4.9 Supplementary Materials

Figure 4.5: Histogram of CPEB3 variant counts for single (left) and double
(right) mutants. Mean, minimum and maximum values for each distribu-
tion are indicated.
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Figure 4.6: Three-mutation sequence activity predictions. Scatter plots
comparing fraction cleaved values measured from experiments (observed)
to those predicted by models (predict) trained by either random forest
(blue) or the LSTM approach (orange). Each scatter plot shows the pre-
dictions from a different training data set. The training data contained
sequences with up to the number of mutations in the title (Train N). For
example, ‘Train 5’ indicates that the model was trained using data for
sequences containing 1,2,3,4, and 5 mutations. The line indicates unity,
not a fit to the data.
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Figure 4.7: Predicting the activity of sequences with four mutations. (see
Supp. Fig. 2 for details)
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Figure 4.8: Predicting the activity of sequences with five mutations. (see
Supp. Fig. 2 for details)
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Figure 4.9: Predicting the activity of sequences with six mutations. (see
Supp. Fig. 2 for details)
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Figure 4.10: Predicting the activity of sequences with seven mutations.
(see Supp. Fig. 2 for details)
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Figure 4.11: Predicting the activity of sequences with eight mutations.
(see Supp. Fig. 2 for details)
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Figure 4.12: Predicting the activity of sequences with nine mutations. (see
Supp. Fig. 2 for details)
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Figure 4.13: Predicting the activity of sequences with ten mutations. (see
Supp. Fig. 2 for details)
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Figure 4.14: Predicting the activity of sequences with eleven mutations.
(see Supp. Fig. 2 for details)
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Figure 4.15: Predicting the activity of sequences with twelve mutations.
(see Supp. Fig. 2 for details)
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Figure 4.16: Line plots showing the mean square error (MSE) of predicted
cleavage activity values obtained from random forest (blue) and LSTM
with random forest (orange) machine learning models trained on data
with incrementally increasing numbers of mutations shown along the x-
axis. Each plot shows the MSE for predictions obtained for sequences
containing the number of mutations indicated by the plot title.
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Figure 4.17: Line plots showing the Pearson correlation values of predicted
cleavage activity obtained from random forest (blue) and LSTM with ran-
dom forest (orange) machine learning models trained on data with incre-
mentally increasing numbers of mutations shown along the x-axis. Each
plot shows the Pearson correlation for predictions obtained for sequences
containing the number of mutations indicated by the plot title.
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Figure 4.18: Benchmarking against several ML approaches. Line plots
showing the Pearson correlation values of predicted cleavage activity ob-
tained from random forest (blue), LSTM with random forest (orange), lin-
ear regression (green) and multilayer perceptron regressor (red) machine
learning models trained on data with incrementally increasing numbers
of mutations shown along the x-axis. Each plot shows the Pearson cor-
relation for predictions obtained for sequences containing the number of
mutations indicated by the plot title.



92

Figure 4.19: Violin plots showing the distribution of cleavage rates ob-
served in the test data (orange) and the total data set for a given mutation
(blue). The distributions are shown separately for each data set containing
increasing numbers of mutations, from 3 to 12.
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Figure 4.20: Summary of important features extracted from random forest
models. A-B) Bar graphs of feature importance when training with up to
five mutations. Each feature represents a specific nucleotide at a specific
location, as indicated by the X-axis label (position), and color (nucleotide
identity). Positions 1-35 are shown in (A), and positions 36-69 are shown
in (B). The height of the bar indicates the relative importance. C) Table
ranking the top ten important features extracted from random forest mod-
els trained with increasing numbers of mutations. Nucleotides discussed
in the main text are highlighted.



94

Figure 4.21: Crystal structure of an HDV ribozyme (PDB 3NKB) show-
ing the CPEB3 analogous positions representing the top ten important
features identified in our random forest models. The feature importance
depicted was extracted from the random forest model trained on CPEB3
data including up to 5 mutations. The nucleotides identified as the top
ten important features are shaded in orange, the catalytic nucleotide is
shaded green (C57/75), and the catalytic Mg2+ ion is depicted as a blue
sphere.
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Train with % Pearson Spearman

80% 0.99 0.81

60% 0.99 0.80

40% 0.97 0.79

20% 0.89 0.80

10% 0.91 0.77

1% 0.81 0.71

Table 4.2: Table comparing Pearson and Spearman correlation metrics for
reduced training sets containing sequences with up to 5 mutations predict-
ing sequences with 7 mutations. Both Pearson and Spearman correlations
show similar, limited reductions in correlation as training set size is re-
duced.

Predict Mutations LSTM w/RF Pearson RF Pearson LSTM w/RF Spearman RF Spearman

3 0.9 0.93 0.80 0.78

4 0.85 0.9 0.60 0.81

5 0.77 0.82 0.52 0.82

6 0.7 0.68 0.51 0.74

7 0.63 0.48 0.44 0.7

8 0.61 0.22 0.46 0.64

9 0.67 0.02 0.50 0.63

10 0.6 -0.24 0.45 0.51

11 0.6 -0.3 0.48 0.37

Table 4.3: Table comparing Pearson and Spearman correlation metrics
for training set containing sequences with up to 2 mutations predicting
sequences with 3 to 11 mutations using the LSTM with Random Forest
and the Random Forest models. Both Pearson and Spearman correlations
show similar reductions in correlation as predictive distance grows.
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son, Rémi, Schug, Alexander, & Weigt, Martin. 2015. Direct-Coupling Analysis of

nucleotide coevolution facilitates RNA secondary and tertiary structure prediction.

Nucleic Acids Research, Sept., gkv932.

Doudna, Jennifer A. 1995. Hammerhead ribozyme structure: U-turn for RNA struc-

tural biology. Structure, 3(8), 747–750.

Dutheil, Julien Y., Jossinet, Fabrice, & Westhof, Eric. 2010. Base Pairing Constraints



99

Drive Structural Epistasis in Ribosomal RNA Sequences. Molecular Biology and

Evolution, 27(8), 1868–1876.

Dykstra, Peter B., Kaplan, Matias, & Smolke, Christina D. 2022. Engineering syn-

thetic RNA devices for cell control. Nature Reviews Genetics, 23(4), 215–228.

Fedor, Martha J. 2000. Structure and function of the hairpin ribozyme. Journal of

Molecular Biology, 297(2), 269–291.

Fedor, Martha J., & Williamson, James R. 2005. The catalytic diversity of RNAs.

Nature Reviews Molecular Cell Biology, 6(5), 399–412.

Ferre-D’Amare, A. R., & Scott, W. G. 2010. Small Self-cleaving Ribozymes. Cold

Spring Harbor Perspectives in Biology, 2(10), a003574–a003574.

Ferretti, Luca, Weinreich, Daniel, Tajima, Fumio, & Achaz, Guillaume. 2018. Evolu-

tionary constraints in fitness landscapes. Heredity, 121(5), 466–481.

Geisler, Sarah, & Coller, Jeff. 2013. RNA in unexpected places: long non-coding

RNA functions in diverse cellular contexts. Nature Reviews Molecular Cell Biology,

14(11), 699–712.

Groher, Ann-Christin, Jager, Sven, Schneider, Christopher, Groher, Florian,

Hamacher, Kay, & Suess, Beatrix. 2019. Tuning the Performance of Synthetic

Riboswitches using Machine Learning. ACS Synthetic Biology, 8(1), 34–44.

Groher, Florian, & Suess, Beatrix. 2014. Synthetic riboswitches — A tool comes

of age. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms,

1839(10), 964–973.



100

Gupta, Sanjeev K., & Shukla, Pratyoosh. 2017. Gene editing for cell engineering:

trends and applications. Critical Reviews in Biotechnology, 37(5), 672–684.

Halvorsen, Matthew, Martin, Joshua S., Broadaway, Sam, & Laederach, Alain. 2010.

Disease-Associated Mutations That Alter the RNA Structural Ensemble. PLoS

Genetics, 6(8), e1001074.

Hayden, Eric J. 2016. Empirical analysis of RNA robustness and evolution using

high-throughput sequencing of ribozyme reactions. Methods, 106(Aug.), 97–104.

Huppertz, Ina, Perez-Perri, Joel I., Mantas, Panagiotis, Sekaran, Thileepan, Schwarzl,

Thomas, Russo, Francesco, Ferring-Appel, Dunja, Koskova, Zuzana, Dimitrova-

Paternoga, Lyudmila, Kafkia, Eleni, Hennig, Janosch, Neveu, Pierre A., Patil,

Kiran, & Hentze, Matthias W. 2022. Riboregulation of Enolase 1 activity con-

trols glycolysis and embryonic stem cell differentiation. Molecular Cell, June,

S1097276522004865.

Jimenez, Randi M., Polanco, Julio A., & Lupták, Andrej. 2015. Chemistry and

Biology of Self-Cleaving Ribozymes. Trends in Biochemical Sciences, 40(11), 648–

661.

Jumper, John, Evans, Richard, Pritzel, Alexander, Green, Tim, Figurnov, Michael,

Ronneberger, Olaf, Tunyasuvunakool, Kathryn, Bates, Russ, Ž́ıdek, Augustin,
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The number of possible order m mutational variants (M):

M =

(
n!

m!(n−m)!

)
∗ 3m (A.1)

with m mutations in a given sequence of length n.

The fraction cleaved:

fraction cleaved =
L

L + S
(A.2)

with a cleaved count (L), and an uncleaved count (S). Counts are obtained from

observing the sequence segment immediately preceding each mutated ribozyme copy.

The existence (S) or non-existence (L) of the cleaved segment is recorded.

The relationship between observed cleavage rates and the exponential

decay function:

fraction cleaved =
1

kobs · t
(1 − e−kobs·t) (A.3)

kobs is the catalytic rate that best fits each variant’s fraction cleaved at all observed

time periods.

Pairwise epistasis:

ϵ = log10(WAB ∗Wwt/(WA ∗WB)) (A.4)

where WAB is the double mutant activity, Wwt, is the unmutated wild-type activ-
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ity, WA is one single mutant activity, and WB is the other single mutant activity.
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