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Advanced genomic and molecular profiling technologies accelerated the
enlightenment of the regulatory mechanisms behind cancer development and
progression, and the targeted therapies in patients. Along this line, intense studies
with immense amounts of biological information have boosted the discovery of
molecular biomarkers. Cancer is one of the leading causes of death around the
world in recent years. Elucidation of genomic and epigenetic factors in Breast
Cancer (BRCA) can provide a roadmap to uncover the disease mechanisms.
Accordingly, unraveling the possible systematic connections between-omics
data types and their contribution to BRCA tumor progression is crucial. In this
study, we have developed a novel machine learning (ML) based integrative
approach for multi-omics data analysis. This integrative approach combines
information from gene expression (mRNA), microRNA (miRNA) and methylation
data. Due to the complexity of cancer, this integrated data is expected to improve
the prediction, diagnosis and treatment of disease through patterns only available
from the 3-way interactions between these 3-omics datasets. In addition, the
proposed method bridges the interpretation gap between the disease
mechanisms that drive onset and progression. Our fundamental contribution is
the 3 Multi-omics integrative tool (3Mint). This tool aims to perform grouping and
scoring of groups using biological knowledge. Another major goal is improved
gene selection via detection of novel groups of cross-omics biomarkers.
Performance of 3Mint is assessed using different metrics. Our computational
performance evaluations showed that the 3Mint classifies the BRCA molecular
subtypes with lower number of genes when compared to the miRcorrNet tool
which uses miRNA and mRNA gene expression profiles in terms of similar
performance metrics (95% Accuracy). The incorporation of methylation data in
3Mint yields a much more focused analysis. The 3Mint tool and all other
supplementary files are available at https://github.com/malikyousef/3Mint/.
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1 Introduction

During the last 2 decades, the elucidation and comprehensive
understanding of complex biological processes in disease
development have been enhanced with the advent of sequencing
technology. Immense amounts of biological information generated
with these technologies; and promising tools and methods have
enabled the integration and interpretation of molecular mechanisms
of complex diseases at different levels. Availability of multi-omics
data such as genomics, transcriptomics, proteomics, epigenomics
data helps in bridging the gap between disease onset and progression
mechanisms and complex roles of biomolecules (Bersanelli et al.,
2016; Yan et al., 2017). Integration of multi-omics data also
facilitates the identification of disease subtypes and biomarker
prediction.

Cancer defined as a complex disease with uncontrolled cell
proliferation is one of the leading causes of death worldwide.
According to the World Health Organization statistics in
2020 one out of six deaths, nearly 10 million deaths are
associated with cancer (Ferlay et al., 2020). Two most common
cancer types are breast cancer (BRCA) with 2.26 million cases,
followed by lung cancer with 2.21 million cases. Other most
common cancer types are colon, rectum, prostate and skin cancers.

Cancer development is affected by multiple factors such as
genetic mutations in genes including oncogenes and tumor
suppressor genes and the interaction of inherited factors with
various environmental factors, e.g., lifestyle, diet and exposure to
carcinogens. Understanding the genomic, epigenomic regulations
and enlightening the systematic connections between-omics data
types in cancer can provide invaluable information to analyze
cellular or intercellular activities and the underlying
characteristics of disease mechanisms. The studies have enabled
the identification of different biological footprints (biomarkers)
derived from different-omics data. For example, HER2
(epidermal growth factor receptor II) overexpression leads to
uncontrolled cell growth. HER2+ breast cancer cells having
higher levels of HER2 protein tend to be aggressive and grow
faster compared to breast cancer cells with low level expression
of HER2 (HER2-). Patients with HER2+ BRCA tend to have worse
prognosis than patients whose HER2 are not overexpressed (HER2-
). As another example, the microRNA hsa-miR-206 decreases the
metastatic potential of BRCA cells. Yet as another example,
upregulated miRNAs of miR-21 and miR-181 in triple negative
BRCAs shorten the overall survival via metastatic characteristics
(Yan et al., 2008; Neel and Lebrun, 2013). Several studies
demonstrated significant hypomethylation of HYAL2
(Hyaluronoglucosaminidase 2) in BRCA cases, hypermethylation
of DOK7 (docking protein 7) and KIF1A (kinesin family member
1A) in promoter regions of BRCA samples (Heyn et al., 2013;
Guerrero-Preston et al., 2014; Yang et al., 2015). These examples
show how methylation level of the associated genes can also be
utilized as potential biomarkers for early detection of BRCA. Along
this line, various integrative analyses of-omics data have been
recently proposed: e.g., integrating DNA methylation and mRNA
data (Gong et al., 2021), integrating miRNA expression patterns and
DNA methylation (Gong et al., 2021), copy number variations and
mRNA expression (Xia et al., 2019). Following that, more-omics
data types have been employed to yield a better understanding and

more complete picture of the heterogeneous cancer disease, as in
(Sun et al., 2018; Tong et al., 2020). However, heterogenous noisy
biological data handling is a notoriously challenging job (Fu et al.,
2011). Statistical analysis of multi-dimensional data is another rough
side of biological data integration because of the “curse of
dimensionality” adversity, as initially named by Bellman (1961).
Notable feature selection methods have been introduced to reveal
distinct molecular patterns for dysregulated cellular mechanisms.
These methods are basically divided into unsupervised and
supervised data integration methods. While matrix factorization,
Bayesian, network-based, and other multivariate approaches are
involved in unsupervised methods; network based, multi-kernel and
multi-step approaches are collected under the umbrella of
supervised methods. Joint Non-negative Matrix Factorization
(NMF) (Zhang et al., 2012), iCluster+ (Mo et al., 2013), Multiple
Dataset Integration (MDI) (Kirk et al., 2012) and JIVE (Lock et al.,
2013) have been proposed as unsupervised methods; and supervised
approaches such as Network-based integration of multi-omics data
(NetICS) (Dimitrakopoulos et al., 2018), Analysis Tool for Heritable
and Environmental Network Associations (ATHENA) (Kim et al.,
2013), The Feature Selection Multiple Kernel Learning (FSMKL)
(Seoane et al., 2014) compile different-omics data layers to elucidate
the biological insight of diseases. According to a previous report, a
deep learning-based prediction model is developed to integrate
multi-omics data (ElKarami et al., 2022). Gene similarity network
(GSN) maps are generated by extracting the feature relationships
using the UMAP dimension reduction method. Then, disease types
and tumour stages are classified through the use of convolutional
neural networks (CNN). A classification method based on
prognostic measure is introduced in a recent study (Zhou et al.,
2022). The gene similarity network maps created for each-omics
data are merged into the residual neural network model. MiBiOmics
tool focuses on the identification of the associations across omics
datasets and provides robust link detection between-omics layers
(Zoppi et al., 2021). This network based approach with Sparse
Partial Least Square Discriminant Analysis is used for feature
selection, analysis and visualization of biomarker networks in
multi-omics data. A multi-omics integrative pipeline, STATegRa,
is developed to combine multi-omic analysis tools and provides a
systematic approach by using component, non-parametric
combination and exploratory analyses (Planell et al., 2021).
DeepProg tool provides semi-supervised hybrid computational
modeling framework (Poirion et al., 2021). Survival risk of
patients is predicted by integrating deep learning and ML
models. On the other hand, a study showed that the detection of
global signatures and survival subtypes via Support vector machine
models can provide an informative basis for systematic
characterizations in-omics level in pan-cancer analysis (Cheerla
and Gevaert, 2017).

Great strides have been made in data analysis approaches with
the emergence of RNA-Seq based profiling technology. Most of the
previous methods include applications of traditional ML algorithms
to transcriptomic data. In these methods, the basis of most feature
selection algorithms applied to gene expression data depends on
pure statistics and ML (Bellazzi and Zupan, 2007), without
considering the underlying biology. The incorporation of
biological knowledge into the ML algorithms have shifted the
pure data-oriented studies into the domain knowledge driven ML
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approaches. KEGG pathways (Kanehisa et al., 2017), Gene Ontology
(GO) (The Gene Ontology Consortium, 2019), miRNA database
(Huang et al., 2019b) are commonly used sources of biological
domain knowledge for considering deep analysis of the data.
Developing advanced tools based on such given biological
knowledge provides a comprehensive framework for complex
diseases. To this end, Yousef et al. (2021a) proposed a grouping-
based feature selection method [Grouping-Scoring-Modeling
(G-S-M)], where the groups can be generated via 1) using pre-
existing biological knowledge (PBK) stored in a database (such as
mirTarBase (Huang et al., 2019b), DisGeNET (Piñero et al., 2019),
KEGG PATHWAY [Kanehisa et al., 2017)]; or 2) fully data driven
approach using statistical measures such as Pearson correlations.
This generic approach has been used by several bioinformatics tools
such that some of them use PBK while others are fully data-driven in
terms of detecting the groups. An example of such tools are:
miRcorrNet (Yousef et al., 2021a) and miRModuleNet (Yousef
et al., 2022a), which detect groups from mRNA and miRNA
omics datasets; maTE (Yousef et al., 2019) that uses microRNA
target genes as the groups; SVM-RNE (Yousef et al., 2009);
Integrating of Gene Ontology (Yousef et al., 2021b) that uses
Gene Ontology information for grouping; CogNet (Yousef et al.,
2021c) and PriPath (Yousef et al., 2022b) that use KEGG pathways
for grouping; SVM-RCE (Yousef et al., 2021d) that detects groups by
running clustering algorithms such as k-means; TextNetTopics
(Yousef and Voskergian, 2022) that uses text topics as groups;
GediNet (Yousef and Qumsiyeh, 2022) that uses disease gene
associations as groups; and miRdisNET (Jabeer et al., 2023) that
uses miRNA data and miRNA target genes as groups.

This study proposes a novel method for integrating 3 types of-
omics data (e.g., mRNA, miRNA, and methylation); and the
corresponding tool is named as 3Mint (3 Multi-omics integrative
tool). Our main objective is to utilize the statistical relationships
betweenknowledge of 3-omics data in order to create groups, to
perform scoring and finally to construct a classification model based
on the top ranked groups. The genes within the informative groups
provide insight into understanding the joint interaction of targeted
genes with prominent CpGs and miRNAs. Identification of new
predictive biomarkers can help the researchers to improve the
prognostic and predictive accuracies.

2 Materials and methods

2.1 Datasets and preprocessing

The Cancer Genome Atlas (TCGA) (Tomczak et al., 2015)-
Breast Invasive Carcinoma (TCGA-BRCA) dataset is available on
the Genomic Data Commons, hosted by the National Cancer
Institute (NCI). Here we focus on the microRNA (miRNA), gene
expression (mRNA) and methylation datasets where the reads were
mapped to GRCh38, downloaded from Xena Public Data Hubs
(https://xenabrowser.net) (Goldman et al., 2020).

The BRCA molecular intrinsic subtype classes were provided by
the PAM50 assay (Prediction Analysis of Microarray 50), which is
originally based on 50 gene signatures (Parker et al., 2009). In this
study, downloaded tumor samples are filtered for the molecular
subtypes (Luminal A, Luminal B, Her2-enriched and Basal like) and

classified into the following two groups: 1) Luminal group including
Luminal A and Luminal B with 248 ER+/PR + PR-samples, and ER-
negative group including Her2-enriched and Basal-like with
124 ER-/PR-samples, excluding normal like. The constructed
groups are used for further analyses after data preprocessing
steps are completed as explained in detail below.

2.1.1 Omics Dataset 1 (miRNAs)
microRNA expression values in the form of log2 (RPM+1) were

downloaded from the UCSC Xena browser and converted to read
per million (RPM) values. 1882 miRNAs were used for further
analysis.

2.1.2 Omics Dataset 2 (mRNAs)
TCGA gene expression raw counts were downloaded from

UCSC Xena browser and normalized with edgeR (TMM)
(Robinson et al., 2010). We included 21,839 mRNAs in our analysis.

2.1.3 Omics Dataset 3 (CpGs)
For methylation data level 3 beta values of 485.578 probes were

obtained by Illumina Human Methylation 450 array. Probes with
more than 20% missing values were removed. Then probes with an
interquartile range (IQR) > 0.1 were selected. Probes targeting X and
Y chromosomes (to prevent gender bias), single base extension sites
(SNPs) and cross-reactive probes (Chen et al., 2013) were discarded.
Selected 15,571 probes were included in ourmulti-omics data analysis.

2.2 Statistical analyses

Knime platform (Berthold et al., 2009). Variances between two
groups were compared using t-test. Significant CpGs, miRNAs and
mRNAs were filtered for p < 0.05; and used for further analysis.
Correlation of-omics datasets were tested via calculating Pearson
correlation in R (R Core Team, 2021). Statistically significant
associations within the correlation coefficient threshold interval of
(−0.6, 0.6) and with the significance level p-value <0.05, were selected.

2.3 Proposed method (3Mint)

The developed method using 3-omics data is explained in detail
in this section. The input data required for this method is labeled
data including samples from two classes. In this study, we examined
samples in the Luminal group vs. samples in the ER-negative group,
as defined in subsection 2.1). Our objective is to perform grouping of
the features and scoring of the groups using biological knowledge.
The main flowchart of 3Mint is illustrated in Figure 1.

Our method consists of four main components (P, G, S and M);
and they are indicated by the triangles in Figure 1. P and G
components detect sets of pairs and groups of genes, respectively.
S component allows to score the groups, and M component creates
the model by training the classifier.

Normalized data matrices (miRNA expression profiles and level
of CpGs in methylation) are inputs of the first component. P
component is applied to these datasets; and pairs of correlated
miRNA-CpG features are given as output. Second component (G)
creates a set of groups by using the output of the P component. A
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group includes highly correlated mRNAs (target data) with both
miRNA and CpG pair. Group names denote the union of miRNA-
CpG names, including target gene list. The third component (S) takes
highly associated group sets as input and returns the scores of each
group. This operation utilizes Random Forest (RF) classifier to
calculate a score for each group. The groups are scored based on
their ability of distinguishing samples belonging to two different
classes. Subdatasets of target data that are generated via cross
validation in each group are used as input features for the scoring
component. Then, the best scoring groups are introduced into the M
component and the model is created by training the RF classifier. In
our experiments, we have utilized BRCA molecular subtypes as our
phenotypes, denoting 2 class labels, However, it is worth noting that
3Mint allows the use of any other 2-class phenotypes.

2.4 Notation

Let n be the number of samples in each-omics data. Let A, B, and
C denote the matrices of miRNA, CpGs and gene expression

datasets, respectively. While rows represent the samples, columns
are the features of these matrices. Target matrix, also named as
matrix C is splitted into Ctrain and Ctest. Train matrix is used to
train the classifier and fit the model following the generation of final
groups with scores. Test data is used to report the performance of the
model.

In component P, highly correlated miRNA-CpG pairs are
defined as GAB. Let m denote the number of such pairs. In
particular, let mir_methf = (ai, bj), ai in A and bj in B, where |
cor (ai,bj)| > alpha. Thus GAB = {mir_methf, f = 1,m}. The
correlation threshold denoted as alpha is determined by the user.
The recommended default value of alpha is 0.6.

In Component G, all highly correlated mRNA features (ck) with
both miRNAs and CpGs are selected for each GAB pair. Intersection
of pairwise correlation of gene expression and miRNA and gene
expression and CpGs with a beta threshold creates mir_meth_genes
groups (GABC). In particular, define the groups mir_meth_genesf =
{ck |cor (ai, ck) > beta and cor (ck,bj) > beta, ai and bj are members
of the pair mir_methf, for f = 1,m}. GABC is the output set of mir_
meth_genes groups and is used in the S component for scoring.

FIGURE 1
The workflow of 3Mint. The workflow consists of four main components (indicated by triangles), P) detects pairs, G) identifies groups, S) scores
groups, M) creates the classifier model. The output layer consists of the 1) Performance Table, and 2) the Significant Groups Table.
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Each group consists of a unique miRNA-CpG name with
single/multiple genes. Normalized gene information of each
group is obtained by the target matrix (matrix C). In
component S, cross validation procedure is followed. In this
component, submatrices of the target matrix Ctrain of each
group are generated and utilized to calculate GABC scores.
Each submatrix is defined as Ctrainsubf, where f = 1,m, that
contains genes that belong to the group mir_meth_genesf. A RF
classifier is trained with gene expression values in each submatrix
from the training set. The submatrix in the test portion is used to
evaluate the performance of the model. Mean of the accuracy
scores for each group is assigned as a group score.

The score is calculated using the chosen metrics in which the
weight of the metric/metrics can be determined by the user. In this
study, we use the accuracy metric as the score of each group. S
function gives a list of groups and scores which can be defined as
grp_scores = {(mir_meth_genesf, scoref) f = 1,m}. Following that,
the list is sorted by score. In the M component a RFmodel is created.
The first 10 best scored groups are used as the train matrix; and Ctest
which is obtained by the original gene expression matrix, is used as a
test matrix to measure the performance of the fitted model. M
component returns performance metrics, significant groups,
significant miRNAs, CpGs and genes. Performance metrics table
generated by the component M includes the information on the
number of cumulative groups; number of genes in each cumulative
group; accuracy, sensitivity, specificity of the model. The
construction of the performance metrics table is illustrated in
Figure 2. Cumulative groups are created by aggregating the next
high scoring group (mRNA/gene list) with previous group/groups.
For example, the information presented for cumulative group
#3 shows the performance metrics for the merged group
including the first, second and third most significant groups,
hence it shows the collective contribution of the top 3 groups to
the classification procedure.

Figure 1 summarizes the workflow of the 3Mint algorithm for
one split. The same process is repeated for 100 times where in each
iteration gene expression data (C matrix) is splitted into train and
test matrices to generate a list of mir_meth_genesf and their
associated genes. The groups that are more frequently seen in
100 splits are prioritized.

3 Results

3.1 Performance evaluation of 3Mint

In this section, 3Mint classification performance results based on
100 random splits (90% train–10% test), and further statistical
analyses are presented. Classification performance results of
3Mint for the BRCA molecular subtypes datasets in terms of
accuracy, specificity, sensitivity, AUC (area under curve) metrics
are summarized in Table 1. The symbol “±” indicates the standard
error of the mean over the 100 splits. The # of unique genes denotes
the number of unique genes in the cumulative groups. As shown in
Table 1, the results are very strong, in particular the first group (top
row) has an AUC of 0.91, accuracy of 0.88, sensitivity of 0.96, and
specificity of 0.74. Most of these performance metrics improved with
the accumulation of more groups (further down in the table). The
best accuracy values are obtained for the cumulative group # 7. After
that, the addition of more genes did not further increase any of the
performance measures.

3.2 Comparative performance evaluation of
3Mint

The effect of using different classifiers in 3Mint is assessed. The
performance of 3Mint using RF as the default classifier is

FIGURE 2
The construction of the performance table in 3Mint using the most significant groups.
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comparatively evaluated with various classifiers such as Probabilistic
Neural Network (PNN) based on the DDA (Dynamic Decay
Adjustment) method, Gradient Boosted Trees (GBT) using
boosting approach to build an ensemble of trees, Naive Bayes
(NB) assuming that all features are independent based on Bayes’
law. The performance of the models for the classification of Luminal
and ER-negative groups are evaluated over 10- fold Monte Carlo
cross-validation; and the results are summarized in Supplementary
Table S1. The performance of the RF, PNN, NB, and GBT models at
different threshold values as a result of Area Under Curve ROC
analysis are also visualized in Supplementary Figure S1. The
accuracy of quantitative tests are given as AUC scores. The
discrimination ability of the models for the best scored group is
GBT. Random Forest and Naive Bayes follow GBT with very close
AUCROC scores. All tested classifiers resulted in similar high AUC
scores. The average AUC score of the RF model in our experiments
is 0.97, and the RF model resulted in adequate accuracy (0.91) for
discriminating positive cases (Luminal group) from negative cases
(ER-negative group). In RF, the interpretation of the tree model is
simple and the model can be easily transformed into a ruleset. Also,
RF is one of the widely used supervised machine learning algorithms
for dealing with omics data in the analysis of biological processes
and/or disease progression of complex diseases (Lind and Anderson,
2019; Toth et al., 2019; Uddin et al., 2019; Quist et al., 2021). For
these reasons, in this study, we focused on the results obtained using
the RF classifier.

Additionally, we have compared the performance of 3Mint
using three omics data (mRNA, miRNA, and methylation) with
single-omics data analysis and with 2-omics data analysis. To this
end, we have conducted a similar experiment using only mRNA
dataset; and a similar experiment with miRcorrNet tool (Yousef
et al., 2021a) using 2-omics datasets (miRNA and mRNA datasets)
for the BRCA molecular subtype identification problem. For the
single omics data analysis, all available gene expression information,
in total 21.839 gene expression values are used to create a random
forest model. The performance of the model is evaluated using 10-
fold Monte Carlo cross validation (90%–10% split). For two omics
data analysis, miRcorrNet tool which conducts ML–based analysis

of miRNA and gene expression profiles, are utilized. Groups
including target genes associated with each miRNA are generated
based on correlation analysis of mRNA-miRNA expression profiles.
The ranked groups are used to perform classification task and
disease specific biomarkers are identified with the miRcorrNet tool.

Supplementary Table S2 presents the comparative evaluation of
3Mint with single-omics data analysis and two-omics data analysis
for the classification of Luminal and ER-negative groups. In this
table, while the top group indicates the best scoring groups, top
10 cumulative groups refer to the 10 best significant groups for the
3Mint and mirCorrNet analysis. Although the performance metrics
of 3Mint are comparable with miRcorrNet, miRcorrNet results in
higher numbers of genes for the BRCA molecular subtype
identification problem. In other words, considering the top
10 groups having 13.6 and 38.2 genes on average in 3Mint and
miRcorrNet respectively, one can conclude from Supplementary
Table S2 that 3Mint classifies the BRCA molecular subtypes with
lower number of genes when compared to miRcorrNet. This finding
implies that the incorporation of methylation data in 3Mint yields a
much more focused analysis. Similarly, the performance metrics of
3Mint and miRcorrNet methods are comparable with single-omics
data analysis (using 21.839 mRNAs). The addition of miRNA and
methylation information enables the classification of BRCA
molecular subtypes with a very low number of genes even
without loss of performance (in terms of AUC metric). In this
study, our main aim is the investigation of new biological insights
into how the molecular mechanisms (proliferation, differentiation,
survival, etc.,) of the interested disease are regulated by focusing on
the interaction of gene, miRNA and CpG features. The prominent
features associated with the top groups are utilized in the
enlightenment of the cellular signaling and molecular interactions
of markers in complex diseases.

3.3 Clinical analysis

In order to evaluate the relationship between the predicted
classes and the clinical data, we have performed survival analysis

TABLE 1 Performance metrics of 3Mint for the BRCA molecular subtype classification problem. This output table of 3Mint also presents number of cumulative
groups, number of unique genes, average gene number.

Cumulative group # # Of unique gene Average gene # Accuracy Specificity Sensitivity Area under curve

1 54 4.67 0.88 ± 0.05 0.74 ± 0.11 0.96 ± 0.04 0.91 ± 0.06

2 67 9.34 0.89 ± 0.05 0.75 ± 0.11 0.96 ± 0.04 0.92 ± 0.07

3 76 15.06 0.89 ± 0.05 0.77 ± 0.11 0.95 ± 0.04 0.93 ± 0.06

4 77 21.09 0.89 ± 0.05 0.78 ± 0.12 0.95 ± 0.04 0.94 ± 0.05

5 81 29.72 0.9 ± 0.04 0.79 ± 0.11 0.95 ± 0.04 0.94 ± 0.05

6 81 36.42 0.9 ± 0.04 0.8 ± 0.11 0.95 ± 0.04 0.95 ± 0.04

7 82 49.83 0.91 ± 0.04 0.82 ± 0.1 0.96 ± 0.04 0.95 ± 0.04

8 82 60.59 0.91 ± 0.03 0.83 ± 0.1 0.96 ± 0.04 0.96 ± 0.03

9 82 72.09 0.91 ± 0.03 0.83 ± 0.09 0.95 ± 0.04 0.96 ± 0.03

10 82 83.30 0.91 ± 0.03 0.83 ± 0.08 0.95 ± 0.04 0.96 ± 0.03
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for each classification group, using the available survival data at
TCGA. Survival over time for defined classes (ER-negative and
Luminal) is computed with Kaplan-Meier estimate. The survival
time refers to the number of days from the diagnosis to death, last
contact or end of the study. The log-rank test is applied to compare
the survival differences of classes. The time dependent number of
patients at risk for ER-negative group and Luminal group are
provided in Supplementary Figure S1. The survival rates of true
and predicted classes are quite similar (p-value: 0.77,
0.89 respectively).

3.4 Most significant groups that are
identified by 3Mint on BRCA molecular
subtype datasets

The analysis of the BRCA molecular subtype datasets using
3Mint revealed associated biomolecular groups, differentially
expressed mRNAs/genes, miRNAs, and CpGs. We have further
investigated the relationships between these biomolecules. To this
end, Supplementary Table S3 presents 10 most significant groups
that are obtained via running 3Mint on the BRCA molecular
subtype datasets. In this table, the groups refer to the miRNA/
CpG groups; and the groups are sorted by their frequencies
(number of times the group is identified as significant in the
100 splits). The groups with frequency numbers smaller than or
equal to 5 are filtered out before creating the significant groups.
Average score denotes the scores ranging from 0 to 1 are
computed by the Scoring Component and averaged over
100 splits. The higher the score, the better ability of the group
in terms of distinguishing the classes of the BRCA molecular
subtypes. Average rank expresses the mean of the assigned rank of
each specific group in each split. Lower rank indicates stronger
statistical significance. List of target genes of each group and the
number of these genes in the union set are given under the
columns Associated genes and # Associated genes, respectively.
Furthermore, in each split, a gene list is generated by collecting
the union of the genes targeted by the group. In Supplementary
Table S3, these gene numbers in the list for each group are
summarized as the minimum and maximum gene numbers
(Min and Max Gene #) associated with the group. Median
Gene # is calculated by computing the median of the number
of genes in those gene lists. One can observe from Supplementary
Table S3 that the most frequently detected group, hsa-miR-20a_
cg02370232, was reported in 90 splits, and this group has
16 associated genes. Functional enrichment analysis is
performed to derive over-represented GO categories of these
identified genes using DAVID (Sherman et al., 2022).
Supplementary Table S4 presents the functional enrichment of
16 genes in the most frequently detected group (hsa-mir-20a_
cg02370232). In the GO MF (molecular function) category,
transcriptional regulation activity of BCL11A (B-cell
lymphoma/leukemia 11A) with FOXC1, OTX1 and ZNF232 is
detected. Cellular division activity of the genes RNF8, PIMREG,
and AURKB are identified with the GO:0051301 (cell division)
term. The functional enrichment analysis of the genes within the
top 5 appeared groups are also shown in the groupGO_analysis
Supplementary Materials.

3.5 Most significant miRNAs that are
revealed by 3Mint on BRCA molecular
subtype datasets

Supplementary Table S5 presents the top ten most significant
miRNAs that are identified by 3Mint on BRCA molecular subtype
datasets, including related summaries and lists of associated CpGs
and genes. The frequency shows the number of splits (out of 100)
where that miRNA appears in at least one group (where the group
consists of a miRNA-methylation pair). The total frequency is the
total number of groups in which the miRNA appears in the
group. Additionally, miRNA associated genes and CpGs are listed
in Supplementary Table S5. The full lists of splits in which this
miRNA appears, and the corresponding group ranks are presented
in the last two columns.

Supplementary Table S5 suggests that three miRNAs (hsa-miR-
20a, hsa-miR-17, and hsa-miR-19a) involve heavily in the BRCA
molecular subtype identification problem. These miRNAs appear in
more than half of the splits, and in multiple groups within each split.
They also have relatively large sets of associated genes and CpGs
indicating a strong regulatory network, which may be a
distinguishing feature for the BRCA molecular subtype. The
miRNAs appearing in fewer groups tended to appear less
frequently, indicating the occasional appearance of that miRNA
for BRCA (consistent with the cancer’s very heterogeneous nature).
Two major exceptions are hsa-miR-18a and hsa-miR-135b, which
appear in few splits, but in many different groups (i.e., they are
associated with several CpGs) in those few splits. Interesting future
work is an investigation into potential biological drivers of this
phenomenon. A good starting point will be the latter miRNA,
focusing on those specific splits. Also of interest is the patterns of
joint appearance of these miRNAs.

3.6 Most Significant CpGs that are detected
by 3Mint on BRCA molecular subtype
datasets

Supplementary Table S6 presents the top ten most significant
CpGs that are identified by 3Mint on BRCA molecular subtype
datasets, including related summaries and lists of associated
miRNAs, mRNAs. This table is prepared in a similar manner
with the miRNA table shown in Supplementary Table S5.
Contrary to the occurrence of significant miRNAs in several
groups in each split, significant CpGs appeared in at most
2 groups in each split. Supplementary Tables S5, S6 imply that
while six significant miRNAs contribute to the regulatory
mechanisms of BRCA molecular subtype characterization, more
than 10 significant CpGs have a potential role in this mechanism. In
this context, the dominance and high potency of miRNAs over CpGs
can be inferred from this table. One can observe from
Supplementary Table S6 that the two most significant CpGs
(cg02370232, and cg06282596) share similarities in terms of their
occurrence, average scores, average ranks, number of associated
genes and number of associated miRNAs (19 common genes out of
23–24 genes, and 5 common miRNAs out of 6 miRNAs). These
results point the way towards a potential further investigation of
similarly behaved CpGs on their cellular functionality, targeting sites
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and potential complementaries. It is worth noting that most of the
CpGs involve the miRNAs hsa-miR-20a and hsa-miR-17. An
important exception is cg24296761, which is found to be
associated with hsa-miR-18a and hsa-miR-106b, not hsa-miR-20a
and hsa-miR-17. This CpG occurs in only 10 splits, but it has a
strong effect when it appears as indicated by the very low
average rank.

3.7 Most significant mRNAs/genes that are
highlighted by 3Mint on BRCA molecular
subtype datasets

Table 2 gives a gene centric view of the results, showing the
distribution of the identified genes over the groups. This table gives
the 10 most significant genes with relevant summary statistics. The
most prevalent genes across the significant groups were BCL11A,
SRSF12, RASAL1, and L3MBTL4. We investigated the biological
relevance of these genes in the literature. For instance, BCL11A
(B-cell lymphoma/leukemia 11A) gene, which encodes a regulatory
C2H2 type zinc-finger protein, is commonly characterized as a
transcriptional repressor. It was reported that BCL11A has a
potential role in tumor proliferation and metastasis through the
Wnt/β-catenin signaling pathway in BRCA (Zhu et al., 2019). It was
noted that BCL11A can be used in triple negative BRCA (TNBC)
therapy as a potential biomarker, but the precise mechanism of the
gene on TNBC is not clear yet (Wang et al., 2020). Just a handful of
studies have focused on SRSF12 (serine and arginine rich splicing
factor 12) gene, which is a member of the SR (Serine–arginine)-rich
splicing factors in BRCA. A study revealed that the upregulation of

SRSF12 and other family members SRSF3 and SRSF2 were detected
in 20%–40% of TNBCs (Park et al., 2019). Furthermore, a protein
encoded by the RASAL1 (RAS protein activator like 1) gene
suppresses RAS protein function; and thereby serves as a
negative modulator of the RAS signaling pathway. It was
demonstrated that RASAL1 regulates hypoxia inducible factor-1α
through the Akt/Erk pathways (Huang et al., 2017). In our analysis,
L3MBTL4 (histone methyl-lysine binding protein 4) gene, which is
known as a tumor suppressor gene, is identified as another
potentially important gene for the classification of Luminal and
ER-negative groups. A study reported the reduced L3MBTL4 gene
expression in non-basal breast tumors (Addou-Klouche et al., 2010).

3.8 Patterns of co-occurrences for the
identified groups, miRNAs, CpGs, and genes

The networks of significant-omics markers detected via
concurrent analyses can provide a robust view of the
dysregulated mechanisms, explaining the molecular subtypes of a
disease. A collective interconnection of the features based on the
developed 3Mint tool can provide potential relationships among the
hidden layers of the-omics data. Along this line, we analyzed the
patterns over the 100 splits for the detected groups, miRNAs, CpGs
and genes. In Figures 3–6, we have visualized these patterns as
heatmaps where splits are shown in the columns, and feature names
(group, miRNA, CpG or gene) are shown in the rows. In order to
place splits with similar patterns next to each other, the columns
(i.e., splits) are hierarchically clustered using the rank information,
calculating the Euclidean distance, and applying average linkage.

TABLE 2 Top ten most significant mRNAs/genes that are detected using 3Mint on BRCA molecular subtype dataset.

Genes Freq of
genes

Total freq in
each group

Average
score

Average
rank

Group list Group
#

Rank list Split list

BCL11A 95 752 0.89 7.00 hsa-miR-20a_cg24051242, . . . 70 1, 2, 3, 4, 1, 2, 3, 3,
4, 4, 5,. . .

0, 0, 0, 0, 1, 1, 1,
1, . . .

SRSF12 77 483 0.90 6.10 hsa-miR-17_cg12427162, hsa-
miR-17_cg02370232, . . .

65 1, 2, 3, 3, 4, 4, 1, 2,
3, 3, 4, 5, . . .

1, 1, 1, 1, 1, 1,
4, 4. . .

L3MBTL4 49 171 0.89 8.12 hsa-miR-20a_cg12427162, . . . 38 1, 2, 3, 4, 5, 6, 6, 9,
2, 4, 4,. . .

4, 4, 4, 4, 4, 4,
5, 5,. . .

RASAL1 42 111 0.90 5.06 hsa-miR-19a_cg24051242, hsa-
miR-19a_cg02370232, . . .

21 1, 2, 3, 4, 1, 1, 2, 2,
13, 1, 1, 2, 1, . . .

5, 5, 5, 5, 6, 7, 7, 7,
7, 9,. . .

RNF8 42 126 0.89 5.85 hsa-miR-20a_cg24051242, hsa-
miR-17_cg12427162, . . .

20 1, 1, 1, 4, 4, 6, 3, 9,
2, 4, 5, 5, 8. . .

0, 1, 4, 4, 6, 6, 7, 7,
10, . . .

APBA2 37 93 0.89 6.38 hsa-miR-19a_cg24051242, hsa-
miR-17_cg24051242, . . .

15 1, 9, 1, 3, 13, 6, 1, 2,
4, 5, . . .

7, 7, 9, 9, 12, 13, 16,
22, 24,. . .

CDCA7 31 75 0.91 4.33 hsa-miR-17_cg26242687, hsa-
miR-20a_cg12427162, . . . . . .

23 3, 1, 3, 4, 1, 1, 9, 2,
4, 1, 4, 8 . . .

1, 4, 4, 4, 5, 7, 7, 10,
10, 12, 12, 12, . . .

RPIA 29 84 0.91 7.14 hsa-miR-19a_cg24051242, hsa-
miR-19a_cg24051242, . . .

24 1, 1, 3, 9, 2, 5, 1, 2,
3, 4, 5, 6, 7, 8, . . .

5, 7, 7, 7, 10, 10, 12,
12, 12,. . .

CDKN2A 27 82 0.91 6.40 hsa-miR-20a_cg24051242, hsa-
miR-20a_cg24051242, . . .

24 1, 3, 2, 5, 1, 2, 3, 4,
7, 8, 10, 11, 12, . . .

0, 7, 10, 10, 12, 12,
12, 12, 12, 12,. . .

PIMREG 24 114 0.90 6.93 hsa-miR-19a_cg24051242, . . . 26 1, 2, 2, 3, 4, 5, 6, 7,
8, 9, 10, 11, . . .

7, 7, 7, 7, 7, 7, 7, 7,
7, 7, 7, 7, 7, 10,

10, . . .
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Additional insights about the relation between columns come from
the dendrogram. The color key denotes the ranking of features in a
scale from most highly ranked (shown in dark red) to the least
(shown in yellow). Gray areas indicate non-detected features for the

corresponding split. The numbers in parentheses following the
feature name shows the average rank of the group over 100 splits.

Figure 3 demonstrates the significant players (groups) with dark
color, indicating that these groups are most frequently seen over

FIGURE 3
Heatmap of Group features with rank information for each split. The heatmap reveals patterns of co-occurrence of groups over different splits.
Color key encodes the rank of each group, where 1 indicates the top rank. Gray indicates non-detection of that group for the corresponding split.

FIGURE 4
Heatmap of miRNA features with rank information for each split. Co-occurrences over the splits of the group component miRNAs are revealed. The
color key encodes the rank of each miRNA, where dark red indicates the top ranking. Gray displays non-detected miRNAs for the corresponding split.
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100 splits. In this analysis, the groups with 5 or fewer appearances are
omitted. The groups hsa-miR-20a_cg02370232, and hsa-miR-20a_
cg06282596 are found as the two most important players
(Supplementary Table S3). These groups have a very similar
pattern in terms of splits (Figure 3) indicating a strong co-
occurrence network. Note that these two CpGs also showed up in
the four following groups, i.e., hsa-miR-17_cg02370232, hsa-miR-17_
cg06282596, hsa-miR-19a_cg02370232, and hsa-miR-19a_
cg06282596, which appear together with the dominant groups on
the left side of the heat map, butmuch less frequently on the right side,
indicating occasional co-occurrence. Two small clusters on the left of
the heatmap suggest small sets of groups containing hsa-miR-17 and
hsa-miR-18a, which only appear in a few splits, suggesting a fairly rare
but also important phenomenon which may be worth deeper
investigation. The small cluster of columns near the middle
indicates that a few of the splits resulted in the detection of no groups.

Next we aim to create amore detailed view, explaining the role of
each particular component (miRNAs, CpGs, and genes) from the 3-
omics dataset, by generating similar heatmaps, derived from
Supplementary Table S3; Figure 3.

The co-occurrence patterns of the miRNAs, which appear in the
groups in Figure 3, are illustrated in Figure 4. In other words, deeper
insights into the patterns of miRNA appearance over the 100 splits
comes from the heatmap visualization (Figure 4). Color encodes the
average ranks of the groups where the groups include that particular
miRNA. The most frequently appearing miRNA, hsa-miR-20a, with an
average rank of 5.6 seems to be a hub miRNA. Other potentially
important players include hsa-miR-19a, hsa-miR-17 which have high

ranks positioned in similar splits. The overlapped splitting patterns of
these two miRNAs suggest a possible cooperation among these two
miRNAs. The least frequently seen miRNAs, above the frequency
threshold, hsa-miR-92a-1 and hsa-miR-92a-2 have very similar split
patterns positioned in the bottom left of the table which is not surprising
as they are isoforms. These patterns again suggest the presence of
relatively small clusters in the data, which requires deeper investigation.

Insight into the patterns of occurrence of CpGs over splits come
from the heatmap view. Figure 5 represents the colored patterns of
significant CpGs, where the color is assigned based on the split numbers.
Strong overlapped patterns of cg02370232 and cg06282596 suggest
similar functional mechanisms among these two CpGs. As
mentioned in the significant groups table, these CpG has strong
interaction with hsa-miR-20a. The co-occurrence of cg12427162 and
cg24051242 is not frequent enough, but we can still argue about their
contribution to BRCA molecular subtype classification.

Figure 6 focuses on the identified genes, which could have a
potential role in distinction of BRCA molecular subtypes. More
specifically, the co-occurrence patterns of the genes in different splits
is visualized in the heatmap. One can imply that the BCL11A gene
may have a key role in training of the model because it appeared in
95 out of 100 splits. High average score and high average rank
enhances the idea that BCL11A is the most prominent gene for the
classification of BRCA molecular subtypes. Similarly, the gene
SRSF12 appears in every split that includes BCL11A. The split
patterns in the heatmap show that both BCL11A and SRSF12 are
prevalent in 100 splits. A deeper investigation reveals that these two
most frequently occurring genes, BCL11A and SRSF12, both appear

FIGURE 5
Heatmap of CpG features with rank information for each split. Heatmap illustrates co-occurrence patterns of the group component CpGs over
splits. Color key encodes the ranking of each CpGwith a spectrum from dark red to yellow. Gray displays non-detected CpGs for the corresponding split.
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in 59 groups (out of 70 groups with BCL11A and 65 containing
SRSF12). This observation suggests that these two genes may have
same/similar targeting sites. Additionally, with an average rank of
6.9 and 6.0, respectively, these genes could have substantial effect on
the construction of significant groups. Significant co-occurrence
relationships of the genes increase their dominance in classification.
A relatively less frequently seen gene ZNF232 with an average rank
of 5.5, also influenced the classification performance. Moreover, one
can observe from Figure 6 that APBA2, RASAL1, and
L3MBTL4 have similar patterns in the heatmap. Hence, to better
understand BRCA molecular subtypes, the functional relationships
among these genes may be worth further investigation.

3.9 Analysis of the groups based on their
shared genes

So far, we have presented our findings about significant features,
depending on their involvement in different splits within the
classification experiment. We have performed additional analyses to
understand the collective behavior of the groups based on their shared
genes. For this analysis, shared genes are utilized to construct a group-
group similaritymatrix. The number of genes in the intersection of each
pair of groups is normalized by the total number (i.e., number in the
union). Groups are hierarchically clustered based on Euclidean distance
and based on average linkage, to highlight relationships between them.
Such relationships go beyond mere pairwise analysis, by revealing
clusters of groups. To this end, the heatmap in Figure 7 visualizes

the collective behavior of the groups based on their shared gene
information. The scale of the color reflects normalized intersecting
gene counts within the range of (0–1). The numbers shown in
parentheses following the group names show the gene number in
the group. The group names are shown in both x and y-axes. Five blocks
with different sizes are visually apparent along the main diagonal in the
heatmap, with two distinct groups appearing at the bottom. Calling each
of the latter two as a “block”, leaves us with seven total blocks, whose
common gene sets are presented in Table 3.

The first block shows that the groups with the miRNA hsa-miR-
20a contain many genes in common. The same trend holds for the
second, third and fourth blocks for the miRNAs named hsa-miR-19a,
hsa-miR-17, and hsa-miR-18a, respectively. Whereas the fifth block
reveals a common gene set shared by groups containing the
methylation probe cg09791746. Note that these groups have much
smaller gene sets, suggesting that the size of the gene list may also
contribute to the clustering of the groups. The intersection of the gene
sets for these four groups are BCL11A, L3MBTL4, and LDHB. The
gene L3MBTL4 has a role in different Gene Ontology (GO) biological
process (BP) terms including chromatin organization and regulation of
gene expression. BCL11A is involved in regulation of transcription by
RNA polymerase II. The other shared gene LDHB in the fifth block is
implicated in pyruvate and lactate metabolic processes, as defined by
GO BP. The singleton blocks at the bottom have somewhat distinct
gene sets compared to the other blocks. In particular the group hsa-
miR-20a_25581330 is associated with BCL11A, SRSF12, NRTN,
CDKN2A, and ZNF232 genes; and hsa-miR-17_cg27658601 is
associated with BCL11A, ATL2, TTLL4, and L3MBTL4 genes. As

FIGURE 6
Heatmap of gene features with rank information for each split. Heatmap reveals patterns of co-occurrence of genes over different splits. Rank of
each gene is illustrated using colors. Gray color is used to denote non-detected groups.
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seen in Table 3, there are several genes in the lists for these singleton
blocks which do not appear in any of the shared gene lists for the first
5 blocks. One is TTLL4 which is only detected in group hsa-miR-17_

cg27658601, and is annotated in microtubule cytoskeleton
organization and protein modifications. Another unique gene
NRTN is included in MAPK (Mitogen-Activated Protein Kinase)

FIGURE 7
Heatmap of group features based on normalized intersected genes among each pair of groups. Color key encodes normalized intersected gene
numbers for each pair of groups. Scale 1 indicates group pairs with most normalized shared gene numbers.

TABLE 3 Shared gene lists in different blocks.

Block number Shared gene list

1 AURKB, BCL11A, FOXC1, L3MBTL4, PIMREG, RASAL1, RNF8, SRSF12

2 BCL11A, L3MBTL4, PIMREG, RASAL1

3 ATL2, AURKB, BCL11A, L3MBTL4, PIMREG, SOX9-AS1, SRSF12

4 ACTR3B, ANP32E, ATL2, BCL11A, IFRD1, FAM171A1, SRSF12

5 BCL11A, LDHB, L3MBTL4

6 (hsa-miR-17_cg27658601) BCL11A, ATL2, TTLL4, L3MBTL4

7 (hsa-miR-20a_cg25581330) BCL11A, CDKN2A, NRTN, SRSF12, ZNF232

Frontiers in Genetics frontiersin.org12

Unlu Yazici et al. 10.3389/fgene.2023.1093326

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2023.1093326


cascade activity. The gene ZNF232 is annotated in gene expression by
RNA polymerase II. Finally CDKN2A is involved in protein
polyubiquitination and rRNA processing.

3.10 Most frequently observed genes within
most frequently seen groups

Additional insight into the output of 3Mint comes from studying
gene frequencies. Figure 8 presents gene frequencies as bar charts for the
four groupsmost frequently seen over the 100 splits. Bars correspond to
genes, and the bar height represents the number of times this gene
appeared in a split for this group. BCL11A and SRSF12 are the most
frequently observed members of these four groups, where BCL11A
appears much more frequently in the first two groups. The first two
groups have very similar gene sets and frequency patterns, suggesting a
common biological role of the CpGs cg02370232 and cg06282596 with
respect to hsa-miR-20a. These methylation probes target differentially
methylated CpG sites located in the gene SORBS1. To understand the
relationships between the genes appearing in the top 2 panels of
Figure 8, we check the affected GO terms for the union of these
genes, together with SORBS1 usingWebGestalt (Liao et al., 2019). This
analysis resulted in sets of genes with similar ontologies. The most
frequently observed gene set was ATL2, BCL11A, HRK, SRSF12,
AURKB, and SORBS1. This gene set has a role in cellular
component biogenesis, as defined in the GO BP category. The next
most numerous gene set was FOXC1, RASAL1, OTX1, BCL11A, and
NRTN; which are annotated with the following GO terms: Anatomical
structure morphogenesis, growth, regulation of signaling. Hence, 3Mint
seems to have established new connections between these gene sets and
hsa-miR-20a. Furthermore, when we have checked for the possible
associations of these genes with hsa-miR-20a in literature, we found that
(Huang et al., 2019b) experimentally validated the relation of ATL2,
RNF8, ZNF232, and SRSF12 genes with hsa-miR-20a.

As mentioned above, and as shown in Figure 8, the most
frequently observed CpGs are cg02370232 and cg06282596,
which target the same SORBS1 gene in chromosome 10. This
finding explains their strong overlapped patterns in Figure 5.
SORBS1 acts as a potential suppressor in tumorigenesis and low
levels of the gene enhances the invasive ability of BRCA cells through
activation of c-Jun N-terminal kinase (JNK) (Song et al., 2017).

Note that the groups in the bottom two panels of Figure 8 are
associated with hsa-miR-17 and with the same two CpGs
(cg02370232 and cg06282596). Furthermore, the gene sets
(especially those with higher frequencies) are very similar. Hence,
the above line of reasoning suggests that hsa-miR-17 is also
connected to the above mentioned two gene sets.

These results are also consistent with those of (Concepcion et al.,
2012). They reported that the MicroRNA-17-92 Family, also named as
“miR-17/92 cluster”, is located in the locus of the non-protein-coding
gene MIR17HG, which is dysregulated in cancer tissue, thereby
affecting cell cycle, apoptosis and other crucial processes. Note that
all of the miRNAs appearing in Figure 4 (hsa-miR-17, hsa-miR-18,
hsa-miR-19, hsa-miR-20, and hsa-miR-92) aremembers of this cluster.
A study conducted by Moi et al., 2019 has revealed that the miR-17/
92 cluster is overexpressed in aggressive breast tumors; and pointed out
pivotal regulatory functions of miR-17-92 cluster and the miR-17
family in malignancy in BRCA. This is consistent with our findings,

implying the molecular differences between the BRCA Luminal group
(Luminal A and B) with ER-negative group (Her2 enriched and Basal).

3.11 Contribution of Significant CpGs and
their target genes to breast cancer
molecular mechanisms

The genes which map to the significant CpG sites are used to
understand the contribution of the methylation information to breast
cancer tumorigenesis and progression mechanisms. To this end, the
frequently identified CpGs in our method and their target genes are
investigated. Supplementary Table S7 shows the significant CpGs, the
target genes whichmap to these CpG sites, and the genomic coordinates
of these CpGs. Here a significant CpG site refers to a CpG which is
identified in a group that is detected at least five times over 100 iterations
in our analysis. The associations of these identified target genes with
breast cancer are reported in literature as follows. SORBS1 acts as a
potential suppressor in tumorigenesis and low levels of the gene
enhances the invasive ability of BRCA cells through activation of
c-Jun N-terminal kinase (JNK) (Song et al., 2017). ADAMTSL5 loci
is targeted by estrogen receptor alpha (ERα) (Zhang et al., 2021), while
MCF2L Antisense RNA 1 promotes the transcriptional activity of yes-
associated protein (YAP) to enhance the proliferation and metastasis in
Breast cancer (She et al., 2022). LRP5 activity associated with the β-
catenin signaling pathway in breast cancer is reported in the literature
(Björklund et al., 2009). Similarly, NOTCH1 regulates cell cycle and
accelerates triple-negative breast cancer (TNCB) (Miao et al., 2020). The
long non-coding RNAFOXP4-AS1 promotes cancer cell proliferation in
different types of human cancers (Wu et al., 2019; Zhao et al., 2020).
Furthermore, the tumor suppressor gene ZNF750 (Cassandri et al.,
2020) and the oncogeneWWTR1 (Cordenonsi et al., 2011) regulates cell
migration and invasion.

3.12 Regulatory network for BRCAmolecular
subtype identification

To understand the differential regulatory mechanisms between
Luminal and ER-negative groups, the 10 most frequently appeared
groups over 100 iterations are further analyzed. The genes in these
groups, the target genes which map to the CpG sites that are identified
in top 10 groups, and miRNA target genes are used to construct an
association network as illustrated in Supplementary Figure S3A, using
STRING (Szklarczyk et al., 2021). The network represents the proteins
as nodes and associations between the proteins as the links. The
network is enhanced with colors encoding functionally enriched
pathways (listed in Supplementary Figure S3B). The functional
annotation details of the query proteins are given in Supplementary
Table S8. As shown in Supplementary Figure S3B, the p53 signaling
pathway, Cell cycle, MicroRNAs in cancer, and Breast cancer pathways
are identified within the top 10most significant KEGG pathways. Multi
colored nodes indicate that the protein is mapped to several pathways.
For example, the CDKN2A gene, which is identified by 3Mint, appears
in eight different pathways among the top 10 important KEGG terms.
This hub gene plays an important role in the cell cycle and the variants
cause dramatic changes in the protein function, which leads to
significant association of the variants with breast cancer (Aftab et al.,
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2019). Another prominent protein NOTCH1 is identified in our
analysis and it functions as a regulating factor in proliferation and
apoptosis. Hypomethylation of the gene causes over-expression of the
NOTCH1 protein in Notch signaling pathway (Sun et al., 2016).
ANP32E, AURKB, BCL11A, CDK2AP1, LDHB, and RNF8 are
other genes that are identified in the 10 mostly appeared groups
and visualized in the network in Supplementary Figure S3A. While
ANP32E, AURKB and BCL11A induce tumor progression in triple-
negative breast cancer cells (Khaled et al., 2015; Xiong et al., 2018;
Huang et al., 2019a), downregulation of CDK2-AP1 enhances tumor
growth through cell cycle regulation (He et al., 2014). It was reported
that RNF8 promotes breast cancer metastasis via enhancing Epithelial-
mesenchymal transition (EMT) (Kuang et al., 2016). In another study,
LDHB was found to be linked to breast cancer by controlling early
tumor progression (Brisson et al., 2016).

4 Discussion

In this research effort, we proposed a novel ML based tool
named 3Mint for the analysis of 3 types of-omics data. We have
experimented 3Mint using miRNA and mRNA expression profiles,
and methylation profiles obtained from TCGA for BRCA molecular
subtype identification problem. 3Mint utilizes biological knowledge
to create groups, perform scoring and construct a model based on

the significant groups. The genes within the informative groups
provide insight into the understanding of targeted genes with
prominent CpGs and miRNAs. Groups are scored to detect
significant relationships between miRNAs, CpGs, and genes. A
novel contribution of 3Mint is the idea of grouping, an
improvement over the more conventional methods which focus
on gene lists. 3Mint utilizes 3-way relationships, giving different
levels of impact to each-omic data towards understanding the
cellular behavior of defined groups for BRCA molecular subtypes.

In previous sections, we presented themethod itself in detail; showed
the performance analysis of 3Mint; exposed the identified disease related
novel groups with their associated genes, miRNAs, CpGs; and displayed
the association of the detected biosignatures. High performance metrics
of 3Mint over the top 10 cumulative groups (as shown in Table 1) imply
that the tool can successfully classify BRCA molecular subtypes. As
shown in Supplementary Table S3B, for the classification of the BRCA
luminal and ER-negative subtypes, 3Mint discovered a number of
statistically significant, biologically important groups. These groups
had overlaps with many different features (including miRNAs, CpGs,
and genes), where these relationships were investigated from a number
of different viewpoints, and presented in Supplementary Tables S5–S7,
and in Figures 3–6. In Subsections 3.5–3.10, the possible roles of the
identified genes, miRNAs, CpGs for BRCA development, and for the
distinction of Luminal and ER-negative groups of BRCA are assessed
with respect to the literature. As explained in Section 3.10, an interesting

FIGURE 8
Bar graph of frequency of genes over splits for most significant groups. Targeted genes by the groups of (A) hsa-miR-20a_cg02370232, (B) hsa-
miR-20a_cg06282596, (C) hsa-miR-17_cg06282596, (D) hsa-miR-17_cg02370232 are represented in frequency level.
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connection with the previous literature was the role of the miR-17/
92 cluster, which appeared at several points in our 3Mint analysis. We
alsowould like to note that as well as focusing on the genes andmiRNAs,
the interpretation of methylation data is also shown to be informative to
understand differences between the defined BRCA molecular subtypes,
as seen in Figures 5, 8, Supplementary Table S6 and as presented in
Sections 3.6, 3.8, 3.10 Additionally, the biological relevance of the top
scoring miRNA-CpG groups in terms of BRCA molecular subtype
characterization is elaborated. Through several examples, we showed
that the 3Mint tool could help to identify potential biomarkers for disease
under investigation. The relationships between the cumulative groups,
and between the mRNA, miRNA, and methylation markers provide
insight into understanding of the basis of disease, mechanism of action
and detection of disease state.

5 Conclusion

In this study, we developed 3Mint to elucidate the molecular
mechanisms of heterogeneous diseases through exploring the
interactions of features that are presented in multi-omics datasets. The
proposed method enables grouping and scoring of features based onML
to improve the performance and interpretability of models via integrating
gene expression data. Thus, the 3Mint tool enhances the comprehensive
view of cellular signaling; and provides system level unveiling of cellular
behaviors through analysis of 3-omics datasets. For future studies, we aim
to add other-omics datasets such as genetic variants, transcription factors
to improve the performance of the model. In addition, the proposed
algorithm can be extended to more than 3-omics datasets (k-omics) to
reach a more comprehensive knowledge about heterogenous disease
mechanisms. Moreover, co-occurrence networks of multi-omics data
with utilization of biological knowledge can be constructed to find central
signatures and potential biomarkers for more precise diagnosis and for
developing targeted therapies.
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