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Abstract

Background

Accurate estimates of gestational age (GA) at birth are important for preterm birth surveil-

lance but can be challenging to obtain in low income countries. Our objective was to develop

machine learning models to accurately estimate GA shortly after birth using clinical and

metabolomic data.

Methods

We derived three GA estimation models using ELASTIC NET multivariable linear regression

using metabolomic markers from heel-prick blood samples and clinical data from a retro-

spective cohort of newborns from Ontario, Canada. We conducted internal model validation

in an independent cohort of Ontario newborns, and external validation in heel prick and cord

blood sample data collected from newborns from prospective birth cohorts in Lusaka, Zam-

bia and Matlab, Bangladesh. Model performance was measured by comparing model-

derived estimates of GA to reference estimates from early pregnancy ultrasound.

Results

Samples were collected from 311 newborns from Zambia and 1176 from Bangladesh. The

best-performing model accurately estimated GA within about 6 days of ultrasound estimates
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in both cohorts when applied to heel prick data (MAE 0.79 weeks (95% CI 0.69, 0.90) for

Zambia; 0.81 weeks (0.75, 0.86) for Bangladesh), and within about 7 days when applied to

cord blood data (1.02 weeks (0.90, 1.15) for Zambia; 0.95 weeks (0.90, 0.99) for

Bangladesh).

Conclusions

Algorithms developed in Canada provided accurate estimates of GA when applied to exter-

nal cohorts from Zambia and Bangladesh. Model performance was superior in heel prick

data as compared to cord blood data.

Introduction

Preterm birth is a leading cause of neonatal morbidity and mortality worldwide that dispro-

portionately affects infants born in low- and middle-income countries (LMIC) [1]. Knowledge

of the burden of preterm birth across LMIC is essential to evaluating the impact of policies and

programs aimed at improving pregnancy and neonatal outcomes. Accurate estimates of pre-

term birth rates rely on the use of standard definitions across jurisdictions and consistent

reporting of pregnancy outcomes. International preterm birth surveillance efforts are ham-

pered in many LMIC by limited access to ultrasound dating technology and poor recall reli-

ability of a woman’s last menstrual period [2–4]. The reliability of commonly used newborn

assessments for estimating gestational age (GA) postnatally is often limited in preterm and

growth-restricted infants, and these methods are also subject to high inter-user variability,

making estimation of the burden of preterm birth in many jurisdictions problematic [5–9].

There is now a push by health organizations for strengthened data surveillance systems and

novel tools that can more accurately assess and monitor rates of preterm birth in low resource

countries, many having some of the highest preterm birth rates globally [10, 11]. Our research

team has previously investigated the distribution of analyte levels obtained from newborn

screening data in Ontario infants according to GA at birth and found that many analytes

included in the newborn screening panel varied with level of prematurity, including a number

of amino acids, acylcarnitines and fatty acid oxidation markers, 17-OHP, thyroid stimulating

hormone and the relative proportions of fetal and adult hemoglobin subtypes [12, 13]. Based

on these findings, we developed algorithms in a North American cohort of newborns to esti-

mate GA postnatally using newborn screening analyte levels from newborn dried blood spots

and a small number of clinical covariates. We have demonstrated that these previously devel-

oped models provided accurate estimates to within about 1–2 weeks of ultrasound-based GA

[14–17]. Previous models were developed using conventional multivariable linear and logistic

regression methods and have been internally validated in specific ethnic subgroups of the

Canadian population [18], and externally validated in a cohort of infants born in Matlab, Ban-

gladesh [19], demonstrating satisfactory performance, but lower accuracy of GA predictions

compared to the setting in which models were developed. In recent years, a number of power-

ful machine learning (ML) methods have been developed that allow the efficient handling of

large databases, large numbers of predictors, and the incorporation of non-linear associations

and complex interactions. We sought to redevelop our models by incorporating advanced ML

methods with the aim of dramatically improving model performance. In this study, we report

the performance of our newly developed ML-based GA estimation algorithms using ELASTIC

NET regression [20] in two international prospective birth cohorts from Lusaka, Zambia, and

Matlab Bangladesh.
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Methods

Ethics approval and consent to participate

Written informed consent was obtained from all participants from Zambia and Bangladesh

before any data or samples were collected. Approval for the Zambia cohort was obtained from

the University of Zambia School of Medicine Biomedical Research Ethics Committee (Refer-

ence number: 016-04-14), and the University of North Carolina School of Medicine (Study

number: 14–2113). Approval from the Bangladesh cohort was obtained from the Research

Review and Ethical Review Committees of the International Centre for Diarrhoeal Disease

Research, Bangladesh (PR-16039). Approval was also obtained from the Ottawa Health Science

Network Research Ethics Board (20160219-01H) and the Children’s Hospital of Eastern

Ontario Research Ethics Board (16/20E) for model development in the Ontario, Canada

cohort, and external validation in the Zambia and Bangladesh cohorts.

Study design and research participants

We sought to evaluate the performance of a GA estimation algorithm developed in a retrospec-

tive population cohort of infants from Ontario, Canada in prospective birth cohorts of infants

born in Lusaka, Zambia and Matlab, Bangladesh. Detailed descriptions of all three cohorts

have been published previously [17, 21, 22]. A summary of the cohorts is available in Table 1.

Sample collection and analysis

Details of sample collection and analysis are included in the Supplemental Methods in S1 File.

All models were developed and internally validated based on clinical covariates and laboratory

results from heel prick blood samples in the Ontario cohort. For the Zambia and Bangladesh

cohorts, a subset of infants had only a heel prick or a cord blood sample collected, and a further

subset had both sample types. All samples from the Ontario, Zambia and Bangladesh cohorts

were analyzed centrally at the Newborn Screening Ontario (NSO) laboratory in Ottawa, Can-

ada. Analytes were included as candidate predictors in GA estimation models based on their

routine measurement as part of Ontario’s expanded newborn screening program, including

hemoglobin profiles, amino acids, acylcarnitines, hormone and endocrine markers, enzymes

and co-enzymes (Table 2). Management of incidental clinical findings (screen-positive cases)

for conditions screened for by the NSO program identified in the course of analyzing interna-

tional samples have been reported elsewhere [23, 24].

Statistical analysis

All analyses were conducted using SAS 9.4 and R 3.3.2. Additional details of statistical methods

are provided in the Supplemental Methods in S1 File. Data preparation steps, including stan-

dardization and log transformation were applied uniformly in the Ontario, Zambia and Ban-

gladesh cohorts. A complete case analysis was used for model derivation and internal

Table 1. Summary of Ontario, Zambia and Bangladesh cohorts.

Cohort Site Cohort Type Enrollment GA Estimate

Ontario,

Canada

All hospital births and midwife

attended home births

Retrospective birth registry Infants born between January 2012

and December 2014

First trimester

ultrasound

Lusaka,

Zambia

Women and Newborn Hospital of the

University Teaching Hospital

Nested prospective within the Zambian

Preterm Birth Prevention Study (ZAPPS)

Women <20 weeks gestation between

August 2015 and September 2017

Ultrasound at first

prenatal visit

Matlab,

Bangladesh

International Centre for Diarrhoeal

Disease Research, Bangladesh

Nested prospective within the Preterm and

Stillbirth Study, Matlab (PreSSMat)

Women 11–14 weeks gestation

between January 2017 and July 2018

Ultrasound at

enrollment

https://doi.org/10.1371/journal.pone.0281074.t001
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validation in Ontario due to very low missingness and the large available sample size. A small

proportion of subjects in the Zambia and Bangladesh cohorts had missing values for a small

subset of analytes (due to sample quality degradation or insufficient blood spot volume) and

these values were multiply imputed (additional details in Supplemental Methods in S1 File).

Three distinct GA estimation models were derived. Models were fit and all parameters esti-

mated using both the Ontario training subset (N = 79,636) and validation subset (N = 39,829)

of the Ontario cohort:

Model 1: Baseline model containing only infant sex, multiple birth (yes/no), birth weight

(grams), and pairwise interactions among these covariates.

Model 2: Analytes model including infant sex, multiple birth (yes/no), newborn screening

analytes (listed in Table 2), and pairwise interactions among covariates.

Model 3: Full model containing infant sex, multiple birth (yes/no), birth weight (grams),

newborn screening analytes, and pairwise interactions among these covariates.

The analytes most strongly associated with GA were identified using partial spearman cor-

relation analysis, and these, in addition to birthweight, were modeled using restricted cubic

splines with 5 knots to allow for non-linearity. All other analytes were modeled with linear

terms. To address the large imbalance in number of term infants compared to preterm and

post-term infants, we applied a weighting scheme in the regression model fitting process to

balance the influence of term infants with less common gestational ages (additional details in

Supplemental Methods in S1 File).

Given the large number of covariates and interactions included, Model 2 and Model 3 were

fit using an ELASTIC NET ML approach [20].

Final Ontario model equations were used to calculate an estimated GA in the test subset

of the Ontario cohort that had no role in model development, as well as in the Zambia and

Bangladesh external validation cohorts. For each infant, model performance was assessed

by comparing the estimated GA from the model to the ultrasound-derived GA and calculat-

ing the mean absolute error (MAE) measured in weeks (the average of the absolute differ-

ence between model-based vs. ultrasound-based values across all observations). Lower

MAE reflects more accurate model-based GA estimates. We also calculated the percentage

of infants with GAs correctly estimated within 7 days of ultrasound-based GA. We assessed

model performance overall and in important subgroups: preterm birth (<37 weeks gesta-

tion), and small-for-gestational age: below the 10th (SGA10) and 3rd (SGA3) percentile for

birth weight within categories of gestational week at delivery and infant sex, based on

INTERGROWTH-21 categories [25]. 95% bootstrap percentile confidence intervals were

calculated for all validation performance metrics, which also took account of data imputa-

tion in the Bangladesh and Zambia cohorts.

Table 2. Newborn screening analytes included in predictive models.

Hemoglobins Adult hemoglobin: HbA(A)

Fetal hemoglobin: HbF (F), Acetylated HbF (F1)

Endocrine

markers

17-hydroxyprogesterone (17-OHP), Thyroid stimulating hormone (TSH)

Amino Acids Arginine (arg); phenylalanine (phe); alanine (ala); leucine (leu); ornithine (orn); citruline (cit);

tyrosine (tyr); glycine (gly); methionine (met); valine (val);

Acyl-carnitines C0; C2; C3; C4; C5; C5:1; C6; C8; C8:1; C10; C10:1; C12; C12:1; C14; C14:1; C14:2; C16; C18;

C18:1; C18:2; C10:1; C12:1; C14:1; C14:2; C4OH; C5:1; C5DC; C5OH; C6DC; C16:OH;

C16:1OH; C18OH; C18:1OH; C3DC; C4DC

Enzyme markers Biotinidase; immunotripsinogen

https://doi.org/10.1371/journal.pone.0281074.t002
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Estimated preterm birth rate

We estimated the preterm birth rate by calculating the proportion of model-based GA esti-

mates that were below 37 weeks, as well as 95% bootstrap confidence intervals, and compared

these to the observed preterm birth rate in each cohort (based on ultrasound GA).

Classification accuracy

Although our models were intended to estimate gestational age in weeks on a continuous scale

and not intended or optimized for classification, we calculated the accuracy, sensitivity and

specificity of continuous Model 3 estimates when used to classify infants as term or preterm in

heel prick data for Ontario, Bangladesh and Zambia. Depending on the intended application,

a logistic regression or other methodology better suited to prediction of a dichotomous out-

come would be preferred, and cut-points could be adjusted to prioritize sensitivity or specific-

ity in terms of classifying infants.

Results

Participant characteristics

The Ontario internal validation (testing subset) cohort included 39,666 infants (Fig 1). In the

Ontario cohort, the proportion of infants born preterm (GA<37 weeks) based on ultrasound

was 5.6%, and 3.9% and 0.92% of infants were classified as SGA10 and SGA3, respectively. In

the external validation cohorts, a total of 142 heel prick samples and 265 cord blood samples

collected from 311 unique newborns from Zambia, and 520 heel prick samples and 1139 cord

blood samples collected from 1176 unique newborns from Bangladesh. 32 (22.5%) heel and 99

(37.4%) cord samples from Zambia were missing one or more analytes, with a maximum of

three missing in any sample. 28 (5.4%) heel and 22 (1.9%) cord samples from Bangladesh were

missing one or more analytes, with a maximum of 5 and 3 missing values respectively (one

subject missing all analyte values was removed from the analysis). Based on ultrasound GA,

the preterm birth proportions were similar in the Zambia and Bangladesh cohorts (9.6% versus

9.7%). The Zambia cohort had a much lower proportion of newborns classified as SGA10 as

Fig 1. Cohort creation.

https://doi.org/10.1371/journal.pone.0281074.g001
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compared to the Bangladesh cohort (9.7% vs. 25.3%). Characteristics of unique infants in each

cohort, as well as the infants represented in heel prick and cord blood sample cohorts are pro-

vided in Table 3.

Model performance using heel prick data from Ontario, Zambia and

Bangladesh

Model external validation performance was largely similar between the Zambia and Bangla-

desh cohorts. Accuracy of estimated GA was generally lower in the external validation cohorts

than in the Ontario internal validation cohort for the same models. In general, Model 3, which

included both clinical and analyte predictors, outperformed Models 1 and 2. Accuracy of GA

estimates in all models was highest in term infants and tended to be lower in preterm and SGA

infants, but Model 3 consistently provided the most accurate estimates across the spectrum of

GA (Table 4 and Fig 2). Model 1 estimated GA to within approximately 7 days of ultrasound-

assigned GA, with similar performance among samples from Ontario, Zambia and Bangladesh

(MAE (95% CI) 0.96 (0.95,0.97), 0.96 (0.82,1.12) and 0.99 (0.92,1.06) weeks, respectively).

Model 3 estimated GA to within 5 days of ultrasound-assigned values when applied to the

Ontario data (MAE (95% CI) 0.71 (0.71, 0.72) and within 6 days in the Zambia and Bangladesh

data (MAE (95% CI) 0.79 (0.69, 0.90) and 0.81 (0.75, 0.86), respectively). GA was correctly esti-

mated to within 1 week of ultrasound-assigned values for 74.6% (95% CI 74.2,75.1), 69.4%

(60.6, 77.5) and 68.4% (64.3, 72.4) of heel prick samples from Ontario, Zambia and Bangla-

desh, respectively.

Table 3. Infant characteristics.

Ontario Zambia Bangladesh

Unique Infants

Overall (n = 39,666)

Heel Prick

Samples

(n = 142)

Cord Blood

Samples

(n = 265)

Unique Infants

Overall (n = 311)

Heel Prick

Samples

(n = 520)

Cord Blood

Samples

(n = 1139)

Unique Infants

Overall (n = 1176)

Sex, n (%)

Male 19536 (49.3%) 66 (46.5%) 127 (47.9%) 151 (48.5%) 258 (49.6%) 577 (50.7%) 593 (50.4%)

Female 20130 (50.7%) 76 (53.5%) 138 (52.1%) 160 (51.5%) 262 (50.4%) 562 (49.3%) 583 (49.6%)

Gestational Age

(wks), mean (SD)

39.3 (1.57) 38.7 (1.64) 38.6 (2.09) 38.5(2.10) 38.8 (1.5) 38.7 (1.7) 38.6 (1.7)

Gestational Age

(wks), n (%)

�37 weeks 37440 (94.4%) 131 (92.3%) 243 (91.7%) 281 (90.4%) 485(93.3%) 1031 (90.5%) 1063 (90.4%)

32˚−366 weeks 2049 (5.2%) 11 (7.7%) 18 (6.8%) 26 (8.4%) 34 (5.5%) 105 (9.2%) 109 (9.3%)

28˚−316 weeks 126 (0.3%) 0 (0%) 2 (0.8%) 2 (0.6%) 1 (0.2%) 2 (0.2%) 3 (0.3%)

<28 weeks 51 (0.1%) 0 (0%) 2 (0.8%) 2 (0.6%) 0 (0.0%) 1 (0.1%) 1 (0.1%)

Birth Weight (g),

mean (SD)

Overall 3379 (530) 3128 (485) 3102 (529) 3086 (545) 2835 (429) 2860 (440) 2855 (445)

Term infants 3431 (476) 3185 (429) 3186 (419) 3179 (436) 2876 (390) 2911 (397) 2910 (396)

Preterm infants 2504 (623) 2456 (620) 2178 (719) 2224 (699) 2267 (546) 2369 (522) 2340 (544)

Small for

Gestational Age, n

(%)

SGA10 1561 (3.9%) 11 (7.8%) 30 (9.6%) 30 (9.7%) 147 (28.3%) 286 (25.1%) 297 (25.3%)

SGA3 363 (0.9%) 3 (2.1%) 11 (3.5%) 14 (4.5%) 61 (11.7%) 107 (9.4%) 112 (9.5%)

Multiple Birth, n

(%)

1069 (2.7%) 8 (5.6%) 14 (4.5%) 14 (4.5%) 7 (1.4%) 19 (1.7%) 19 (1.6%)

https://doi.org/10.1371/journal.pone.0281074.t003
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When applied to samples from preterm infants in Ontario, Model 3 correctly estimated GA

to within 7 days of ultrasound-assigned values (MAE (95%CI) 1.03 (0.99, 1.06)), and per-

formed significantly better than Models 1 and 2 (MAE (95%CI) 1.76 (1.71, 1.81) and 1.25

(1.21, 1.29), respectively). The number of preterm infants in the external validation cohorts

was small, with only 11 heel prick samples from Zambia and 35 from Bangladesh, however in

both settings, model 3 outperformed both models 1 and 2, and was accurate to within about 10

days on average in preterm infants (MAE (95% CI) 1.49 (1.07, 1.93) and 1.44 (1.16, 1.70),

respectively in Zambia and Bangladesh).

When applied to Ontario heel prick samples from SGA infants, Model 2 had the best per-

formance, estimating GA to within about 6 days of ultrasound-assigned values for SGA10 and

7 days for SGA3 subgroups (MAE (95% CI) 0.90 (0.86, 0.94) and 1.03 (0.92, 1.13), respec-

tively). Our validation cohort from Zambia contained only 11 SGA10 and 3 SGA3 classified

infants. When applied to these samples, Models 2 and 3 both outperformed Model 1, and esti-

mated GA to within about 6 days of ultrasound-assigned values in SGA10 infants, and within

about 9 days in SGA3 infants. Our heel prick sample cohort from Bangladesh contained a

larger number of SGA samples (147 SGA10 and 61 SGA3 samples). When applied to these

samples from Bangladesh, Model 3 estimated GA to within about 6 days of ultrasound-

assigned values in the SGA10 subgroup and within about 7 days in the SGA3 subgroup (MAE

(95% CI) 0.81 (0.72, 0.91) and 0.97 (0.81, 1.15), respectively).

Table 4. Heel prick samples: MAE and proportion estimated within 1 week of ultrasound-assigned gestational age.

Ontario Zambia Bangladesh

Overall, <37 wks SGA10, SGA3, Overall, <37 wks SGA10, SGA3, Overall, <37 wks, SGA10, SGA3,

N = 39,666 N = 2226 N = 1561 N = 363 N = 142 N = 11 N = 11 N = 3 N = 520 N = 35 N = 147 N = 61

Model 1: Baseline Model

MAE

(95% CI)

0.96 (0.95,

0.97)

1.76 (1.71,

1.81)

2.70 (2.65,

2.75)

3.85

(3.76,

3.95)

0.96

(0.82,

1.12)

2.12 (1.1,

3.4)

1.79 (1.09,

2.68)

3.54 (2.42,

5.38)

0.99

(0.92,

1.06)

2.15 (1.73,

2.57)

1.14 (1.00,

1.28)

1.73 (1.49,

1.97)

26.1 (14.8,

37.7)

% +/-1

wk (95%

CI)

60.4 (59.9,

60.9)

31.0 (29.2,

32.8)

0.45 (0.13,

0.82)

0.55

(0.00,

1.40)

63.3

(55.3,

71.1)

27.3 (0.0,

57.1)

36.6 (10.0,

66.7)

0.0 (0.0,

0.0)

61.1

(56.9,

65.3)

28.3 (14.3,

44.8)

55.7 (47.8,

63.7)

Model 2: Analyte Model

MAE

(95% CI)

0.79 (0.79,

0.80)

1.25 (1.21,

1.29)

0.90 (0.86,

0.94)

1.03

(0.92,

1.13)

0.95

(0.81,

1.12)

1.70

(1.15,

2.32)

0.86 (0.53,

1.29)

1.09 (0.48,

2.10)

0.92

(0.86,

0.99)

1.8

(1.5,2.1)

0.96 (0.85,

1.08)

0.99

(0.83,1.16)

60.3 (47.4,

72.3)

% +/-1

wk (95%

CI)

69.4 (69.0,

69.9)

46.9 (44.9,

48.9)

66.6 (64.2,

68.9)

62.0

(56.6,

66.9)

64.9

(55.6,

73.2)

27.5 (0.0,

56.4)

73.4 (41.7,

100)

73.6 (0.0,

100.0)

64.9

(60.6,

69.2)

22.7 (9.1,

37.8)

59.4,

(51.0,

67.7)

Model 3: Full Model

MAE

(95% CI)

0.71 (0.71,

0.72)

1.03 (0.99,

1.06)

1.13 (1.09,

1.17)

1.48

(1.37,

1.60)

0.79

(0.69,

0.90)

1.49

(1.07,

1.93)

0.87 (0.46,

1.32)

1.29 (0.12,

2.17)

0.81

(0.75,

0.86)

1.44 (1.16,

1.70)

0.81 (0.72,

0.91)

0.97

(0.81,1.15)

58.5 (45.5,

70.8)

% +/-1

wk (95%

CI)

74.6 (74.2,

75.1)

58.0 (55.9,

60.2)

50.5 (48.2,

53.0)

35.8

(30.6,

40.6)

69.4

(60.6,

77.5)

28.3 (0.0,

60.0)

60.1

(25.0,90.9)

29.8

(0.0,100.0)

68.4

(64.3,

72.4)

32.1 (17.2,

48.6)

66.0 (58.2,

73.6)

Data are presented as the mean and 2.5th and 97.5th bootstrap percentiles for MAE, and the percentage of model estimates within 1 week of ultrasound GA for 2000

bootstrap samples in each cohort.

https://doi.org/10.1371/journal.pone.0281074.t004
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Scatter plots of observed GA versus estimated GA for all three models in the Ontario, Zam-

bia and Bangladesh heel prick cohorts are presented in Fig 3, which shows that in general,

lower (preterm) GAs tend to be overestimated by all three models when applied to both exter-

nal cohorts, with the overestimation being much more pronounced for Model 1 estimates.

Similarly, GA tended to be slightly overestimated in post-term infants. These patterns were

observed in the Ontario test cohort only for Model 1.

Model performance using cord blood data from Zambia and Bangladesh

Overall, performance was attenuated when applied to cord blood samples vs. heel prick samples

for Models 2 and 3 (the models including analyte covariates), in both the Zambia and Bangladesh

cohorts (Table 5 and Fig 2). In the cord blood cohort from Zambia, Models 1 and 3 performed

similarly (MAE (95% CI) 1.03 (0.93,1.13) vs. 1.02 (0.90, 1.15)), respectively), and significantly

Fig 2. Agreement between algorithmic gestational age estimations compared to ultrasound-assigned gestational age. (A) Legend, and overall MAE

(95% CI) for heel prick sample and cord blood samples from Zambia and Bangladesh across three models. Dot size in plots is proportional to sample size in

each gestational age category. Performance of each model by ultrasound-validated gestational age when applied to heel prick data in (B) Zambia (C)

Bangladesh, and cord blood data in (D) Zambia (E) Bangladesh. MAE, mean absolute error (average absolute deviation of observed vs. predicted

gestational age in weeks).

https://doi.org/10.1371/journal.pone.0281074.g002
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outperformed Model 2 (MAE (95% CI) 1.30 (1.15, 1.47)) (Table 5). Overall, in cord blood sam-

ples from Bangladesh, Model 3 significantly outperformed Models 1 and 2 in accurately estimat-

ing GA (MAE (95% CI) 0.95 (0.90, 0.99) vs. 1.08 (1.03, 1.13) and 1.06 (1.01, 1.11), respectively).

When applied to cord blood samples from preterm infants in Zambia (n = 22), all models

generally performed poorly. The best performing model in this group was Model 1, with an

MAE (95% CI) of 2.42 (1.73, 3.12) and estimated GA within 1 week in 36.3% of infants. Models

performed slightly better in estimating preterm GA in cord blood samples from Bangladesh

Fig 3. Residual plots of predicted–observed by ultrasound-assigned gestational age. Heel prick samples from

Ontario: (A) Model 1: Baseline Model, (B) Model 2: Analyte Model, and (C) Model 3: Full Model. Heel prick samples

from Zambia: (D) Model 1: Baseline Model, (E) Model 2: Analyte Model, and (F) Model 3: Full Model. Heel prick

samples from Bangladesh: (G) Model 1: Baseline Model, (H) Model 2: Analyte Model, and (I) Model 3: Full Model.

https://doi.org/10.1371/journal.pone.0281074.g003

Table 5. Cord blood samples: MAE and proportion estimated within 1 week of ultrasound-assigned gestational age.

Zambia Bangladesh

Overall, <37 wks, SGA10, SGA3, Overall, <37 wks, SGA10, SGA3,

N = 265 N = 22 N = 25 N = 8 N = 1139 108 N = 287 N = 107

Model 1: Baseline Model

MAE (95% CI) 1.03 (0.93, 1.13) 2.42 (1.73, 3.12) 1.52 (1.12, 1.96) 2.27 (1.40, 3.17) 1.08 (1.03, 1.13) 2.21 (1.98, 2.43) 1.16 (1.05, 1.27) 1.86 (1.68, 2.06)

% +/-1 wk (95% CI) 60.0 (54.3, 66.0) 36.3 (15.8, 57.1) 40.0 (20.0, 61.1) 12.5 (0.0, 40.0) 56.5 (53.6, 59.2) 23.2 (15.5, 31.5) 54.6 (49.0, 60.3) 21.5 (13.9, 30.0)

Model 2: Analyte Model

MAE (95% CI) 1.30 (1.15, 1.47) 3.96 (2.79, 5.34) 1.76 (1.14, 2.60) 2.66 (1.33, 5.03) 1.06 (1.01, 1.11) 2.32 (2.07, 2.58) 1.11 (1.00, 1.22) 1.17 (0.97, 1.41)

% +/-1 wk (95% CI) 50.2 (43.8, 56.6) 10.8 (0.0, 25.0) 32.5 (13.8, 52.4) 12.3 (0.0, 40.0) 56.8 (53.8, 59.8) 13.0 (6.9, 19.8) 51.0 (45.3, 56.7) 48.7 (38.5, 58.7)

Model 3: Full Model

MAE (95% CI) 1.02 (0.90, 1.15) 3.01 (2.15, 3.99) 1.15 (0.67, 1.82) 1.41 (0.25, 3.34) 0.95 (0.90, 0.99) 1.92 (1.74, 2.11) 0.92 (0.84, 1.00) 1.10 (0.94, 1.27)

% +/-1 wk (95% CI) 60.7 (54.7, 66.8) 13.8 (0.0, 31.3) 54.6 (33.3, 73.9) 62.9 (25.0, 100.0) 61.0 (58.1, 63.8) 16.8 (9.8, 23.6) 60.8 (54.9, 66.4) 51.4 (41.8, 60.8)

Data are presented as the mean and 2.5th and 97.5th bootstrap percentiles for MAE, and the percentage of model estimates within 1 week of ultrasound GA for 2000

bootstrap samples.

https://doi.org/10.1371/journal.pone.0281074.t005
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(n = 108). Model 3 had the best performance, with a MAE (95% CI) of 1.92 (0.90, 0.99) and

was able to correctly estimate GA to within 1 week in 16.8% of preterm infants.

Our validation cohort from Zambia contained a slightly larger number of SGA cord blood

samples (25 SGA10 and 8 SGA3 samples) compared to heel prick samples (11 SGA10 and 3

SGA3). Model 3 had the best performance in this subgroup, performing similarly in SGA10 and

SGA3 infants and correctly estimating GA to within 1 week in 54.6 (95% CI 33.3, 73.9) and

62.9% (95% CI25.0, 100.0) of cord samples, respectively. When applied to cord samples from

SGA infants in Bangladesh, Model 3 also had the best performance, and correctly estimated GA

to within 1 week in 60.8% (95% CI 54.9, 66.4) and 51.4% (95% CI 41.8, 60.8) of cord samples

from SGA10 and SGA3 infants, respectively. Fig 4 presents scatter plots for observed versus

model-estimated GA for all three models in the Zambia and Bangladesh cord blood cohorts.

Estimated preterm birth rate

In the Ontario cohort, the preterm birth proportion was 5.6% (5.4%, 5.8%) in the testing subset

and overall based on ultrasound-determined GA. Model 3, the full model which demonstrated

Fig 4. Residual plots of predicted–observed by ultrasound-assigned gestational age. Cord blood samples from

Zambia: (A) Model 1: Baseline Model, (B) Model 2: Analyte Model, and (C) Model 3: Full Model. Cord blood samples

from Bangladesh: (D) Model 1: Baseline Model, (E) Model 2: Analyte Model, and (F) Model 3: Full Model.

https://doi.org/10.1371/journal.pone.0281074.g004
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the highest accuracy, estimated the preterm birth proportion to be 5.7% (5.4%, 6.0%) in the

Ontario testing subset. In the Zambia heel prick cohort, the observed preterm birth proportion

was 7.7% (3.5%, 12.7%) and Model 3 estimated the preterm birth proportion as 5.8% (2.1%,

8.6%). In the Zambia cord blood cohort, the preterm birth proportion was 8.3% (5.1%, 11.7%)

and Model 3 estimated the preterm birth proportion to be 4.4% (1.9%, 7.2%). In the Bangla-

desh heel prick cohort, the observed preterm birth proportion was 6.7% (4.6%, 9.0%) and

Model 3 estimated the proportion as 3.8% (2.3%, 5.4%). In the Bangladesh cord blood cohort

the observed preterm birth proportion was 9.5% (7.9%, 11.2%) and Model 3 yielded an esti-

mated preterm birth proportion of 4.1% (3.0%, 5.3%).

Classification accuracy

In the Ontario heel prick testing cohort, 1485/2226 preterm infants were correctly classified

(sensitivity = 66.7%) and 36680/37440 term infants were correctly classified (specific-

ity = 98.0%) by Model 3. In the Bangladesh heel prick cohort, 14/35 preterm infants were cor-

rectly classified as preterm (sensitivity of 40%) and 479/485 term infants were correctly

classified as term (specificity of 96.8%) by Model 3. In the Zambia heel prick cohort, 6/11 pre-

term infants were correctly classified (sensitivity = 54.5%) and 130/131 term infants were cor-

rectly classified (specificity = 99.2%) by Model 3. Classification accuracy was markedly lower

for Models 1 and 2 in all cohorts, and all 3 models were less accurate in the cord blood cohorts

from Bangladesh and Zambia compared to heel prick results.

Discussion

In this study, we demonstrated that our ML algorithms for postnatal GA estimation developed

from heel prick blood sample data in Ontario, Canada, can be successfully applied in low and

middle income countries in Sub-Saharan Africa and South Asia, having some of the highest

preterm birth rates globally [10, 11]. When applied to heel prick samples from Lusaka, Zambia

and Matlab, Bangladesh, our GA estimates from Model 3 (our best-performing model) were

within an average of 6 days of ultrasound-based GA. All models produced the most accurate

estimates in full term infants (37 to 39 completed weeks GA), however Model 3 provided clini-

cally important improvements (by a week or more in some instances) in accuracy over Model

1. Although Model 1’s overall performance appeared satisfactory, its precision was poor in pre-

term infants, particularly in growth restricted infants (SGA3 and SGA10) across the spectrum

of GA. This is not surprising since Model 1 relies only on sex, birth weight and multiple versus

singleton birth to estimate GA. In growth restricted infants especially, birth weight is a mis-

leading measure of GA. Model 3 demonstrated improved accuracy compared to Model 1 in

SGA infants across the Ontario, Zambia and Bangladesh cohorts, in most cases with minimal

to no overlap in 95% confidence intervals. In Ontario infants, point estimates for Model 3

MAE in SGA10/SGA3 infants were 1.13/1.48 respectively, compared to 2.70/3.85 for Model 1.

In Zambia, MAE for SGA10/SGA3 infants was 0.87/1.29 compared to 1.79/3.54 for Model 1.

In Bangladesh the MAE for SGA10/SGA3 infants was 0.81/0.97 for Model 3 compared to 1.14/

1.73 for Model 1.

We validated the performance of our GA models, which were derived using heel-prick sam-

ples, in umbilical cord blood from the Zambia and Bangladesh cohorts. Estimation of GA

using cord blood would provide several advantages. It would reduce the sample collection bur-

den on staff, results in comparably less stress for the newborn and parents and requires less

training compared to heel prick sample collection.

Unfortunately, when we applied our GA models to cord blood samples we observed sharply

diminished accuracy of predictions in both the Zambia and Bangladesh cohorts. There were
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two main reasons for this. First, our models were derived using heel prick samples. We were

unable to derive cord blood-specific models as cord blood is not routinely collected in our

Ontario population. Second, our investigations in paired heel and cord samples showed that

only a small subset of cord blood analyte levels are closely correlated with heel prick analytes

levels in the same infants, so decreased accuracy is not surprising [26]. Hence, it may be chal-

lenging or impossible to develop a cord-blood specific model with acceptable accuracy. None-

theless, Models 2 and 3 still demonstrated some clinical utility in estimating GA using cord

blood samples.

As a sensitivity analysis, we identified analytes with high and low agreement based on

Spearman correlation, and derived restricted versions of Model 3 including only analytes

meeting a minimum concordance threshold. These restricted models increased the precision

of cord blood GA estimates in preterm infants, but not overall (see Supplemental Results in

S1 File).

In our Results, we presented scatter plots of observed versus estimated GA (Figs 3 and 4)

that showed a systematic tendency for GA to be overestimated in increasingly preterm infants.

This was observed for all three models in heel prick and cord blood samples from Zambia and

Bangladesh. The same phenomenon was not observed in the Ontario internal validation

results. There are a few possible explanations for this apparent systemic bias which can be

framed as a model calibration problem. For example, our reference models employed shrink-

age penalization during model fitting (via ELASTICNET regression) to control over-fitting,

which may have led to over-penalized final regression model coefficients, leading to the oppo-

site problem of under-fitting. However, this was not observed in our internal validation in

Ontario data-only in the external validation cohorts. Another potential contributor is the stan-

dardization process during data preparation. The same standardization was employed in all

three cohorts, but local means and standard deviations were used specific to each cohort. Local

standardization was a critical step, and all models had much poorer performance when this

step was omitted, however large differences in the dispersion of model predictors across popu-

lations, driven by local factors (such as socioeconomic conditions, climate, and underlying dif-

ferences in birth weight and GA distributions) were likely much larger contributors to

differences in covariate distributions. This could have contributed to clinically important vari-

ation being muted in the external cohorts. An important implication of this model calibration

issue is that preterm (<37 weeks GA) birth estimates based on our models are too low. This is

in large part due to “edge effects” which are an important limitation of dichotomizing a natu-

rally continuous variable (for example a GA estimate of 36.9 weeks would be classified preterm

while one of 37.0 would be classified as term, despite the estimates being less than a day apart).

Model calibration in new external settings is an important consideration and a focus of ongo-

ing investigation by our research team.

Direct comparisons of model performance across populations and between our current ML

GA estimation models and previously reported conventional regression models, is challenging

due to different distributions of GAs and birth weights, and other infant- and setting-specific

factors. However, comparing overall internal validation results among previously published

models and those presented in this manuscript, we noted improvements in the accuracy of GA

estimates overall (RMSE = 1.06 and 1.04 vs. 0.89 for current Model 3), and in preterm infants

(RMSE = 1.78 and 1.35 vs. 1.16 for current Model 3)[13, 14]. These findings were largely con-

sistent across the internal and external validation cohorts. Therefore, our interpretation is that

benefits of our ML approach were clear but represented incremental but clinically relevant

improvements, suggesting that our previous models were robustly developed.

Our study had several important strengths. These include our strategy of both internally

validating our models in Ontario test data, as well as our engagement with international
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collaborators to externally validate in mother-infant cohorts from low- and middle-income

countries. Samples were collected from infants with GA confirmed by early pregnancy ultra-

sound, and analyzed centrally (in the same lab where samples were analyzed for the Ontario

cohort). The Zambian Preterm Birth Prevention Study (ZAPPS) and Preterm and Stillbirth

Study, Matlab (PreSSMat) cohorts, in which our study was conducted, ensured that enrollment

was open to representative populations of women and newborns in both Lusaka, Zambia and

Matlab, Bangladesh. Other strengths include the high quality of samples received and our col-

lection of paired heel and cord blood samples which allowed the comparison of model perfor-

mance metrics between sample types, as well analyte level comparisons in paired heel prick

and cord blood samples from a large subgroup of infants. The superior accuracy of Model 3

(our best performing metabolomic model) in estimating GA in SGA and preterm infants com-

pared to Model 1 (that only relies on clinical variables) is an important strength, given the limi-

tations reported for commonly-used tools in the postnatal period (i.e., Ballard or Dubowitz

scores) in these vulnerable infants [6, 7, 27]. The primary limitation of this study is the limited

number of preterm infants available in our external validation cohorts, especially very and

extremely preterm infants (28–32 and <28 weeks gestation respectively). There was a higher

likelihood that consent would be provided for the collection of cord blood than for heel prick

samples in increasingly preterm infants. This was an important finding as it highlights the

advantages of further developing estimation models that work well in cord blood samples. In

the Bangladesh cohort, parents expressed reluctance to subject their premature newborns to

blood sample collection (via heel prick). Although this was not systematically surveyed at the

Zambia site, our study nurses reported a similar hesitancy among Zambian parents. Conse-

quently, the relatively small number of heel prick samples collected from very preterm infants

limited our ability to interpret model performance in these subgroups. Our nurses also

reported a stigma surrounding the heel prick blood sample collection being perceived as asso-

ciated with early infant diagnosis of HIV. Although the study team focused educational efforts

on dispelling this perception, it had a persistent effect on our ability to recruit the targeted

number of participants.

Implementation of our postnatal GA estimation models in LMIC settings to determine

population level GA distribution was the end goal of our research, but would present many

challenges. The current process involving of local sample collection and international analysis

has been successful in our proof of concept, external validation and feasibility work. However,

implementing the analysis pipeline locally would be ideal. Many LMIC are lacking in pathol-

ogy and laboratory medicine services. Barriers include insufficient infrastructure, properly

trained personnel and insufficient quality, standards and accreditation education and training

for laboratory and medicine personnel [28]. Many newborn screens use tandem mass spec-

trometry, which has limited availability in many LMIC settings.

Conclusion

Accurate ascertainment of preterm birth rates across LMIC is imperative in order to evaluate

the impact of policies and programs aimed at improving pregnancy and neonatal outcomes. In

North America, statistical models using data from biochemical analysis of newborn dried

blood spots, including those previously developed by our team, have been shown to provide

accurate estimates of GA, with some limitations in preterm and growth restricted infants

[14–19]. In this study we have presented internal and external validation results of our most

current ML algorithms employing ELASTIC NET regression for GA estimation in both high

and low income settings, providing incremental improvements in performance compared to

previously developed models. Large-scale implementation of this approach, and population-
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level collection and analysis of newborn samples, offers a new opportunity to provide surveil-

lance of the burden of preterm birth in jurisdictions where data are currently lacking.
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