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Matching of experimental and statistical-model thermonuclear reaction rates at high temperatures

J. R. Newton, R. Longland, and C. Iliadis
Department of Physics and Astronomy, University of North Carolina, Chapel Hill, North Carolina, 27599-3255, USA and

Triangle Universities Nuclear Laboratory, Durham, North Carolina 27708-0308, USA
(Received 11 April 2008; published 19 August 2008)

We address the problem of extrapolating experimental thermonuclear reaction rates toward high stellar
temperatures (T > 1 GK) by using statistical model (Hauser-Feshbach) results. Reliable reaction rates at such
temperatures are required for studies of advanced stellar burning stages, supernovae, and x-ray bursts. Generally
accepted methods are based on the concept of a Gamow peak. We follow recent ideas that emphasized the
fundamental shortcomings of the Gamow peak concept for narrow resonances at high stellar temperatures.
Our new method defines the effective thermonuclear energy range (ETER) by using the 8th, 50th, and 92nd
percentiles of the cumulative distribution of fractional resonant reaction rate contributions. This definition is
unambiguous and has a straightforward probability interpretation. The ETER is used to define a temperature at
which Hauser-Feshbach rates can be matched to experimental rates. This matching temperature is usually much
higher compared to previous estimates that employed the Gamow peak concept. We suggest that an increased
matching temperature provides more reliable extrapolated reaction rates since Hauser-Feshbach results are more
trustwhorthy the higher the temperature. Our ideas are applied to 21 (p, γ ), (p, α), and (α, γ ) reactions on
A = 20–40 target nuclei. For many of the cases studied here, our extrapolated reaction rates at high temperatures
differ significantly from those obtained using the Gamow peak concept.
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I. INTRODUCTION

Thermonuclear reaction rates at high temperatures (T >

1 GK) are required for the modeling of advanced stellar burn-
ing stages, supernovae, and x-ray bursts. It is straightforward to
estimate such rates if the necessary ingredients—nonresonant
and broad-resonance cross sections, resonance energies and
strengths—are known experimentally [1]. However, for a
number of reasons, any experiment has an associated cutoff
at some maximum bombarding energy, E

exp
max. For example,

the value of E
exp
max may be dictated by the highest energy

attainable with the particle accelerator; or the measurement
is simply terminated at a bombarding energy where the data
analysis becomes untractable, perhaps because resonances
start to overlap strongly so that a resonance structure is not
discernible anymore. At lower stellar temperatures, where
the effective thermonuclear energy range (ETER) is entirely
covered by experiment, the value of E

exp
max is inconsequential.

However, with increasing temperature a point is eventually
reached where the reaction rates cannot be calculated anymore
using the available experimental information alone since part
of the ETER has shifted beyond E

exp
max.

In such situations, the established procedure is as follows.
The ETER is identified with the Gamow peak, whose location
and (Gaussian approximation) 1/ e width are given by [1]
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where Mi and Zi are the masses (in u) and charges of projectile
and target and T9 is the plasma temperature in GK. Note that

84% of the area under a Gaussian is enclosed between the
1/e points. It is apparent from these expressions that for
increasing temperature the Gamow peak shifts toward higher
energy and becomes broader. Based on this concept, a
“matching” temperature can be determined according to

E0
(
T GP

match

) + n�E0
(
T GP

match

) = Eexp
max, (3)

with n denoting an empirical parameter (n = 1 is used most
frequently). For temperatures T < T GP

match the reaction rates are
assumed to be based on experimental input alone, because
the predominant fraction of the Gamow peak is located in
the experimentally investigated energy region. At T > T GP

match
a substantial fraction of the Gamow peak is located beyond
E

exp
max and insufficient experimental information is available

for calculating the total rates. For the latter case, statistical
model (Hauser-Feshbach) reaction rates are renormalized to
match the experimental rates at a temperature of T GP

match. The
renormalized Hauser-Feshbach reaction rates then provide the
recommended reaction rates in the temperature region T >

T GP
match. This strategy has not only been adopted in the most

recent evaluations of charged-particle thermonuclear reaction
rates [2,3] but represents, in lack of an alternative so far, the
established procedure in the field of nuclear astrophysics.

It must be remembered that the concept of a Gamow peak
is based on the assumption of a nonresonant reaction cross
section [1]. However, at higher temperatures the total reaction
rates for nuclei in the A = 12–40 range are almost always
dominated by contributions from narrow resonances. It turns
out that, under certain conditions, the Gamow peak concept
is also useful for narrow resonances, as has been pointed out
by Fowler and Hoyle [4]: resonances located in the region
of the Gamow peak are thought to provide a much larger
contribution to the total rate compared to other resonances.
In fact, the Gamow peak concept is widely used in nuclear
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astrophysics because it represents a simple and straightforward
method for identifying the most important resonances in a
given thermonuclear reaction.

Recently it has been demonstrated by Newton et al. [5]
that the Gamow peak concept for narrow resonances breaks
down under conditions that are especially favorable to higher
temperatures. We will not repeat the discussion of Ref. [5] here
but instead will focus in the following on specific examples to
make the main ideas transparent. The reaction rate contribution
of narrow resonances (in units of cm3 mol−1 s−1) is given by [1]

NA〈σv〉 = 1.5399 · 1011(
M0M1

M0+M1
T9

)3/2

∑
i

(ωγ )ie
−11.605 Ei/T9 , (4)

where i labels different resonances, Ei and (ωγ )i are the
resonance energy and strength in units of MeV, and Mi are
the relative atomic masses of projectile and target in u. At
higher bombarding energies of interest here, the quantities
Ei and (ωγ )i can be directly obtained in the laboratory, for
example, from measured thick-target yields [1]. From Eq. (4)
one may naively expect that those resonances with the largest
value of (ωγ )i and, at the same time, the smallest value of Ei

may dominate the total reaction rate. However, this simplistic
consideration does not take into account that (ωγ )i is itself
energy dependent. The strength of a resonance is defined in
terms of partial widths as

ωγ = 2J + 1

(2j0 + 1)(2j1 + 1)

�a�b

�
, (5)

with J, j0, j1 the spins of resonance, projectile and target,
respectively, and �a, �b, � the partial widths of the entrance
channel, exit channel, and the total width, respectively. Con-
sider as a simple case a reaction with only two energetically
allowed channels, a particle channel and the γ -ray channel.
The partial widths associated with these channels have vastly
different energy dependences. The partial width for a charged
particle a (usually either a proton or α particle) is strongly
energy dependent because the projectile must penetrate the
Coulomb and centripetal barriers. The energy dependence
is given by �a ∼ P�(E), where P�(E) is the penetration
factor for an orbital angular momentum of �. The penetration
factor determines the energy-dependence of charged-particle
partial widths: they vary by many orders of magnitude, from
vanishingly small values at very low bombarding energies to
values in excess of many keV at higher energies. However,
γ -ray partial widths depend only weakly on the interaction
energy via �γ ∼ E2L+1

γ , where Eγ and L are the energy
and multipolarity, respectively, of the γ -ray transition under
consideration. The total γ -ray partial width is then given by
the sum over all contributing transitions. Typical values of the
total γ -ray partial width amount to ≈meV–eV.

As an example, we will now present numerical results
that are obtained under certain simplifying assumptions:
(i) we consider proton capture (M0 = 1.0078 and Z0 = 1)
on a target with a mass and charge of M1 = 25 and Z1 = 12,
respectively; (ii) only s-wave (� = 0) resonances that decay
via dipole radiation (L = 1) are considered; (iii) we chose
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FIG. 1. (Color online) Narrow resonance reaction rate contri-
butions at a temperature of T = 0.06 GK for proton capture on a
hypothetical target. See text for details. (a) Resonance strengths (red
bars) and Gamow peak (black solid line); (b) fractional contribution
of each resonance to the total reaction rate; E0 labels the location of
the Gamow peak maximum.

the same spectroscopic factor, C2S = 0.01, for all resonances
considered;1 (iv) the Q value for this hypothetical reaction is
assumed to be in excess of several MeV so that the energy
dependence of the γ -ray partial width can be disregarded
(because Eγ = Q + Ei for the primary ground-state transi-
tion); a constant value of �γ = 1 eV is chosen for the total
γ -ray partial width; (v) all spins are set equal to unity for
simplicity. For these assumptions, the energies and strengths
of nine resonances in the range of Ei = 20−180 keV are
shown in Fig. 1(a) as red bars. The solid black line represents
the Gamow peak at a temperature of T = 0.06 GK. The
resonance strengths obviously become larger for increasing
energies because the transmission through the Coulomb barrier

1The proton partial width is given by �p(E) = 2[h̄2/

(µR2)]P�(E)θ2
spC

2S, with µ, R, and θ2
sp the reduced mass, interaction

radius, and dimensionless reduced single-particle width, respectively
[1]. We do not wish to imply that the spectroscopic factors are (nearly)
equal for all resonances in an actual reaction, which is obviously not
the case. The point of our simplifying assumptions is to focus attention
on the energy-dependent quantities that enter into the expressions for
reaction rates.

025805-2



MATCHING OF EXPERIMENTAL AND STATISTICAL- . . . PHYSICAL REVIEW C 78, 025805 (2008)

increases. For all of the resonances displayed in Fig. 1(a)
the condition �a � �γ holds so that, according to Eq. (5),
the proton partial width determines entirely the resonance
strength, i.e., ωγ ≈ ω�a . Because �a contains the information
on the transmission through the Coulomb barrier, the Gamow
peak concept applies in this case: resonances located in the
Gamow peak, E0 ± �E0/2 = 100 ± 25 keV, will be most
important for the total reaction rate, whereas those located
outside this energy range are unimportant. These qualitative
arguments are supported quantitatively by Fig. 1(b), showing
the actual fractional contribution of each resonance to the total
reaction rate. Clearly, the distribution peaks at the center of
the Gamow peak, E0.

It is interesting to consider now a much higher temperature.
For exactly the same assumptions that are discussed above,
the energies and strengths of 19 resonances in the range of
Ei = 200–2000 keV are shown in Fig. 2(a) as red bars. The
solid black line represents again the Gamow peak, this time at a
temperature of T = 2 GK. Only for the lowest two resonances,
Ei = 200 and 300 keV, is the condition �a � �γ fulfilled. For
the resonances at higher energies the increased transmission
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FIG. 2. (Color online) Narrow resonance reaction rate contri-
butions at a temperature of T = 2 GK for proton capture on a
hypothetical target. See text for details. (a) Resonance strengths (red
bars) and Gamow peak (black solid line); (b) fractional contribution
of each resonance to the total reaction rate; E0 labels the location of
the Gamow peak maximum.

through the Coulomb barrier gives rise to relatively large
values of �a , so that we obtain either �a ≈ �γ (for Ei =
400 keV) or �a � �γ (for Ei > 400 keV). In the latter case,
the total γ -ray partial width determines entirely the resonance
strength, ωγ ≈ ω�γ , and ωγ assumes a constant value for our
assumptions. Because the penetration through the Coulomb
barrier is inconsequential for the resonance strength, a Gamow
peak does not exist. These qualitative arguments are supported
quantitatively by Fig. 2(b), showing again the actual fractional
contribution of each resonance to the total reaction rate. This
time the largest contributions arise form the resonances at
Ei = 400, 500, and 600 keV (i.e., the lowest-lying resonances
that do not fulfill the condition �a � �γ ). Note that the
Gamow peak is located at E0 ± �E0/2 = 1000 ± 500 keV,
significantly higher in energy than the distribution of the actual
fractional reaction rate contributions.

The issue raised above is important in the context of
the present work since the Gamow peak concept should
not be applied at higher temperatures (T > 1 GK) where
experimental reaction rates must be extrapolated using Hauser-
Feshbach rates. More precisely, the established procedure
for determining the matching temperature, Eqs. (1)–(3), is
incorrect. In Sec. II we present a new and more reliable
method for defining the ETER. Significant differences in
energy location and width between the ETER and the Gamow
peak will become apparent in Sec. III where we present some
of our results. A summary is given in Sec. IV. We emphasize
again that the ideas presented here are most important if
the total reaction rate at high temperatures is dominated
by narrow resonances,2 which is the case for the majority
of thermonuclear reactions in the A = 12–40 region. Our
methods may not apply to exceptional cases where the total
rate at high temperatures is dominated by broad resonances or
nonresonant processes. Throughout this work, energies are
presented in the center of mass system, unless mentioned
otherwise.

II. METHOD

We will discuss first the temperature dependence of the frac-
tional reaction rate contribution for an ensemble of narrow res-
onances. The results shown in Fig. 3 are obtained for the same
assumptions as stated above. Figures 3(a) and 3(b) display the
fractional reaction rate distributions at a temperature of T =
2 GK and T = 5 GK, respectively. The Gamow peak locations
for the two temperatures, E0 ± �E0/2 = 1000 ± 500 keV and
E0 ± �E0/2 = 1850 ± 1000, respectively, are indicated by
the upper horizontal bars. A number of interesting observations
can be pointed out. First, the actual distribution (shown as red
vertical bars) does not coincide with the Gamow peak location,
as already mentioned in Sec. I. Second, the actual distribution
of fractional reaction rate contributions shifts slightly toward
higher energy with increasing temperature, but the relative
shift is much smaller than for the Gamow peak. The weak

2A resonance may be called “narrow” if its total width is smaller
compared to the width of the ETER.

025805-3



J. R. NEWTON, R. LONGLAND, AND C. ILIADIS PHYSICAL REVIEW C 78, 025805 (2008)

0

0.2

0.4

0.6

400 800 1200 1600 2000

(a)

F
ra

ct
io

n 
of

 t
ot

al
 r

at
e Gamow peak

T=2 GK

ETER

0

0.1

0.2

0.3

400 800 1200 1600 2000

E  (keV)

F
ra

ct
io

n 
of

 t
ot

al
 r

at
e

(b)

Gamow peak

T=5 GK

ETER

FIG. 3. (Color online) Fractional contributions of narrow reso-
nances to the total reaction rate for proton capture on a hypothetical
target. See text. (a) T = 2 GK [the distribution is the same as the
one shown in Fig. 2(b)]; (b) T = 5 GK. The upper horizontal bars
indicate the location of the Gamow peak, E0 ± �E0/2 [the upper
boundary in part (b) is off scale], whereas the lower horizontal bars
display the actual effective thermonuclear energy range (ETER).

energy shift of the actual distribution is explained by the
temperature dependence of the reaction rate: according to
Eq. (4), the reaction rate maximum for a single resonance of
energy Ei is located at T max

9 = 7.737Ei , where the resonance
energy is in units of MeV. Because the temperature location
of the maximum reaction rate is directly proportional to the
resonance energy, the relative rate contribution of higher-lying
resonances increases (moderately) with rising temperature.

For the reasons given above it is obvious that at elevated
temperatures the Gamow peak for narrow resonances must
be replaced by a more reliable concept. Clearly, under such
conditions the effective thermonuclear energy range (ETER)
is defined by the actual distribution of fractional resonant
rate contributions, as is apparent from Figs. 1(b), 2(b), and
3. We obtain a quantitative estimate of the ETER in the
following manner: (i) the cumulative distribution function of
the fractional resonant rates is computed (which resembles
a step function); (ii) the 50th percentile of the cumulative
distribution, which is equal to the median of the fractional
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FIG. 4. (Color online) (a) Fractional contributions of narrow
resonances to the total reaction rate at a given temperature, T .
The highest-lying resonance corresponds to the experimental cutoff
energy, Eexp

max; (b) Cumulative distribution of fractional resonant rates;
the 8th, 50th, and 92nd percentiles define the ETER (see text). For
this particular temperature, Eq. (6) is fulfilled (see lower horizontal
bar in panels), i.e., T = T ETER

match .

resonant rates, is identified with the energy location of the
ETER; (iii) the 8th and 92nd percentiles of the cumulative
distribution define an energy range that we identify with the
width of the ETER; this range covers an integrated rate fraction
of 84%, i.e., the same value as the area enclosed between the
1/e points of the (Gaussian approximation of the) Gamow
peak. Note that this procedure, which is schematically shown
in Fig. 4, is different from the preliminary strategy applied
in Newton et al. [5]. Our new method requires additional
computational efforts but has the advantage of an unambiguous
definition and a straightforward probability interpretation. The
resulting ETERs for the previously discussed examples are
shown in Fig. 3 as the lower horizontal bars in each panel.
It is apparent that at both temperatures the ETER has a
significantly different energy location and width compared
to the conventional region of the Gamow peak.

We are now in a position to address the problem of how
to match experimental and Hauser-Feshbach reaction rates.
Recall from Sec. I that the matching temperature is generally
influenced by the experimental cutoff energy, E

exp
max. Based on

the above discussion, we replace the conventional definition
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FIG. 5. (Color online) Fractional contributions of narrow reso-
nances to the total rate of the 31P(p, γ )32S reaction. The resonance
energies and strengths are from Ref. [6]. (a) T = 1.72 GK; (b)
T = 2.98 GK. These two temperatures correspond to T GP

match and
T ETER

match , respectively, with E
exp
max ≈ 2.0 MeV for this reaction (Table I).

of a matching temperature, Eq. (3), by

E′(T ETER
match

) + n�E′(T ETER
match

) = Eexp
max. (6)

The quantity T ETER
match is the matching temperature based

on the ETER; E′ denotes the location of the ETER, which
is determined by the 50th percentile of the cumulative
distribution of fractional resonant rate contributions; �E′ is
the width of the ETER, defined by the 8th and 92nd percentiles
such that this region contributes 84% of the total reaction rate.
Test calculations show (see below) that a choice of n = 1 for
the empirical parameter provides sufficiently accurate results.
Because at a given value of T the ETER is expected to be
located at much lower energies compared to the Gamow peak
(see Sec. I), the value of our matching temperature, T ETER

match , is
significantly higher compared to T GP

match.
The situation is schematically displayed in Fig. 4: at a

given temperature, T , the ETER (upper horizontal bars) is
located well within the experimentally investigated energy
region and Eq. (6) is precisely fulfilled (i.e., E′ + �E′ is equal
to the experimental cutoff energy, implying T = T ETER

match ; see
lower horizontal bars). For smaller temperatures, the ETER
shifts to the left and the total reaction rate can be based
on experimental information alone. At higher temperatures,
the ETER shifts to the right such that resonances located

beyond the experimentally investigated energy region may
contribute to the total rate. In the latter case, the rate beyond
the matching temperature, T ETER

match , must be extrapolated using
Hauser-Feshbach results. In the next section, we apply our
ideas to a number of realistic cases.

III. RESULTS

Consider as an example the 31P(p, γ )32S reaction for which
42 narrow resonances have been measured up to an energy of
Er = 1963 keV [6]. Application of the Gamow peak concept,
Eq. (3), results in a matching temperature of T GP

match = 1.72 GK.
A significantly higher matching temperature, T ETER

match =
2.98 GK, is deduced from our adopted method, which is based
on Eq. (6). The actual distributions of fractional resonant rate
contributions at these two temperatures are shown in Fig. 5.
At T = 1.72 GK (top panel) almost 80% of the total rate is
contributed by only four resonances, whereas at T = 2.98 GK
many more resonances contribute significantly to the total
reaction rate. It is obvious that the matching of experimental
and Hauser-Feshbach rates is more reliable at the higher
temperature where the contribution from many resonances
is a prerequisite for the applicability of the statistical theory
of nuclear reactions. In fact, the application of the Hauser-
Feshbach theory is questionable at the lower temperature of
T = 1.72 GK.

We have performed similar calculations for a number of
reactions, including interactions of the type (p, γ ), (p, α), and
(α, γ ). The results are listed in Table I. Columns 2 and 3
provide information on the number of measured resonances
that are taken into account and the measured energy of the
highest-lying resonance, respectively. The resonance energies
and strengths are adopted from Refs. [6,7], including a number
of updates. Our recommended matching temperature T ETER

match ,
calculated from Eq. (6), is given in column 4. Column 5 lists
the commonly used matching temperature T GP

match, which is
computed from Eq. (3). It is apparent that T ETER

match significantly
exceeds T GP

match for most reactions investigated. In a number
of cases we find values of T ETER

match in excess of 10 GK, which
usually represents the maximum temperature that is of interest
in nuclear astrophysics. Consequently, for these reactions
there is no longer a need for matching experimental and
theoretical results: their rates up to T = 10 GK can be based
on experiment alone, in contrast to previous predictions.

It is interesting to explore why 31P(p, α)28Si and
35Cl(p, α)32S are the only reactions for which T ETER

match does
not exceed T GP

match. Consider a (p, α) reaction on the same
hypothetical target as assumed in Sec. I. If we assume again
only s-wave resonances in the proton and α-particle channel,
and the same value of C2S = 0.01 for the proton and α-particle
spectroscopic factors, then the α-particle partial width, �α ,
becomes smaller than the proton partial width, �p, for a proton
bombarding energy in excess of E ≈ 1.2 MeV.3 Beyond this
energy, we find ωγpα ≈ ω�α and the proton partial width

3The result is based on the ratio of s-wave penetration factors for
protons and α particles at the appropriate bombarding energies.
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TABLE I. Comparison of matching temperatures based on the ETER and the Gamow peak.

Reaction nr
a E

exp
max

b (keV) T ETER
match

c (GK) T GP
match

d (GK) Rate ratioe

NON-SMOKER

Rate ratiof MOST

20Ne(α, γ )24Mg 44 5011 10.00 3.22 1.04 0.30
21Ne(p, γ )22Na 46 1937 8.96 2.23 1.02 0.41
22Ne(p, γ )23Na 55 1823 4.05 2.05 1.13 0.75
23Na(p, γ )24Mg 50 2256 10.00 2.56 0.91 0.31
23Na(p, α)20Ne 48 2328 3.53 2.67 0.77 0.76
24Mg(p, γ )25Al 9 2311 9.56 2.49 0.35 0.19
24Mg(α, γ )28Si 47 5240 10.00 2.97 0.80 0.20
25Mg(p, γ )26Al 80 1762 3.25 1.73 1.18 0.64
26Mg(p, γ )27Al 133 2867 4.31 3.32 0.97 0.83
27Al(p, γ )28Si 105 3819 10.00 4.60 0.91 0.49
27Al(p, α)24Mg 90 2967 3.62 3.29 0.96 0.93
28Si(p, γ )29P 9 2991 10.00 3.16 2.08 1.08
29Si(p, γ )30P 76 3075 5.05 3.28 0.96 0.66
30Si(p, γ )31P 93 2929 5.18 3.07 0.70 0.52
31P(p, γ )32S 42 1963 2.98 1.72 0.92 0.53
31P(p, α)28Si 25 1963 1.57 1.72 0.91 0.91
32S(p, γ )33Cl 14 2470 8.56 2.23 0.13 0.07
35Cl(p, γ )36Ar 91 2828 5.08 2.57 1.02 0.59
35Cl(p, α)32S 94 2838 2.25 2.58 1.09 1.19
36Ar(p, γ )37K 10 2575 7.39 2.17 0.25 0.15
40Ca(p, γ )41Sc 8 1887 1.96 1.32 0.40 0.34

aNumber of narrow resonances taken into account; resonance energies and strengths are from Refs. [6,7], including
some updates.
bExperimental cutoff energy, i.e., energy of highest measured resonance.
cPresent temperature for matching experimental and Hauser-Feshbach rates, calculated from Eq. (6); values listed as
“10.00 GK” correspond actually to matching temperatures in excess of 10 GK.
dCommonly used temperature for matching experimental and Hauser-Feshbach rates, calculated from Eq. (3), which
is based on the Gamow peak concept. See text.
eRatio of extrapolated reaction rates using T ETER

match and T GP
match as matching temperature. The Hauser-Feshbach rates are

adopted from the code NON-SMOKER [8]. The listed rate ratios apply to T � T ETER
match .

fRatio of extrapolated reaction rates using T ETER
match and T GP

match as matching temperature. The Hauser-Feshbach rates are
adopted from the code MOST [9]. The listed rate ratios apply to T � T ETER

match .

becomes unimportant. (The γ -ray partial width is smaller in
magnitude than either of the particle partial widths and thus
is negligible in this context.) Because the α-particle appears
in the exit, not entrance, channel (i.e., it is not emitted with
a thermal energy distribution), it follows that a Gamow peak
does not exist for (p, α) reactions at higher energies. Thus,
depending on the circumstances, the ETER may be located at
higher or at lower energies compared to the Gamow peak.

Although we have shown above that the actual temperature
for matching experimental and Hauser-Feshbach rates is
significantly higher than previously assumed, we have not
demonstrated yet that the extrapolated recommended rates
(i.e., in the region beyond the matching temperature) will
change as well. It must be remembered that the absolute
value of the Hauser-Feshbach rate is of no concern here. The
fact that Hauser-Feshbach rates are matched to experimental
results implies that, concerning the absolute magnitude of the
reaction rate, the latter results are clearly preferred over the
former if a set of measured resonances is available. What is of
main interest for the matching procedure is the temperature

dependence of the Hauser-Feshbach rate. If experimental
and Hauser-Feshbach reaction rates have similar temperature
dependences at high temperatures, then it obviously does
not matter at which temperature both rates are matched:
the same extrapolated rates are obtained if the matching is
performed at T ETER

match or T GP
match. Thus we only expect to obtain

differences in extrapolated rates if the temperature dependence
of experimental and Hauser-Feshbach rates is different.

For all reactions listed in Table I we extrapolated the
rates to high temperatures, first based on our new matching
temperature, T ETER

match , and then repeated the calculation using
the Gamow peak concept, T GP

match. The ratio of the resulting
rates (at temperatures beyond T = T ETER

match ) is given in two
columns in Table I: columns 6 and 7 have been obtained
using the Hauser-Feshbach computer codes NON-SMOKER [8]
and MOST [9], respectively. It can be seen that for 15 of 21
investigated reactions the rate ratios exceed 50% for at least one
of the Hauser-Feshbach models, implying that a matching of
reaction rates at T ETER

match instead of T GP
match has a significant effect

on the extrapolated results. The largest variations are obtained
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for 32S(p, γ )33Cl (factor 14) and 36Ar(p, γ )37K (factor 7). It
is also apparent that for many reactions the rate ratios listed
in columns 6 and 7 disagree by large factors, indicating that
the NON-SMOKER and MOST rates have different temperature
dependences. We leave a more thorough investigation to future
work.

Finally, we would like to discuss the results of an important
test. It will not have escaped the attention of the careful
reader that the location of the ETER, as defined in Sec. II,
depends on the experimental cutoff energy E

exp
max. Clearly,

resonances are missing at the high-energy end of the fractional
rate distribution and this circumstance will influence the
values of the derived 8th, 50th, and 92nd percentiles of the
cumulative distribution (Fig. 4). We expect that the “true”
ETER (which would take into account all resonances) will
generally be located at higher energies compared to our
calculated ETER (which is based on an experimental set
of resonances that is truncated at E

exp
max). Among all cases

listed in Table I, the 27Al(p, γ )28Si reaction has the highest
value of E

exp
max. We may use this observation for investigating

the sensitivity of our calculated (truncated) reaction rates on
the experimental cutoff energy. The results are displayed in
Fig. 6. Suppose that we would artificially truncate the
fractional rate distribution for 105 resonances at an energy
of 1.0 MeV so that only the 26 lowest-lying resonances
are taken into account. The resulting matching temperature,
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FIG. 6. (Color online) Effect of truncating the fractional distribu-
tion of narrow resonance contributions on the ETER for the reaction
27Al(p, γ )28Si. See text. The x axis displays an artificial experimental
cutoff energy. The numbers at the top of the vertical bars correspond
to T ETER

match (in GK) calculated from Eq. (6) by using a value of n = 1.
The open black vertical bars show the ETER computed at T ETER

match for
the artificial cutoff energy displayed on the x axis, whereas the solid
red vertical bars display the ETER calculated at the same temperature
using the full set of experimentally known resonances up to an energy
of Er = 3.8 MeV. In both cases the ETERs are defined by the 8th,
50th, and 92nd percentiles of the cumulative distribution of fractional
resonance rate contributions (Sec. III). The percentage number at the
bottom of the vertical bars indicates the amount of variation in the
total reaction rate caused by the artificial experimental cutoff energy.

calculated from Eq. (6), would amount to T ETER
match = 0.94 GK

(displayed at the top of the two vertical bars in the figure).
The (truncated) ETER would then be located at E = 333-
740 keV (open black vertical bar). This can be compared to the
location of the (full) ETER, E = 334–741 keV, calculated at
the same temperature taking all 105 resonances up to E

exp
max =

3.8 MeV into account. The total reaction rates increase by
only 1% as a result of considering the full (105 resonances)
versus the truncated (26 resonances) distribution. Clearly,
the effect of truncating the actual distribution of fractional
rate contributions on the resulting total reaction rate is very
small. Similar results (maximum variations of ≈10%) have
been obtained at higher artificial experimental cutoff energies,
as is apparent from the results displayed in Fig. 6, and by
repeating this test using the 26Mg(p, γ )27Al reaction which
has the largest number of resonances among all cases listed
in Table I. The tests also show that a value of n = 1 for the
empirical parameter in Eq. (6) provides sufficiently accurate
results. Thus we are confident that our method reliably predicts
the effective thermonuclear energy range for charged-particle
thermonuclear fusion reactions.

IV. SUMMARY

The present work describes a new method for matching
experimental and Hauser-Feshbach reaction rates at high
temperatures (T > 1 GK). Reliable reaction rates at such
temperatures are required for studies of advanced stellar
burning stages, supernovae, and x-ray bursts. The method
employs the actual experimental distribution of fractional
resonant rate contributions to the total rate. We define an
effective thermonuclear energy range (ETER) by using the 8th,
50th, and 92nd percentiles of the corresponding cumulative
distribution. It is demonstrated that this energy range differs
significantly from the commonly used Gamow peak region.
The differences are explained by the vastly different energy
dependences of the entrance and exit channel partial widths
of resonances. Our ideas are applied to 21 (p, γ ), (p, α),
and (α, γ ) reactions on A = 20–40 target nuclei. Based on
the ETER we generally find a matching temperature that
deviates significantly from previous values that were based
on the Gamow peak. Furthermore, for many cases studied
here, our extrapolated reaction rates at high temperatures
differ significantly from those obtained using the Gamow peak
concept. The full impact of our work on a larger set of reactions
will be addressed in a future study.
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