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Cross-section measurement of 9Be(γ, n)8Be and implications for α + α + n → 9Be in the r process
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Models of the r process are sensitive to the production rate of 9Be because, in explosive environments rich
in neutrons, α(αn, γ )9Be is the primary mechanism for bridging the stability gaps at A = 5 and A = 8. The
α(αn, γ )9Be reaction represents a two-step process, consisting of α + α → 8Be followed by 8Be(n, γ )9Be.
We report here on a new absolute cross-section measurement for the 9Be(γ, n)8Be reaction conducted using a
highly efficient, 3He-based neutron detector and nearly monoenergetic photon beams, covering energies from
Eγ = 1.5 MeV to Eγ = 5.2 MeV, produced by the High Intensity γ -ray Source of Triangle Universities Nuclear
Laboratory. In the astrophysically important threshold energy region, the present cross sections are 40% larger
than those found in most previous measurements and are accurate to ±10% (95% confidence). The revised
thermonuclear α(αn, γ )9Be reaction rate could have implications for the r process in explosive environments
such as type II supernovae.
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I. INTRODUCTION

The rapid neutron capture process, or r process, produces
about half of the nuclides heavier than iron [1]. The r

process likely occurs in supernovae [2], neutron star mergers
[3], or some other environment with a sufficiently high
neutron flux. In these environments, neutron captures occur
so rapidly that the nucleosynthesis path is pushed far out to the
neutron-rich side beyond the stability valley. After cessation
of the neutron flux, the short-lived nuclei β decay to stable
species. At present, the case for an indisputable r-process
site has not been made and recent arguments point out the
necessity of multiple sites [4]. Supernovae have long been
cited as potential r-process factories because they produce
the necessary explosive conditions and they occur frequently
enough to produce substantial abundances. The production
of heavy nuclides arising from explosive nucleosynthesis at a
type II supernova site is linked to the rate of 9Be production [5].

Preceding the r process is the α process [6], which is
driven by charged-particle reactions and takes place when
the rebounding shock wave, generated by collapse of the
iron-group core, has cooled from 5 GK to 3 GK over a time
period of a few seconds. In this stage of nucleosynthesis
a reaction path is needed to bridge the stability gaps at
A = 5 and A = 8; the most efficient path is α + α → 8Be
and 8Be(n, γ )9Be, followed by 9Be + α → 12C + n [7]. As
cooling continues this reaction sequence largely establishes
the neutron-to-seed-nucleus ratio to which the subsequent r

process is very sensitive [8]. Too few seed nuclei will under-
produce r-process nuclei, while too many seed nuclei produced
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in the α process will starve the r-process environment of
neutrons. Because r-process abundance predictions in certain
stellar models are extremely sensitive to the α(αn, γ )9Be
rate [5,9,10], establishing a precise rate for the formation of
9Be via the α(αn, γ )9Be reaction is required for accurately
modeling nucleosynthesis in supernovae.

The 9Be(γ, n)8Be reaction may be used to deduce the
8Be(n, γ )9Be cross section by applying the reciprocity the-
orem. Previous 9Be photodisintegration studies are numerous
[11–25] but reveal relatively large cross-section uncertainties
in the astrophysically important region near the neutron
emission threshold. New (γ, n) cross-section measurements
with improved accuracy are now possible using intense photon
beams with small energy spreads and neutron detectors with
large solid angle coverage and high efficiencies.

In the following, Sec. II describes a new measurement of
9Be(γ, n)8Be and provides details of the data analysis used
to obtain cross sections. Section III describes the methods
used to extract resonance parameters from the new data using
proper energy dependencies for partial widths of 9Be excited
states. The methods employed to calculate the 8Be(n, γ )9Be
cross section and the corresponding α(αn, γ )9Be reaction rates
are described in Sec. IV, along with a comparison of the
determined rates with those from earlier studies. Finally, Sec. V
presents a summary of the findings presented in this paper.

II. EXPERIMENT

Collimated, near-monoenergetic photon beams of
1.5 MeV � Eγ � 5.2 MeV were incident on a thick 9Be
target located within the central bore of the neutron detector.
The absolute number of neutrons from the (γ, n) reaction
was determined using a moderated 3He proportional counter
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FIG. 1. (Color online) Schematic diagram of the experimental
setup for the 9Be(γ, n)8Be reaction measurements. After collimation,
the photon beam passes through scintillation paddles (not shown)
and into the target room. The photon beam then passes through the
following elements: (a) “cleanup” collimator wall, (b) the chosen
target located near the longitudinal center of the neutron counter,
(c) lead attenuators located between lead collimator walls, (d) NaI(Tl)
detector, (e) HPGe detector.

with a high efficiency (∼60%) for detecting low-energy
neutrons [26]. The absolute incident photon flux was
measured using a large NaI(Tl) detector. Photon-beam energy
resolution was determined with a high-purity germanium
(HPGe) detector. A schematic diagram of the experimental
setup is shown in Fig. 1.

A. Experimental setup

Intense, collimated photon beams (φ ≈ 3 × 107γ /s) are
routinely produced at the Triangle Universities Nuclear Lab-
oratory’s High Intensity Gamma Source (HIγ S) by inverse-
Compton scattering of free-electron-laser photons from elec-
tron bunches circulating in a storage ring [27]. For the present
experiment, a circularly polarized beam was used and some
flux was sacrificed to attain the high photon energy resolution
needed to map the detailed behavior of the cross section at the
three-body (1573 keV) and two-body (1665 keV) thresholds
shown in Fig. 2. Present data were taken using beam intensities
of 105 � φ � 106γ /s and energy spreads of �1%.

The photon beam was defined by a 12-mm-diameter,
30.5-cm-thick lead collimator. It then passed successively
through three thin scintillating paddles that acted as a relative
photon flux monitor, a 2.54-cm-diameter hole in a lead
“cleanup” collimator (CC), and ∼1.5 m of air before reaching
a second CC [shown as (a) in Fig. 1] placed directly in front
of the neutron detector.

At each energy, photons impinged on one of three thick,
19-mm-diameter cylindrical targets (9Be, D2O, graphite)
described in Table I, or air, as they passed through the
neutron detector. To increase the efficiency of data collection,
targets were remotely rotated into the beam using a four-
position Geneva mechanism, which also assured reproducible
alignment of the axis of each cylindrical target sample with the
beam axis. Axial alignment of the target was confirmed using
an alignment pellet and a photon-beam imaging system [28]
(see Fig. 3).

Downstream of the target, lead of various thicknesses could
be inserted to attenuate the beam by up to a factor of 100.
Further downstream, the remaining photons were incident
on either a NaI(Tl) detector or a HPGe detector, depending
on whether photon flux or energy was being measured. The

1665 keV = Sn1573 keV

92 keV

FIG. 2. (Color online) A level scheme relating the mass energies
of α + α + n, 8Be + n, and 9Be. Thresholds for three-body and
two-body breakup of 9Be are shown to occur at incident γ -ray
energies Eγ of 1573 and 1665 keV, respectively. The latter is also the
neutron separation energy Sn for 9Be. Energies shown for 9Be excited
states are from the present work. In the rate calculation (described in
Sec. IV), E is the center-of-mass energy of the two α particles. The
parameter E′ is the energy of the 8Be nucleus and the neutron with
respect to E. In this scheme, formation of 9Be at E = E′ = 0 is very
unlikely, but not prohibited because the ground state of 8Be has finite
width.

lead attenuators facilitated simultaneous high neutron counting
rates and negligible NaI(Tl) signal pileup. Data acquisition
dead times were assured to be small. The counts measured in
the NaI(Tl) detector were corrected for detection efficiency as
well as for attenuation through the lead and targets.

B. Detector calibration

Absolute measurements of the number of photons on target
and the number of emitted neutrons from the reaction were
needed to determine the total cross section of 9Be(γ, n)8Be.
Thus, it was essential to determine the absolute energy-
dependent detection efficiencies of the neutron detector and the
large NaI(Tl) detector. The active neutron detection elements
were 18 tubular proportional counters, each containing 3He at
6.1 × 105 Pa. The tubes, embedded in a cylindrical polyethy-
lene body that served as a neutron moderator, were arranged in
concentric inner (I ) and outer (O) rings of nine equally spaced
detectors each. The energy-dependent efficiency of the neutron
counter was determined in an extensive study, and the angular
distribution of emitted neutrons was found to have a negligible
effect on detection efficiency for the neutron energies relevant
to the present measurement [26]. The ratio of counts in the
inner and outer rings (I/O ratio) provided a coarse estimate
of the average neutron energy.

The heavy-water target was bombarded under the same
experimental conditions as the 9Be target, allowing for
normalization of the 9Be(γ, n)8Be measurements to the well-
known 2H(γ, n)1H cross section [29]. Additionally, though
much of the astrophysically significant component of the
9Be(γ, n)8Be cross section lies below the 2H(γ, n)1H threshold
of 2.225 MeV, use of the heavy-water target allowed for
evaluation of the neutron detector efficiency with a tunable
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TABLE I. Targets used in the present experiment and their physical properties.

Material Length (cm) Density (g cm−3) Mass (g mol−1) Thickness (nuclei cm−2)

9Be 2.54 1.848 9.012 3.14 × 1023

Graphite 2.54 1.700 12.01 2.89 × 1023

D2O 7.59 1.106 20.04 5.05 × 1023

source of quasi-monoenergetic neutrons, covering the relevant
neutron energy range for this experiment [26]. This was
essential for our determination of the absolute 9Be(γ, n)8Be
cross section. The graphite target was used to evaluate beam-
induced backgrounds in the neutron detector.

The total efficiency of the large NaI(Tl) detector was found
to be nearly constant (98.3 ± 1.7%) over the experimental
energy range using the Monte Carlo codes GEANT4 and MCNPX.
The results were consistent with data obtained using the
19F(p, αγ ) reaction, taken using a minitandem accelerator
[30]. This measurement provided a determination of the
absolute detection efficiency for 6.13-MeV photons [31,32].

While the efficiency of the large NaI(Tl) detector was
constant for photons within the experimental energy range, the
effective efficiency of the neutron detector for photoneutrons
from 9Be, εeff(Eγ ), varied and is shown in Fig. 4. As can be
seen in Fig. 2, the average energy for neutrons which decay to
the ground state of 8Be is Eγ − Sn. The photon beams at HIγ S
were used to produce quasi-monoenergetic photoneutrons
from deuteron breakup [26], and for these neutrons the
detection efficiency εn may be described using a sixth-order
polynomial in En. Below Eγ = 2431 keV, HIγ S photon beams
will similarly produce nearly monoenergetic photoneutrons
from 9Be; above this energy, multiple decay channels exist
and the average neutron energy is no longer proportional to
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FIG. 3. (Color online) A HPGe spectrum for 2470-keV photon
beam with a resolution of �E/E = 1%. Spectra obtained with 60Co,
40K, and 208Tl calibration sources are overlaid. Images showing
confirmation of target alignment are inset. (a) An unattenuated beam
profile. Flux was nearly constant across the 12-mm diameter and
decreased rapidly at the edges. (b) Contrast from a 4-mm-diameter
lead alignment pellet confirmed the axial placement of the target.

the photon energy. Instead, it becomes nonlinear and strongly
dependent on the photon energy, which causes εeff to deviate
from the polynomial that describes εn for monoenergetic
neutrons. To account for this, the effective efficiency was
described using

εeff(Eγ ) = εn(Eγ − Sn)

⎛
⎝∑

j

βjσj

σtot

⎞
⎠

+ εn(δEn)

⎛
⎝∑

j

(1 − βj )σj

σtot

⎞
⎠ , (1)

where for level j , σj is the contribution from state j to the
total cross section σtot, and βj is a branching ratio for state j

to the ground state of 8Be. This form assumes that a newly
opened neutron branch will decay with a small neutron energy
δEn. The detection efficiency for the fraction of the total
cross-section decaying to the ground state is described by
the simple polynomial εn(Eγ − Sn), while the efficiency of
new branches is εn(δEn) ≈ εmax. This model is compared in
Fig. 4 to a point-by-point determination of the neutron detector
efficiency constructed using the I/O ratio.

The branching ratio for the 5/2− state at 2431 keV was
taken from Ref. [33]. With the exception of β1/2+ = 1, other
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FIG. 4. (Color online) Effective neutron detector efficiency ver-
sus photon energy for 9Be(γ, n)8Be with error bars representing
the 4.6% systematic uncertainty. Above Eγ = 2431 keV, average
neutron energy, and thus detection efficiency, was determined using
the experimental I/O ratio. The (red) curve is modeled using Eq. (1)
with the branching ratios listed in Table II. Discrepancies in the
3-to-4-MeV range are not well understood, but do not affect the
present calculation for the astrophysical α(αn, γ )9Be reaction rate
discussed in Sec. IV.
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branching ratios had large uncertainties [34,35] and were
chosen to make the model congruent with the point-by-point
analysis. The chosen values were not considered a unique
solution, but the contribution of states other than the 1/2+
state to the α(αn, γ )9Be rate are shown in Sec. IV to be nearly
independent of the choice of branching ratios.

C. Data analysis

We performed two analyses of the yield data: (i) assuming
a monoenergetic photon beam; and (ii) assuming a photon
beam with a finite energy width, requiring deconvolution of
the photon-beam energy profile to interpret the neutron yield
accurately.

Under the assumption of a monoenergetic beam, the cross
section may be written as

σ = Nn

Nγ · (NT /A) · εn

, (2)

where Nn is the number of detected neutrons, Nγ is the number
of incident photons, NT /A is the effective number of target
nuclei per unit area, and εn is the neutron detector efficiency.
The quantity NT /A was determined by comparing neutron
yields from target-in and target-out runs. Thick targets required
a photon energy-dependent correction of the form

η = 1 − e−μt

μt
, (3)

where μ is a material specific attenuation coefficient and t

is the thickness of the target. This correction accounted for
the reduction in the number of incident photons caused by
interactions within the target volume.

Total 9Be(γ, n)8Be cross-section uncertainties for σ in
Eq. (2) were found to be 3.2% (statistical) and 4.6% (sys-
tematic). The largest contributions to the uncertainties came
from the absolute efficiencies of the neutron and NaI(Tl)
detectors and the exact photon-beam flux loss associated with
lead attenuators. Numerical values for cross sections and a
detailed analysis of the associated experimental uncertainties
are available in Ref. [31].

The second analytic approach treated the reality that the
photon beam was not truly monoenergetic. Such a treatment
is especially important near threshold, where the cross section
changed significantly within the energy spread of the beam
(see Fig. 5). The experimental yield Y may be defined as

Y =
∫

f · σt · εn · (NT /A)dEγ∫
f dEγ

= Nn

Nγ

, (4)

where f is an energy-dependent function describing the energy
distribution of the photon beam and σt is a trial cross section.

To determine f , the detector response function was decon-
volved from the HPGe spectrum at each beam energy. The
resulting spectra were then normalized such that∫

f dEγ = Nγ , (5)

where Nγ was determined using the NaI(Tl) detector. The trial
cross section σt was assumed to be the sum of six Breit-Wigner
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FIG. 5. (Color online) A plot of monoenergetic beam cross
sections (black dots) and deconvoluted cross sections (open red
squares). Error bars are shown when uncertainties are larger than
the points. The uncertainty shown for the monoenergetic beam data
is purely statistical, while that shown for the deconvoluted data also
includes statistical and systematic flux uncertainties associated with
energy binning near threshold. (a) The full experimental range. The
resonance at 2431 keV was too narrow for accurate deconvolution.
Several points with high uncertainty, resulting from low-statistics
runs, are apparent at ∼2950 keV; these data, taken at the same
energy, were combined for the purpose of deconvolution. (b) An
expanded view of the boxed region near threshold better shows
the differences between the two methods. The dotted (dashed)
vertical line denotes the three-body (two-body) threshold. The sample
photon-beam profile shown (blue) is peaked at 1625 keV with an
energy spread which was typical of this experiment.

equations (BWEs), each of which had three free parameters
corresponding to the resonance energy ER , the neutron partial
width �n, and the transition strength B(E1) or B(M1) of an
excited state in 9Be.

Histograms were constructed for the other components of
Y (σ, εn,Nt/A) as a function of photon energy. Each bin of the
histogram then represented the respective component of the
yield over dE, the width of the bin. Thus, the calculated yield
Y ∗ was given by

Y ∗ =
∑

i fi · σi · εni(Nt/A)i∑
i fi

, (6)

where the width of the ith bin was ∼1.6 keV. In this way the
yield-weighted effective energy, E∗

γ was defined as

E∗
γ =

∑
i Eγ i

fi · σi · εni(Nt/A)i∑
i fi · σi · εni(Nt/A)i

. (7)

The trial cross section was then iteratively adjusted (over
∼8 steps) until the global deviation between the calculated
yield and the experimental yield was minimized. This process
resulted in a deconvoluted cross section shown in Fig. 5 along
with that deduced from the monoenergetic beam analysis.
Figure 6 shows a histogram of the deviations between ex-
perimental yields and yields calculated from the deconvoluted
cross section for 52 data points. The relative error is within
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FIG. 6. (Color online) Histogram of the relative deviation be-
tween Y and Y ∗. The Gaussian fit to the error is centered just below
zero. The ±1σ interval is darkly shaded (teal) and the ±2σ interval
is shaded lightly (blue).

±5% at the 68% confidence interval and ±10% at the 95%
confidence interval.

D. The 9Be(γ, n)8Be cross section

From the two-body threshold energy of ETh = Sn = 1665
to 1900 keV, the present cross sections are larger than most of

the previously reported data (see Fig. 7). Notice in Fig. 5 that
deconvolution changes the shape of the cross section at the
threshold, transferring strength from below to above ETh. The
need for deconvolution could well explain some disagreement
in this region with yields measured in earlier experiments using
photon beams having larger energy spreads than those used in
the present experiment [21,24].

The narrow 5/2− state at 2431 keV was far better resolved
in the present experiment than in previous works. The present
experimental yield peaks more than a factor of 3 above the
peak measured by Ref. [24] and nearly a factor of 2 above that
of Ref. [21]. The present data, over the broad 1/2− and 5/2+
resonances near 3 MeV, are in fair agreement with the data of
Refs. [17,21] but not in agreement with the results of Ref. [24]
which were obtained with a large photon-beam energy spread.

At energies above the broad peak at 3 MeV the present data
agree with Refs. [17,24], but not with Ref. [21]. A 3/2+ state
at 4.7 MeV and a 3/2− state at 5.6 MeV are the next known
excited states in 9Be [36]. These are broad states [37] which
decay more strongly through the 2+ excited state in 8Be.

III. THRESHOLD BEHAVIOR
AND ENERGY DEPENDENCE

Previous measurements of the direct 9Be + γ → α + α +
n three-body reaction in the energy range 1570 keV < Eγ <

1670 keV have yielded only an upper limit to the total cross
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FIG. 7. (Color online) (a) Data for the total 9Be(γ, n)8Be cross section collected using several different γ -ray sources, including virtual
photons from inelastic electron scattering [25] and real photons from both inverse Compton scattering [24] and natural radioisotopes [11,13,18].
The solid, black line represents a fit to the deconvolved cross-section data, also shown in Fig. 5, based on the extracted resonance parameters
listed in Table II. (b) An expanded view of the boxed region in (a) better shows the different evaluations near the threshold.
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section of 93 nb [38], and the present experiment was not
sufficiently sensitive to improve this. Above the two-body
threshold at 1665 keV, the total 9Be(γ, n) cross section rises
rapidly to exceed 1 mb. This feature is most logically attributed
to the newly opened decay channel, and thus excitation of the
broad 1/2+ state located immediately above the two-body
threshold is most frequently followed by decay to 8Begs + n.

A. Behavior near threshold

Any resonance close to threshold experiences a distortion
of its normal Lorentzian cross-section shape. When a level of
spin J is isolated from other levels of the same spin and parity,
a one-level R matrix approximation may be used to describe
the contribution of this level to the (γ, n) cross section. For
(γ, n) reactions, this takes the form of the BWE for an isolated
resonance [39],

σγ,n(Eγ ) = π

k2
γ

2J + 1

2(2I + 1)

�γ �n

(Eγ − ER)2 + 1
4�2

, (8)

with I the spin of the target nucleus and k2
γ given by

k2
γ =

(
Eγ

h̄c

)2

. (9)

The neutron partial width �n is generally written as [40]

�n = 2γ 2P, (10)

where γ 2 is the reduced width and P is the penetration factor.
The reduced width incorporates the unknown parts of the
nuclear interior while P is completely determined by the
conditions outside the nucleus and may be written as

P = R

(
k

F 2
 + G2



)
, (11)

where R is the channel radius, k is the wave number, and 

is the neutron orbital angular momentum [39]. The channel
radius R is defined as [39]

R = r0
(
A

1/3
t + A1/3

p

)
, (12)

with At and Ap the mass numbers of the target and projectile,
respectively, and r0 = 1.44 fm. For neutrons, the Coulomb
wave functions, F and G, are related to spherical Bessel (j)
and Neumann (n) functions by F = (kr)j(kr) and G =
(kr)n(kr). In the cases of (γ, n) and (n, γ ) reactions, the
penetration factors can be written analytically, and for 0 �
 � 3, P is [40]

P0 = kR =
√

ξEn, (13a)

P1 = (ξEn)3/2

1 + ξEn

, (13b)

P2 = (ξEn)5/2

9 + 3ξEn + (ξEn)2
, (13c)

P3 = (ξEn)7/2

225 + 45ξEn + 6(ξEn)2 + (ξEn)3
. (13d)

In these expressions R is again the channel radius defined in
Eq. (12); the neutron energy is related to the photon energy by

E-dependence 
used in present 
analysis

E-independent 
treatment

FIG. 8. (Color online) Example of the differences between
energy-independent and energy-dependent calculations of the
9Be(γ, n)8Be cross sections at threshold. The dashed (black), dot-
dashed (red), and dotted (blue) lines show the 1/2+, 1/2−, and 5/2+

states, respectively. Energy-dependent cross-section contributions
from the 1/2− and 5/2+ states are identified and contrasted with
energy-independent determinations of these states; at threshold, the
latter are orders of magnitude too large.

En = Eγ − Sn; and we define ξ ≡ 2μR2h̄−2, where μ is the
reduced mass of 8Be + n.

One must include P energy-dependence for the 1/2+
threshold resonance to obtain a good fit to the 9Be(γ, n)8Be
cross-section data. However, previous works have not included
energy dependence in the tails of the broad, higher-lying states
in 9Be. The result of this incomplete treatment has been to
inflate the previously deduced off-resonance contributions to
the α(αn, γ )9Be rate by as much as a factor of five. The states
in 9Be excited by an L = 1 photon are coupled to the ground
state of 8Be through emission of a neutron with a specific
orbital angular momentum  determined by the spin and parity
of the excited state. For the excited states considered in this
paper, those with Jπ = 1/2+, 1/2−, 3/2+, 3/2−, 5/2+, and
5/2−, decay to the ground state of 8Be through emission of a
neutron with  = 0, 1, 2, 1, 2, and 3, respectively. The value
of  determines the form of P [Eqs. (13a)–(13d)], which in
turn determines the energy dependence of the neutron partial
width [defined in Eq. (10)] for the excited state in 9Be and
ultimately the behavior of its cross section near the threshold.
Figure 8 displays the relative contributions of the 1/2+, 1/2−,
and 5/2+ resonances to the total cross section. The latter two
are shown with and without the proper P energy dependence.

The energy-dependent γ -ray partial widths may be cast in
terms of reduced transition probabilities [40]. For E1 and M1
transitions one finds

�γ (E1) = 16π

9
α(h̄c)−2E3

γ B(E1) ↓ (14)
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TABLE II. Resonance parameters and neutron branching ratios from the present work. The latter were determined from the neutron detector
efficiency analysis discussed in Sec. II B.

J π χλ ER (MeV) B(χλ) �γ (eV) �n (keV) βj (%)
E1 → (e2 fm2)
M1 → (μ2

N )

1/2+ E1 1.731 ± 0.002 0.136 ± 0.002 0.738 ± 0.002 213 ± 6 100
5/2− M1 2.431 ± 0.004 0.587 ± 0.027 0.098 ± 0.004 0.77a,b 6c

1/2− M1 2.880 ± 0.016 6.5 ± 0.7 1.8 ± 0.2 393 ± 18 100
5/2+ E1 3.008 ± 0.004 0.016 ± 0.002 0.45 ± 0.07 163 ± 15 70
3/2+ E1 4.704b 0.068 ± 0.007 7.8 ± 0.4 1541 ± 115 38
3/2− M1 5.59b 7.8 ± 2.1 15.7 ± 4.2 941 ± 164 38

aThis value could not be obtained using the present data.
bThis value was fixed in accordance with Ref. [36].
cThis was fixed in accordance with Ref. [33].

and

�γ (M1) = 16π

9
α(2Mpc2)−2E3

γ B(M1) ↓, (15)

where α is the fine structure constant. Note that the strength
of a transition from the ground state to an excited state (B ↑)
is related to the strength of transition from that excited state to
the ground state (B ↓) by

B ↑= 2Jx + 1

2J0 + 1
B ↓ . (16)

Transitions from the ground state of 9Be, J0 = 3/2−, to an
excited state, Jx = 1/2, 3/2, or 5/2, yield ratios of 0.5, 1, and
1.5, respectively, in Eq. (16). Because B ↓ are the strengths of
transitions used in the calculation of the α(αn, γ )9Be rate,
they are used exclusively in the following discussion. For
each resonance, the reduced width γ 2, the transition strength
B(E1) ↓ or B(M1) ↓, and the resonance energy ER are
determined by fitting the data. Table II displays the parameters
determined for each resonance. The sub-eV width of the
narrow 5/2− state precluded experimental determination of the
associated �n, and therefore the width reported in Ref. [36] was
adopted for the present rate calculation. Known contributions
from B(E2) ↓ for the negative parity states were negligible
compared to B(M1) ↓ [36].

B. Narrow resonance treatment

In the case of narrow resonances, �γ may be deduced
by integrating the cross section. For this to be valid: (a) the
resonance must be sufficiently isolated from other resonances,
(b) the neutron and γ -ray partial widths must be small enough
to be considered energy-independent, and (c) the neutron
partial width must be much larger than the γ -ray partial width
such that �n ≈ �. With these three conditions satisfied, Eq. (8)
may be integrated for the 5/2− resonance, yielding∫

σγ,n(Eγ )dEγ = 3

2

(
h̄cπ

ER

)2

�γ . (17)

The value obtained from this analysis is shown in Table II.

C. The 1/2+ threshold resonance

As is shown in Sec. IV, the 1/2+ threshold resonance
is the largest contributor to the α(αn, γ )9Be reaction rate.
Table III contains resonance parameters for this state from
several works. Notice that all but one of the evaluated virtual
photon (e, e′) data produced reduced transition strengths and
γ -ray partial widths that are about half of the value of their real
photon (γ, n) counterparts. The anomalous parameters within
the (e, e′) subset of the data [23] result from a reanalysis of the

TABLE III. Resonance parameters and reduced transition probabilities of the 1/2+ state of 9Be from virtual and real photon experiments.
Refs. [19,23,41] include reanalyses of data originally analyzed by Refs. [18,20,24], respectively.

Reaction Ref. ER (MeV) �n (keV) �γ (eV) B(E1) ↓ (e2 fm2)

(e, e′) Clerc et al. [15] 1.78 150 ± 50 0.3 0.050 ± 0.020
(e, e′) Kuechler et al. [20] 1.684 217 ± 10 0.27 0.054
(e, e′) Glick et al. [42] 1.68 200 ± 20 0.34 0.068
(e, e′) Barker et al. [23] 1.732 270 0.75 0.137
(e, e′) Burda et al. [25] 1.748 274 ± 8 0.302 ± 0.045 0.054

(γ, n) Barker et al. [19] 1.733 227 ± 50 0.577 0.106 ± 0.018
(γ, n) Angulo et al. [43] 1.731 227 ± 15 0.51 ± 0.10 0.094 ± 0.020
(γ, n) Utsunomiya et al. [24] 1.748 283 ± 42 0.598 0.107 ± 0.007
(γ, n) Sumiyoshi et al. [41] 1.735 225 ± 12 0.568 0.104 ± 0.002
(γ, n) Present 1.731 ± 0.002 213 ± 6 0.738 ± 0.002 0.136 ± 0.002
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cross-section data of Ref. [20]. Indeed, an inspection of the
cross-section data shown in (b) of Fig. 7 from all the works
mentioned in Table III reveals that the reported cross sections
are remarkably similar: The maximum difference between
cross sections is less than a factor of two; cross sections
obtained separately from real and virtual photon experiments
only vary by 20 to 40%. It thus appears that different methods
of data interpretation, rather than cross-section determinations,
give rise to the difference in reported resonance parameters.
The main difference between the analyses of Refs. [20,25] and
the present analysis involves the use by the former of Siegert’s
theorem for extracting the B(E1) ↓.

IV. α(αn, γ )9Be RATE CALCULATION

A. Reverse reaction cross section

The 9Be(γ, n)8Be cross section is transformed into the
8Be(n, γ )9Be cross section using the reciprocity theorem.
Defining σ1 to be the cross section for 8Be + n → 9Be + γ and
σ2 to be the cross section for 9Be + γ → 8Be + n, the
reciprocity theorem gives

σ1 = 2(2j9Be + 1)

(2j8Be + 1)(2jn + 1)

k2
γ

k2
n

σ2, (18)

where k2
n = 2μEnh̄

−2; k2
γ is defined in Eq. (9); and the

ground-state spins for 9Be, 8Be, and a neutron are 3/2, 0, and
1/2, respectively.

For several years prior to 1999, the α(αn, γ )9Be rate
used in reaction network codes was adopted from Ref. [44],
which considered resonant-only decays of 9Be + γ → 8Be +
n. In other words, when considering the 8Be + n → 9Be + γ

direction for the reaction, the width of the ground state of
8Be was disregarded. The rate published by Ref. [43] (known
as NACRE) included the off-resonant contributions to the
α(αn, γ )9Be rate. Other rates [25,41] have since followed the
formalism developed by NACRE.

B. Rate calculation

The derivation of astrophysical reaction rates has been
described in detail in Ref. [39]. The rate per particle pair 〈σv〉
is given by

〈σv〉 =
(

8

πμ

) 1
2
(

1

kT

) 3
2
∫ ∞

0
σ (E) exp

[−E

kT

]
EdE, (19)

where μ is the particle pair reduced mass, k is Boltzmann’s
constant, and T is the temperature. Equation (19) is the ap-
propriate form for a two-body reaction. However, here the rate
has to be computed for two sequential reactions. The form for
calculating the rate of formation of 9Be involves constructing
a double integral, taking into account the rate of formation of
8Be from the α + α scattering cross sections. The formalism
adopted in the present work was developed in Ref. [45] for
calculating the on- and off-resonant formation of 12C via the
triple-α reaction and was first modified in Ref. [43] to calculate
the rate of formation of 9Be for the NACRE compilation.

Two α particles interact with center-of-mass (c.m.) energy
E to form 8Be. Subsequently, the 8Be nucleus interacts with
a neutron with new c.m. energy E′ relative to E (see Fig. 2).
The rate equation has the form

N2
A〈σv〉ααn = NA

(
8πh̄

μ2
αα

) ( μαα

2πkT

)3/2
∫ ∞

0

σαα(E)

�α(8Be, E)

× exp(−E/kT )NA〈σv〉n8BeEdE, (20)

with

NA〈σv〉n8Be = NA

(
8πh̄

μ2
n8Be

)( μn8Be

2πkT

)3/2
∫ ∞

0
σn8Be(E′; E)

× exp(−E′/kT )E′dE′. (21)

Equation (20) is evaluated numerically using the parameters
from Table II and the α + α scattering cross sections from
Ref. [46] over the temperature range 0.001 GK � T � 10 GK.
Table IV lists low, recommended, and high values for the
presently determined rates versus temperature. The low and
high rates are computed by considering the systematic un-
certainty in the deconvoluted 9Be (γ, n) 8Be cross section and
the uncertainty in the fitting parameters (see Table II). At all
temperatures, the α (αn, γ ) 9Be rate originates primarily from
the 1/2+ state in 9Be (see Fig. 9). Thus, the rate uncertainty
is dominated by the cross-section uncertainty for that state.
Uncertainty in the rate increases at higher temperatures, where
higher states in 9Be begin to contribute noticeably to the
α (αn, γ ) 9Be reaction rate.

Figure 10 displays the comparison of four existing rates
both by their absolute magnitudes and by normalization to
the NACRE rate [43]. The present rate is 40% larger than the
NACRE result for the energy range 1 GK < T < 5 GK, most
important for r-process nucleosynthesis. The largest difference
between the various rates exists in the off-resonant region:
There the present rate is smaller than the NACRE rate by
a factor of 4 because the energy dependence of all resonant
cross-section contributions near the two-body threshold has
been included.
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FIG. 9. (Color online) Relative contributions of each resonance
to the total rate as a function of temperature. The temperature range
relevant for the r process, 1 GK < T < 5 GK, is shaded (green).
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TABLE IV. Low, recommended, and high rates for the α(αn, γ )9Be reaction versus T9 (≡1 GK) computed from the present parameters.

T9 NA〈ααn〉 T9 NA〈ααn〉
Low Recommended High Low Recommended High

0.001 1.15×10−59 1.20×10−59 1.26×10−59 0.14 4.39×10−8 4.62×10−8 4.84×10−8

0.002 9.64×10−48 1.01×10−47 1.06×10−47 0.15 6.49×10−8 6.82×10−8 7.14×10−8

0.003 6.01×10−42 6.32×10−42 6.62×10−42 0.16 9.05×10−8 9.51×10−8 9.96×10−8

0.004 2.76×10−38 2.90×10−38 3.04×10−38 0.18 1.54×10−7 1.62×10−7 1.70×10−7

0.005 1.12×10−35 1.18×10−35 1.24×10−35 0.2 2.32×10−7 2.43×10−7 2.55×10−7

0.006 1.11×10−33 1.17×10−33 1.23×10−33 0.25 4.49×10−7 4.72×10−7 4.95×10−7

0.007 4.40×10−32 4.62×10−32 4.84×10−32 0.3 6.51×10−7 6.84×10−7 7.17×10−7

0.008 9.21×10−31 9.67×10−31 1.01×10−30 0.35 8.07×10−7 8.48×10−7 8.89×10−7

0.009 1.21×10−29 1.27×10−29 1.33×10−29 0.4 9.10×10−7 9.57×10−7 1.00×10−6

0.01 1.12×10−28 1.18×10−28 1.24×10−28 0.45 9.70×10−7 1.02×10−6 1.07×10−6

0.011 7.90×10−28 8.31×10−28 8.71×10−28 0.5 9.94×10−7 1.04×10−6 1.10×10−6

0.012 4.47×10−27 4.70×10−27 4.93×10−27 0.6 9.76×10−7 1.03×10−6 1.07×10−6

0.013 2.12×10−26 2.22×10−26 2.33×10−26 0.7 9.10×10−7 9.56×10−7 1.00×10−6

0.014 8.64×10−26 9.08×10−26 9.52×10−26 0.8 8.29×10−7 8.71×10−7 9.13×10−7

0.015 3.12×10−25 3.28×10−25 3.43×10−25 0.9 7.45×10−7 7.83×10−7 8.21×10−7

0.016 1.01×10−24 1.06×10−24 1.12×10−24 1 6.66×10−7 7.00×10−7 7.34×10−7

0.018 8.24×10−24 8.65×10−24 9.07×10−24 1.25 5.02×10−7 5.28×10−7 5.53×10−7

0.02 5.09×10−23 5.35×10−23 5.61×10−23 1.5 3.83×10−7 4.02×10−7 4.22×10−7

0.025 2.51×10−21 2.64×10−21 2.77×10−21 1.75 2.98×10−7 3.13×10−7 3.28×10−7

0.03 4.31×10−19 4.53×10−19 4.75×10−19 2 2.37×10−7 2.49×10−7 2.61×10−7

0.04 1.81×10−15 1.90×10−15 2.00×10−15 2.5 1.58×10−7 1.66×10−7 1.74×10−7

0.05 2.63×10−13 2.76×10−13 2.90×10−13 3 1.12×10−7 1.18×10−7 1.24×10−7

0.06 6.88×10−12 7.23×10−12 7.58×10−12 3.5 8.43×10−8 8.88×10−8 9.33×10−8

0.07 6.81×10−11 7.15×10−11 7.50×10−11 4 6.59×10−8 6.95×10−8 7.32×10−8

0.08 3.68×10−10 3.87×10−10 4.06×10−10 5 4.41×10−8 4.67×10−8 4.94×10−8

0.09 1.34×10−9 1.40×10−9 1.47×10−9 6 3.22×10−8 3.43×10−8 3.65×10−8

0.1 3.67×10−9 3.86×10−9 4.05×10−9 7 2.49×10−8 2.68×10−8 2.86×10−8

0.11 8.27×10−9 8.69×10−9 9.11×10−9 8 2.02×10−8 2.18×10−8 2.35×10−8

0.12 1.60×10−8 1.68×10−8 1.77×10−8 9 1.69×10−8 1.84×10−8 1.99×10−8

0.13 2.77×10−8 2.92×10−8 3.06×10−8 10 1.46×10−8 1.59×10−8 1.74×10−8

C. Rate comparisons

In principle, the precision of the measured 9Be (γ, n) 8Be
reaction cross section should extend to the deduced astrophys-
ical α (αn, γ ) 9Be rate. The quantities used for calculating the
α + α→ 8Be rate derive from well-known α + α scattering
data [46], while accurate penetration factors are obtained from
computed Coulomb wave functions. Recalling Fig. 10, the
present rate, when compared to the NACRE rate, is a factor
of 3 lower at the lowest calculated temperatures, while it is
20 to 40% larger at astrophysical temperatures of interest
for the r process (1 GK < T < 5 GK). The change of the
low-temperature rate is a direct result of including a realistic
energy dependence for all neutron partial widths, a procedure
that was not employed in Ref. [43]. The correct analytic form
for s-, p-, and d-wave neutron penetration factors lowers all
resonant contributions near threshold, as shown in Fig. 8.

At low temperatures, the energy-independent treatment
leads to an artificially inflated rate along with the nonphysical
dominant contributions to this rate by the p-wave 1/2− and
d-wave 5/2+ states.

Recently, Garrido et al. [47] have used three-body theo-
retical techniques to determine the direct α + α + n → 9Be
contribution to both the total cross section and the reaction
rate at energies below the two-body threshold. However, their
calculated direct, three-body cross section exceeds the 93 nb
experimental upper limit [38] at energies between the three-
and two-body thresholds. The results presented in the present
paper consider only sequential reactions and do not address
the possibility of contributions by three-body processes at the
lowest temperatures.

The present α (αn, γ ) 9Be rate for 1 GK � T � 5 GK is
consistently 20 to 40% larger than the rates of Refs. [41,43].
Agreement with the NACRE rate marginally improves as
the temperature approaches 10 GK. Figure 9 shows that,
for the present evaluation, the 1/2+ state is indeed the
primary contributor to the rate at temperatures below 10 GK.
Contributions from other states start to become noticeable
for T � 5 GK. This implies that the choice of branching
ratios is not important for an accurate α (αn, γ ) 9Be rate
determination.
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T (GK)

(a)

(b)

Present

Burda et al.

Sumiyoshi et al.

NACRE

FIG. 10. (Color online) (a) The reaction rate as a function of
temperature along with rates from Refs. [25,41,43]. The present rate
is 40% larger than the rates of Refs. [41,43] at the peak near T =
0.5 GK. The temperature range relevant for the r process, 1 GK
< T < 5 GK, is shaded (green). (b) The ratio of the rates to the
NACRE rate. Bands shown indicate ±1σ uncertainties for NACRE
and the present rate.

V. CONCLUSIONS

The improved accuracy of the measurement of the
9Be (γ, n) 8Be reaction cross section reported in this work was

made possible: (a) by use of a highly efficient neutron detector
with two concentric, circular arrays of 3He tubes which pro-
vided information about the energy distribution of the detected
neutrons; (b) by calibration of the neutron detector’s efficiency
using interspersed measurement of the well-known 2H(γ, n)
cross section; and (c) by measuring at each energy both the
flux and energy distribution of the incident γ -ray beam used.
Knowledge of the incident beam’s energy distribution allowed
deconvolution and determination of the cross section near the
neutron threshold at 1665 keV. These new measurements have
been used to calculate the astrophysical α (αn, γ ) 9Be reaction
rate.

Taking into account energy dependence of all neutron
and γ -ray partial widths near threshold gives rise to smaller
rates than previously calculated for T � 0.025 GK. For T �
2 GK, contributions to the rate from higher-lying resonances
become noticeable. Our cross sections and the resulting
astrophysical reaction rates in the temperature range 1 GK
� T � 5 GK are 20 to 40% larger than previously re-
ported. The present rate is computed using a cross section
known to ±10% at the 95% confidence level. This new
rate should be employed in reaction network codes, espe-
cially those used to investigate r-process nucleosynthesis
sites.
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