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Abstract9

The estimation of the signal location and intensity of a peak in a pulse height
spectrum is important for x-ray and γ-ray spectroscopy, charged-particle
spectrometry, liquid chromatography, and many other subfields. However,
both the “centroid” and “signal intensity” of a peak in a pulse-height spec-
trum are ill-defined quantities and different methods of analysis will yield dif-
ferent numerical results. Here, we apply three methods of analysis. Method
A is based on simple count summation and is likely the technique most fre-
quently applied in practice. The analysis is straightforward and fast, and
does not involve any statistical modeling. We find that it provides reliable
results only for high signal-to-noise data, but has severe limitations in all
other cases. Method B employs a Bayesian model to extract signal counts
and centroid from the measured total and background counts. The result-
ing values are derived from the respective posteriors and, therefore, have a
rigorous statistical meaning. The method makes no assumptions about the
peak shape. It yields reliable and relatively small centroid uncertainties.
However, it provides relatively large signal count uncertainties. Method C
makes a strong assumption regarding the peak shape by fitting a Gaussian
function to the data. The fit is based again on a Bayesian model. Although
Method C requires careful consideration of the Gaussian width (usually given
by the detector resolution) used in the fitting, it provides reliable values and
relatively small uncertainties both for the signal counts and the centroid.
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models11

1. Introduction12

The reliable estimation of the signal location and intensity of a peak in a13

pulse height spectrum is of paramount importance for many analytical tech-14

niques, including x-ray and γ-ray spectroscopy, charged-particle spectrome-15

try, and liquid chromatography. The goal of measurements is to accumulate16

“good statistics” on a peak of interest, so that the peak parameters can be17

extracted. But both the “centroid” and “signal intensity” of a peak are ill-18

defined quantities and one can reasonably expect that different methods of19

analysis will yield different numerical results. These quantities are then de-20

fined by the technique used to determine them, and the quality of a given21

method will depend on how reproducible the results are [1]. The simplest22

techniques estimate the peak parameters based on the data alone, with-23

out involving any other assumptions on statistical modeling. More involved24

techniques resort to suitable statistical models. In practice, the problem of25

estimating the signal centroid and intensity of a peak is lessened because26

experimental energy and efficiency calibrations are presumably determined27

with the same analysis method, and, therefore, any systematic bias is reduced28

in the energy and efficiency corrected quantities.29

The problem is exacerbated when the peak is superimposed on a signif-30

icant background. In this case, the total number of counts recorded by the31

detector is not an accurate representation of the signal intensity, because32

various sources of background also contribute to the total number of counts33

in the region of the peak whose net intensity we seek to estimate. Efficien-34

cies are usually determined from calibration peaks that rise far above the35

background. If the peak of interest is superimposed on a relatively large36

background, the ratio of these two peak intensities will be subject to the37

systematic bias referred to above.38

Previously, data have been analyzed using the method of least squares to39

fit a parameterized peak shape function plus background to a region about40

the peak. Phillips [2] pointed out that the application of such techniques to41

data of low statistics can result in fits that are significantly biased toward42

too low or too high a peak area and also yield unreliable peak positions. He43

suggested modifications to the least-squares method of traditional statistics44

to reduce the bias. He also found that for isolated peaks a simple “hand45

analysis” provided superior results compared to more sophisticated methods.46
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Instead of a least-squares analysis, Awaya [3] employed a maximum likelihood47

method using Poissonian probability distributions, which was found to give48

reliable results. A similar approach, but with special emphasis on small49

signals, was presented by Hannam and Thompson [4].50

In the present work, we will revisit the problem of peak analysis in the51

presence of a background. Previous work was mainly focused on the analysis52

of mean values for the signal peak centroid and intensity, whereas we are53

equally interested in analyzing reliable uncertainties for these quantities. To54

this end, we employ three methods. Method A is based on count summation55

and is similar to the “hand analysis” of Ref. [2]. Method B involves a bin-56

by-bin analysis using a Bayesian model. Method C has similarities to the57

model discussed in Ref. [3], but is again based on a Bayesian model. We58

are not concerned here with upper bound1 estimates of signal counts (see,59

e.g., Ref. [6]), although some of the methods discussed here could be useful60

for this purpose as well. Instead, we focus on the analysis of data when a61

peak can be discerned in the presence of background. We will assume that62

the data are subject to statistical uncertainties only. In particular, we will63

disregard the impact of any systematic effects on the data, such as wrong64

instrument calibrations, faulty adjustments of the experimental setup, or65

incorrect judgements when making observations.66

In this work, we will analyze computer-generated data only. In real ex-67

periments, the true parent distribution from which the data are extracted68

is unknown. This vastly complicates the testing of different analysis meth-69

ods. However, for computer-generated data the parameters of the parent70

distribution are precisely known and we can thoroughly test different analy-71

sis techniques by checking if they recover the parameters originally used in72

the artificial data generation.73

In Section 2 we discuss our method of generating artificial data. Different74

methods of peak analysis are described in Section 3. Our results are presented75

in Section 4. A concluding summary is given in Section 5.76

1For the important distinction between “upper bounds” and “upper limits”, see Ref. [5].
The former describe the result of a measurement and depend on the number of counts
in both the peak and background regions. The latter are specific to the measurement
technique, involve the number of background (but not signal) counts, and can be estimated
before knowing the experimental outcome.
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2. Test data77

Before we can test different methods of analyzing peaks in pulse-height78

spectra, we need to generate artificial data with a precisely known peak79

centroid and intensity. The usefulness of any analysis method will depend80

on its ability to reproduce these values from the input of the artificial data81

only. We will generate the data assuming a Gaussian peak shape and a con-82

stant background level. The extension to other peak shapes and background83

assumptions (e.g., exponential or step functions caused by multi-Compton84

events and other physical processes) is straightforward but beyond the scope85

of this work.86

In a real nuclear counting measurement, the number of decaying nuclear87

levels (“trials”) is high and either the probability of decay per nucleus or the88

efficiency of detection per event (“success”) is low. In such cases, counting89

statistics is given by a Poissonian, which relates the true number of total90

counts (expectation value) to the observed number of total counts. For a91

hypothetical detector of infinite energy resolution, the observed number of92

total counts would all appear in a single bin. In a real detector, random93

noise is added to each of these counts, where the noise is sampled from a94

Gaussian distribution with a standard deviation that reflects the detector95

resolution. The above sequence only refers to the signal. In each channel,96

a background contribution, which is separate of the signal, is then added.97

Notice that the above sequence involves the independent sampling from two98

distributions: a Poissonian, which gives rise to the difference between total99

true and observed counts, and a Gaussian, which distributes the counts along100

the channel direction.101

We generated artificial data by following these steps:102

(i) The user chooses “true” values, which will be unknown to the analysis103

method, for the centroid and width of a Gaussian, and the total number of104

signal counts (area of Gaussian).105

(ii) Random samples are drawn from the specified Gaussian distribution106

and are binned to produce a signal histogram.107

(iii) A background histogram is produced, with the same number of chan-108

nels and a constant (“true”) number of background counts in each bin.109

(iv) For each bin in the signal histogram, the number of counts is adopted110

as the mean value to draw random samples from a Poissonian distribution111

to generate a new signal histogram. We refer to the peak centroid and total112

area of this set as the “actual” signal values. A similar procedure is applied113
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to the background histogram.114

(v) These two histograms are added bin-by-bin to generate the final his-115

togram containing the artificial (“observed”) data to be analyzed.116

The artificial data2 are suitable for testing the reproducibility of an anal-117

ysis method because all steps are precisely controlled. No approximation is118

introduced by adding the two histograms in the last step because the sum119

of two independent Poissonian random variables is also a Poissonian random120

variable. Real life data correspond only to the “observed” values, as defined121

above, and both their “true” and “actual” values are only known to mother122

nature.123

Figure 1 depicts three data sets with varying signal-to-noise ratios that124

we generated for testing. They roughly represent high, moderate and low125

signal-to-background ratios. All data sets shown were obtained with a true126

peak centroid of channel 985.0, a Gaussian standard deviation of 2.0 channels,127

corresponding to a full-width-half-maximum (FWHM) of 4.7 channels, and128

a true background of 10 counts per channel. The data shown in the top,129

middle, and bottom panels (Data 1, 2, and 3, respectively) contain 970,130

105, and 35 true signal counts, respectively. Our task is to estimate from the131

“observed” data the signal peak centroids and intensities, together with their132

associated uncertainties, and determine if our results agree with the values133

used to generate the data.134

3. Methods135

We will discuss three different methods of peak analysis and compare the136

results. Method A relies on simple count summation and analyzes the data137

without any assumptions about statistical models. Method B is based on a138

Bayesian model without any assumptions about the peak shape. Method C139

performs a Gaussian fit to the data, again employing a Bayesian model.140

For all three methods, we will assume that the signal only occurs in a141

user-defined peak region. We also need a model for the background because142

it is not separately known from the number of counts in the peak region143

alone. It can be approximated by choosing signal-free background regions144

2Notice that we reversed the sampling order in the generation of artificial data (first
from a Gaussian, then a Poissonian) compared to the accumulation of real data (first from
a Poissonian, then a Gaussian). The order is inconsequential because both processes are
independent, but the first choice is computationally simpler.
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Figure 1: Test data generated according to the procedure outlined in Section 2. They
reflect high (top), moderate (middle), and low (bottom) signal-to-background ratios. In all
panels, the true peak centroid is channel 985.0, the true full-width-half-maximum (FWHM)
is 4.7 channels, and the true background is 10 counts per channel. The data shown in
the top, middle, and bottom panels were generated assuming 970, 105, and 35 true signal
counts, respectively. The peak region, shaded blue, is 14 channels wide, corresponding to
three times the FWHM.
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to the left and right of the peak. We will assume for all three methods a145

linear background over the peak region. The extension to more complicated146

background assumptions is straightforward.147

The average background, Bi, in channel xi can be linearly interpolated148

by using the means of the two background region locations, xB1 and xB2,149

and the corresponding mean background counts per channel, BB1 and BB2:150

Bi =

(
BB2 −BB1

xB2 − xB1

)
(xi − xB1) +BB1 (1)

The above expression will be used for Methods A and B to estimate the151

background in the peak region. For Method C, the slope and intercept of the152

linear background approximation are fitting parameters.153

Comment 1: The background in the peak region is described by a straight154

line. For Methods A and B, it is found from Equation (1), which disregards155

statistical fluctuations in the background.156

3.1. Method A: Count summation157

We will start with a simple method based on count summation, which is158

frequently applied in this or similar form. The total number of counts in the159

peak region, which is comprised of n channels, is160

T =
n∑
i

Ti (2)

with Ti the number of total counts in channel xi. The estimated number of161

background counts from Equation (1) in the peak region is162

B =
n∑
i

Bi (3)

The number of signal counts in the peak region is then163

S =
n∑
i

Si = T −B (4)

Assuming that counting statistics obeys a Poissonian distribution, with the164

standard deviation equal to the square root of the mean value, and that the165
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number of counts in the peak and background regions are uncorrelated, the166

uncertainty in the signal counts is167

σS =
√
σ2
T + σ2

B =
√
T +B (5)

where σT and σB denote the standard deviation in the total and background168

counts, respectively.169

If the number of signal counts is deemed statistically significant, the signal170

centroid can be estimated using the signal counts in each channel, Si = Ti −171

Bi. We define the signal centroid as the sample mean:172

x̄ =
1

S

n∑
i

Sixi (6)

In other words, as counts accumulate in the peak, we can determine an173

average location by weighting the channel values, xi, by the number of signal174

counts contained in the channel, Si. The amount of internal fluctuation in175

the data is quantified by the sample standard deviation:176

s2
x =

1

S − 1

n∑
i

Si(xi − x̄)2 (7)

The uncertainty in the peak centroid is estimated from the standard error of177

the mean:178

σx̄ =
sx√
S

(8)

Equations (4), (5), (6), and (8) are estimates for the actual number of sig-179

nal counts and the peak centroid. The expressions are simple to use and do180

mostly not depend on assumptions about specific statistical parent distribu-181

tions or the shape of the peak.182

Comment 2: In the limit of small signal counts, the uncertainty, σS, will183

become comparable to, or even exceed, the best estimate, S, and the result184

will become meaningless in a statistical sense. Also, in this case the deter-185

mination of a centroid according to Equations (6) and (8) has a questionable186

meaning.187

Comment 3: Equations (6), (7), and (8) assume that the quantity Si has188

no uncertainty; however, for each channel, Si is not measured directly, but189

is derived from the total counts and background counts, each of which are190

distributed according to a Poissonian.191
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Comment 4: The subtraction procedure, Si = Ti − Bi, implied by Equa-192

tion (4), may give rise to negative values of Si. This is problematic because193

these negative values will introduce a bias by artificially shifting the cen-194

troid to a smaller or larger value, according to Equation (6), depending on195

where these negative-signal-count channels occur in the peak region. Fur-196

thermore, negative signal counts could give rise to a negative value of s2
x in197

Equation (7), which would prohibit the estimation of a centroid uncertainty198

according to Equation (8). Therefore, we will arbitrarily replace any negative199

signal counts by zero counts for the centroid calculation only.200

Comment 5: The reproducibility of the results is questionable, i.e., chang-201

ing the regions of the peak and the backgrounds to the left and right of the202

peak may yield values outside the uncertainties defined by Equations (5) and203

(8).204

3.2. Method B: Bayesian model205

While Method A is well-suited for high signal-to-noise ratios, Comments206

2 − 5 serve as limiting factors as the number of signal counts decreases. To207

obtain a more reliable estimate for the observed signal counts and the peak208

centroid, we will adopt a Bayesian model. Bayes’ theorem is given by209

p(θ|D) =
p(D|θ)p(θ)∫
p(D|θ)p(θ)dθ

(9)

where D and θ = (θ0, θ1, ..., θn) denote the data being analyzed and the vector210

of model parameters, respectively. All of the functions p in Equation (9)211

represent distinct probability densities: p(D|θ) is the “likelihood,” i.e., the212

conditional probability that the data, D, are collected assuming given values213

for the model parameters, θ; the “prior,” p(θ), is the joint unconditional214

probability for a given set of model parameters before seeing the data. The215

product of likelihood and prior defines the quantity of main interest here,216

called “posterior,” p(θ|D), which is the joint conditional probability for a217

set of model parameters given the data. The denominator in Equation (9),218

called “evidence,” serves as a normalization factor and is not important in the219

present context. For an introduction to Bayesian models, see, e.g., Ref. [7].220

To obtain the (“marginalized”) posterior probability density for a single221

parameter, say, θ0, we integrate over all other parameters,222

p(θ0|D) =

∫
θ1,θ2,...,θn

p(θ|D)dθ1dθ2...dθn (10)
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The quantity p(θ0|D) summarizes all of our knowledge about θ0, given both223

the prior information and the new data, D. Meaningful parameter values224

are obtained from this expression by defining “credible” intervals, [θa, θb],225

according to226 ∫ θb

θa

p(θ0|D)dθ0 = β (11)

where β is a user-defined probability. We define parameter values and their227

uncertainties by using 16, 50, and 84 percentiles, corresponding to a credi-228

bility level3 of β = 68%.229

The posterior is estimated using a Markov Chain Monte Carlo (MCMC)230

algorithm. Markov chains are random walks for which the transition proba-231

bility from one state to the next state is independent of how the first state was232

populated. MCMC algorithms exploit the fundamental theorem of Markov233

Chains, which states that for long enough random walks, the length of time234

(which is equivalent to the probability) that a chain populates a specific235

state is independent of the initial state it started from. This set of limit-236

ing, long random walk, probabilities is called the stationary (or equilibrium)237

distribution of the Markov chain. Consequently, when a Markov chain is238

constructed with a stationary distribution equal to the posterior, p(θ|D),239

the samples drawn at every step during a sufficiently long random walk will240

closely approximate the posterior density. We adopt here the No U-Turn241

Sampler (NUTS), which is based on the Hamiltonian Monte Carlo (HMC)242

algorithm and is the default sampler used in the PyMC3 package [11] in243

Python. For details about this sampler, see Hoffman and Gelman [12].244

We will estimate the number of signal counts as follows. The observed245

total counts, T , and our estimate for the observed background counts, B,246

summed over all channels of the peak region, are given by Equations (2) and247

(3), respectively. We will write the Poissonian likelihoods for the signal and248

background as249

p(T |s, b) =
e−(s+b)(s+ b)T

T !
(12)

3In nuclear physics, uncertainties are usually presented as one “standard uncertainty”
[8, 9]. For example, the γ ray energies and emission probabilities presented in the Evalu-
ated Nuclear Structure Data File (ENSDF) [10] refer to one standard uncertainty. If the
underlying probability density is a Gaussian, then the standard uncertainty has a 68%
credibility level. This is the reason why we also adopt this value in our Bayesian model.
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250

p(B|b) =
e−bbB

B!
(13)

Our model parameters are s ≥ 0 and b ≥ 0, which denote the true mean251

(expected) numbers of the signal and background counts, respectively. Equa-252

tion (12) is justified on the grounds that the sum of two Poissonian random253

variables is again Poissonian distributed. The only assumptions made so far254

are that the signal and background are described by independent random255

variables and that the observed background is estimated from Equation (1).256

Priors need to be considered carefully in any Bayesian model. We expect257

that the choice of prior will matter little if the signal is large compared to258

the background. However, the prior will impact the results for low signal-to-259

noise ratios. In the following, we explore two very different priors and report260

the results for both choices.261

First, we chose a very broad, non-informative prior given by a half-262

Gaussian with its mode located at zero and a standard deviation of ζ, i.e.,263

p(s) ∝ e−s
2/(2ζ21 ) (14)

264

p(b) ∝ e−b
2/(2ζ22 ) (15)

Sensible choices for the standard deviations, ζj, are values exceeding the total265

number of counts over the peak region (i.e., ζ1 ≈ ζ2 ≈ 1000).266

Second, previous work [13, 14] has investigated different choices of pri-267

ors for counting statistics in connection with upper bound estimates and268

found that the Jeffreys’ prior provided a reliable description. For Poissonian269

likelihoods with mean values of s and b, the Jeffreys’ priors are given by270

p(s) ∝ 1√
s

(16)

271

p(b) ∝ 1√
b

(17)

The above functions are not normalizable (i.e., improper priors) and, there-272

fore, do not represent probability densities. We will approximate them by273

using proper gamma probability distributions. For example, instead of Equa-274

tion (16), we write275

f(s, α, β) =
βαsα−1e−βs

Γ(α)
(18)
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with α, β > 0. The two parameters of the gamma distribution, α and β,276

are called “shape” and “rate,” respectively. The quantity Γ(α) denotes the277

gamma function,278

Γ(α) =

∫ ∞
0

xα−1e−xdx (19)

The Jeffreys’ priors of Equations (16) and (17) can then be closely approxi-279

mated by280

p(s) ≈ f(s, 0.5, 0.00001) (20)
281

p(b) ≈ f(b, 0.5, 0.00001) (21)

In symbolic notation, our complete Bayesian model is given by

Parameters:

θ = (s, b)

Likelihoods:

T ∼ dpois(s+ b)

B ∼ dpois(b)

Prior choice 1:

s ∼ dnorm(0.0, ζ2
1 ) T (0, )

b ∼ dnorm(0.0, ζ2
2 ) T (0, )

Prior choice 2:

s ∼ dgam(0.5, 0.00001)

b ∼ dgam(0.5, 0.00001)

(22)

where “dpois”, “dnorm”, and “dgam” denote Poisson, normal, and gamma282

probability distributions, respectively. The notation “T(0,)” implies that283

only the right half of the Gaussian (i.e., positive values only) is used. The284

symbol “∼” stands for “has the distribution of.” For the value of s, we285

will report the 50 percentile (median) of its posterior density, while the un-286

certainty of s is estimated from the 16 and 84 percentiles (i.e., assuming a287

coverage probability of 68%).288

If the number of signal counts from the above procedure is deemed sta-289

tistically significant, we can estimate, in analogy to Method A, the peak290

centroid. The Bayesian model is the same as presented in Equations (12) -291

(21), except that the formalism is now applied to each individual channel of292
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the peak region. In other words, the model estimates the true signal counts,293

si, from the observed total counts, Ti, and background counts, Bi, for each294

channel, i. Similar to Equation (6), the centroid is then calculated at each295

step of the MCMC procedure by using296

x̄ =

∑n
i sixi∑n
i si

(23)

The value and uncertainty of x̄ is again computed from the 16, 50, and 84297

percentiles of its probability density.298

Notice that it would be incorrect to estimate the total signal counts in the299

Bayesian model from S =
∑

i si, as implied by Equation (23). Suppose, zero300

counts are measured for both the total number of counts and the background.301

The Bayesian model presented above will yield a median value of ≈1.0 (using302

Prior 1) or ≈0.5 (using Prior 2) for the estimated signal counts. If, instead,303

we assume a peak region 20 channels wide, with zero total and background304

counts in each channel, summing the estimated signal counts would result in305

a nearly Gaussian-shaped probability density with a median value near ≈20306

(for Prior 1) or ≈10 (for Prior 2). Clearly, this is a nonsensical result because307

the summed signal counts are biased towards a larger value. However, for308

the purposes of the centroid estimation only, this bias is significantly lessened309

because it affects both the numerator and denominator of Equation (23) in310

similar ways.311

If no obvious signal is present in the peak region, a proper Bayesian anal-312

ysis will involve the comparison of two exclusive models: the null hypothesis313

that the observed counts are caused by background only versus the alter-314

native hypothesis that a signal process contributes to the counts (see, e.g.,315

Ref. [15, 16], and references therein). As already mentioned in Section 1, we316

are not concerned here with rigorous upper bound estimates, but our main317

focus are cases where a signal can be discerned in the data. To quantify the318

possibility that a signal is present, but is too weak to be measured, we will319

use the concept of the Highest (posterior) Density Interval (HDI). It sum-320

marizes the range of the most credible parameter values and is defined, for321

a given probability, by any parameter value inside the HDI having a higher322

probability density than any value outside the HDI [17].323

For the MCMC simulations using Method B, the variables of interest are324

sampled using a Markov chain of length 10,000 samples distributed over two325

chains, excluding a burn-in phase of 2000 steps for each chain. This ensured326

convergence of all chains.327
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Comment 6: For relatively small signal-to-noise ratios, the estimated328

number of signal counts will be impacted by the choice of prior.329

3.3. Method C: Gaussian fit330

The methods discussed so far have made no assumptions about the shape331

of the peak. If the peak shape is known, a suitable model can be fit to the332

number of counts in the peak and background regions to extract the estimates333

for the signal centroid and intensity.334

In many cases, the detector response is accurately described by a Gaussian335

function336

gi(xi) = ae−(xi−b)2/(2c2) (24)

where xi denotes the channel. The parameters a, b, and c are the normaliza-337

tion (height), centroid, and standard deviation of the Gaussian, respectively.338

For our test data, we will assume that this Gaussian signal sits on top of a339

linear background,340

fi(xi) = dxi + e (25)

which introduces two more parameters, d and e, for the slope and intercept,341

respectively4.342

We will perform the fit using, again, a Bayesian model. The full model is

4For an application of a Bayesian method to determine the peak area in Ge detector
spectra, see Ref. [18]. Their model describes physical processes, e.g., partial energy de-
position, charge trapping, recombination, etc., and is especially useful for strong peaks
on top of a small background. The usefulness of the Bayesian method for fitting a peak
doublet measured in the decay of 101Mo has been demonstrated in Ref. [19].
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now given in symbolic notations by

Parameters:

θ = (a, b, c, d, e)

Likelihoods:

Ti ∼ dpois(gi + fi)

Bi ∼ dpois(fi)

Priors:

a ∼ dnorm(0.0, ξ2
1) T (0, )

b ∼ dunif(xp1, xp2)

d ∼ dnorm(0.0, ξ2
2)

e ∼ dnorm(0.0, ξ2
3)

for strong peaks:

c ∼ dnorm(0.0, ξ2
4) T (0, )

for weak peaks:

c ∼ dnorm(cexp, [σexpc ]2)

(26)

where Ti and Bi are, same as before, the number of counts in each channel,343

xi, of the peak and background regions, respectively; gi and fi are given by344

Equations (24) and (25), respectively; ξ1, ..., ξ4 are chosen sufficiently large345

(e.g., ξi = 1000) to describe the Gaussian height, standard deviation, and346

background by broad, non-informative priors. Unlike for Methods A and B,347

the background in Method C is, therefore, adjusted during the fit. The prior348

for a is truncated at zero because the height of the Gaussian is a manifestly349

positive quantity. The uniform prior for the centroid, b, restricts the pa-350

rameter search to the chosen peak region, [xp1, xp2]. The quantities of main351

interest are the centroid, b, and area,
√

2πac, of the Gaussian-shaped signal352

peak.353

The model above has two options of priors for the Gaussian standard354

deviation, c, depending on the signal-to-noise ratio of the peak. For strong355

peaks, c is an adjustable parameter used to estimate the detector resolution.356

As the signal strength decreases, or the background increases, the procedure357

of treating c as an adjustable parameter becomes problematic. Figure 2358

shows two test spectra that were generated with exactly the same values359

for the signal counts, centroid, background per channel, and FWHM. It can360
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be seen that the apparent widths of the two peaks near channel 1000 differ361

greatly, which is solely caused by statistical fluctuations. Clearly, fits with the362

standard deviation, c, as an adjustable parameter would result in markedly363

different widths of the fitted Gaussian function for the two spectra shown.364

Such a procedure introduces a bias, because the fitted peak widths may differ365

greatly from the detector response.366

Therefore, we will first use for the analysis of the high signal-to-noise367

Data Set 1 a broad, non-informative prior to estimate the Gaussian standard368

deviation, cexp ± σexpc . Subsequently, the lower signal-to-noise Data Sets 2369

and 3 are analyzed using this result with an informative prior.370

Note, that the user-defined peak regions for Methods A and B had to371

be chosen as narrow as possible, while still containing the peak, so that the372

uncertainties on the signal counts are not inflated unnecessarily. On the373

other hand, Method C does not have that sensitivity because the peak shape374

is directly implemented into the model.375

The variables of interest are sampled using a Markov chain of length376

50, 000, excluding a burn-in phase of 10, 000 steps.377

Comment 7: For peaks of low signal-to-noise ratios, treating the peak378

width as a freely adjustable parameter during the fit will introduce a bias. In379

such cases, it is more reasonable to estimate the Gaussian width by analyzing380

strong peaks and then to use the result in the subsequent analysis of weaker381

peaks.382

Comment 8: Unlike the other methods, for a linear background the Gaus-383

sian fit method is insensitive to the choice of the width of the peak region,384

as long as this region is chosen sufficiently wide.385

4. Results386

We will discuss below the analysis of the artificial data (Section 2) using387

the methods outlined in Section 3. Usually, the detector resolution is known388

to the experimenter, which provides a natural choice for the width of the peak389

region to be analyzed. For Methods A and B, it makes little sense to choose390

a peak region width that exceeds the detector resolution by large factors391

since this would increase the uncertainty in the signal counts. As already392

mentioned above, Method C implements the line shape into the model and,393

therefore, is not sensitive to the width of the peak region. Here, we will394

use the same peak region for all three data sets and choose a region width395
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Table 1: Analysis of test data.a

Method
A Bb(Prior 1)c Bb(Prior 2)d Cb

Test data 1 True counts = 970; True centroid = 985
Actual counts = 948±33; Actual centroid = 984.91±0.06

Observed counts: 948±35 947±35 948±35 950± 33f

Observed centroid: 984.89±0.06 984.86±0.08 984.87±0.08 984.86± 0.07f

Test data 2 True counts = 105; True centroid = 985
Actual counts = 106±14; Actual centroid = 984.86±0.19

Observed counts: 99±20 99±20 97±20 97± 14g

Observed centroid: 984.81±0.24 984.69±0.43 984.69±0.48 984.72± 0.32g

Test data 3 True counts = 35; True centroid = 985
Actual counts = 38±10; Actual centroid = 985.00±0.32

Observed counts: 25±17 27±16 ≤52e 32± 11g

Observed centroid: 985.31±0.29 984.92±0.60 985.16± 0.77g

a All centroids are in units of channels. “True” values represent the starting
parameters used to simulate the artificial data; “actual” values denote the
signal counts and centroid calculated from Equations (4), (5), (6), and (8)
before any background was added to the signal histogram, i.e., for B = 0; see
Section 2 for more information. The results listed are also shown in Figure 3.

b Values and uncertainties are defined by the 16, 50, and 84 percentiles of the
resulting posteriors.

c Results for a broad, half-Gaussian prior; see Equations (14) and (15).
d Results for a Jeffreys prior; see Equations (16) and (17).
e Upper bound defined by Equation (11), with θa = 0, θb = 52, and β = 97.5%.
f The Gaussian standard deviation, c, was estimated using a non-informative

prior (see “for strong peaks” in Section 3.3), which resulted in cexp ± σexpc =
1.95± 0.06 channels.

g The Gaussian standard deviation, c, was described by an informative prior (see
“for weak peaks” in Section 3.3), using the result obtained under footnote f.
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Figure 3: Visual representation of the results obtained from Methods A, B, and C (see Ta-
ble 1). For Method B, only the values for Prior 1 are shown. (Top) Signal counts; (Bottom)
Peak centroid. The black, blue, and red points depict the values for Data Sets 1, 2, and 3,
respectively, and the color-coded horizontal dashed lines indicate the respective “actual”
values (see Section 2). Interesting observations: (i) For low and moderate signal-to-noise
data (red and blue points, respectively), Method C provides much smaller signal count
uncertainties compared to the other two methods (top panel); (ii) For low and moderate
signal-to-noise data (red and blue points, respectively), the more reliable Methods B and
C provide larger peak centroid uncertainties than Method A (bottom panel).
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of 14 channels (channels 978 − 991; see blue shaded regions in Figure 1),396

corresponding to three times the FWHM (Section 2).397

The background regions to the left and right of the peak region should be398

chosen wide enough to take statistical count fluctuations in the background399

into account. Here, we define channels 910 − 960 and channels 1020 − 1070400

as left and right 50-channel-wide background regions, respectively. We per-401

formed tests using a Monte Carlo method to assess if our results show any402

dependence on the chosen background regions (see Comment 5 in Section 3).403

To this end, we chose two 200-channel-wide regions on either side of the404

peak region. Within these wide regions, sub-regions were sampled randomly,405

each with a width of 50 channels. The background in the peak region was406

determined as before by using Equation (1) and the peaks are analyzed ac-407

cording to Method A. This process is then repeated many times. We found408

that our results were reproducible within uncertainties. In other words, our409

50-channel-wide background regions were chosen sufficiently broad for taking410

statistical fluctuations into account.411

Recall for the following discussion the distinction between “true”, “ac-412

tual”, and “observed” values for the signal counts and the background (see413

Section 2). “True” values refer to the signal parameters used to generate the414

data. “Actual values” are determined from Equations (4), (5), (6), and (8)415

after drawing signal counts from a Poissonian distribution for each channel416

of the Gaussian peak, but before any background is added (i.e., for B = 0).417

For real data, neither the “true” nor the “actual” values are known. Our418

goal is to estimate “observed” values for the signal counts and the centroid419

using the different methods discussed in Section 3.420

Numerical results for Data Sets 1, 2, and 3 are listed in Table 1 and are421

displayed in Figure 3, where the horizontal dashed lines correspond to the422

actual values.423

4.1. Analysis of Data Set 1424

Data Set 1 has a high signal-to-noise ratio and was generated with 970425

true signal counts and a true centroid of channel 985.00. The actual values426

are 948±33 signal counts and a centroid at channel 984.91±0.06.427

Method A: We extract from the observed data 948±35 signal counts and428

a centroid of channel 984.89±0.06, in agreement with the actual values.429

Method B: We find 947±35 signal counts for both the half-Gaussian and430

the Jeffreys priors. The obtained centroids also agree for both priors.431
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Method C: The Gaussian standard deviation is treated as an adjustable432

parameter, described by a non-informative prior. The resulting fit gives433

950±33 signal counts, a centroid of channel 984.86±0.07, and a standard434

deviation of c = 1.95± 0.06 channels. The signal counts and centroid agree435

with the actual values.436

Summary: For data of high signal-to-noise ratios, the results from all437

models are in agreement, as can be seen from the black points in Figure 3.438

These results also agree with the actual values.439

4.2. Analysis of Data Set 2440

Data Set 2 has a moderate signal-to-noise ratio. It was generated with441

105 true signal counts and a true centroid of channel 985.00. The actual442

values are 106±14 signal counts and a centroid at channel 984.86±0.19.443

Method A: We find 99±20 signal counts and a centroid in channel 984.81±0.22,444

in agreement with the actual values.445

Method B: The half-Gaussian and Jeffreys priors result in 99±20 and446

97±20 signal counts, respectively, and centroids in channels 984.69±0.43447

and 984.69±0.48, respectively. In other words, both priors provide consistent448

results.449

Method C: An informative prior is used for the Gaussian standard devi-450

ation, using the value and uncertainty found in the analysis of Data Set 1.451

The derived signal counts and centroid amount to 97±14 and 984.72±0.32,452

respectively. These results agree with the actual values.453

Summary: The results from Models A, B, and C are in agreement (see454

blue points in Figure 3) and they are also consistent with the actual values.455

However, a number of interesting differences are apparent.456

First, Methods B and C provide centroid uncertainties significantly larger457

than those obtained from Method A (bottom panel of Figure 3). In fact, the458

value from Method A (±0.24 channels) is only slightly larger than the actual459

centroid uncertainty (±0.19 channels). Recall that the latter represents the460

result of the signal before any background had been added. Since it is rea-461

sonable to assume that a significant background will increase the uncertainty462

of the peak centroid, it appears that simple count summation (Method A)463

underpredicts the centroid uncertainty. The underlying reason is that Equa-464

tions (6), (7), and (8) disregard the uncertainty in the signal counts, Si, as465

already noted in Comment 3 of Section 3.1.466

Second, Method C gives a signal count uncertainty much smaller than467

Methods A and B (top panel of Figure 3). In fact, the value from Method468
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C (±14) is the same as the actual signal count uncertainty. Therefore, it469

appears that the additional assumption of a given peak shape (here, a Gaus-470

sian) results in a signal count uncertainty similar to that obtained before the471

background was added to the signal histogram (i.e., the actual value).472

4.3. Analysis of Data Set 3473

Data Set 3 contains 35 true signal counts, with a true centroid of channel474

985.00. The actual values are 38±10 signal counts and a centroid at channel475

985.00±0.32.476

Method A: We find 25±17 signal counts, which appears to agree with the477

actual value. Our result for the centroid, 985.31±0.29, exceeds the actual478

value by one standard deviation. See the red points in Figure 3.479

These results imply two problems for low signal-to-noise data, such as480

Data Set 3. The first problem is related to the bias introduced by channels in481

the peak region for which the total number of observed counts is smaller than482

the predicted background. This can be seen in Figure 4, which depicts the483

data shown in the bottom panel of Figure 1 on an expanded channel scale.484

The red straight line corresponds to the background estimated according485

to Section 3 and the peak region is shaded blue. A negative number of486

signal counts is obtained for four out of the first five channels in the peak487

region (near the black arrow). Including these negative signal counts in the488

sum of Equation (7) yields a negative value for s2
x, which is nonsensical.489

Therefore, we disregarded those channels in the sum, as already pointed490

out in Section 3.1 (see Comment 4). However, this procedure biases the491

uncertainty in the peak centroid, which appears to be much smaller compared492

to the other methods (see below).493

The second problem is related to the comparable magnitudes for the494

mean value of the total signal counts and its associated uncertainty. A re-495

sult such as “25±17” has no rigorous statistical meaning because Method A496

provides no information on the probability density associated with this out-497

come. Furthermore, it would be tempting to improve statistics by choosing a498

narrower peak region that includes only the channels with the highest num-499

ber of counts. However, this procedure, which is without doubt frequently500

applied in practice, introduces yet another bias. As already mentioned, our501

peak region is 14 channels wide, equal to three times the (known) FWHM of502

the Gaussian used to generate the data. In practice, the FWHM corresponds503

to the detector resolution that is known to the experimenter. By choosing a504

peak region width that is significantly less than 3×FWHM, a large fraction of505
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the peak area will be disregarded. Clearly, Method A has severe limitations506

when the signal-to-noise ratio is small because it provides no measure for the507

probability associated with the values obtained for either the signal counts508

or the centroid.509

Method B: With the half-Gaussian prior, we find 27±16 signal counts510

and a centroid of channel 984.92±0.60. The corresponding values for the511

Jeffreys prior are 17+18
−14 signal counts and a centroid of channel 985.05±0.74.512

The values are derived from the 16, 50, and 84 percentiles of the posteriors513

(Section 3.2).514

In contradistinction to the results from Method A, Model B allows for515

associating the derived values with probabilities. The posteriors for the two516

choices of priors are depicted in Figure 5. For the half-Gaussian prior, the517

posterior (red line) shows a resolved peak near 27 signal counts and a signifi-518

cant decline in probability density towards zero signal counts. The red region519

(top) indicates the 68% Highest Density Interval (HDI; see Section 3.2). Its520

lower bound is about 10 signal counts, indicating that a signal can be dis-521

cerned and a parameter value, including uncertainties, can be presented. On522

the other hand, for the Jeffreys prior, the posterior (blue line) exhibits no523

resolved peak and a large probability density near zero signal counts. In this524

case, the lower bound of the 68% HDI (blue region at bottom) includes zero525

signal counts. Therefore, it is more sensible in this case to present an up-526

per bound instead of a central value with uncertainties. We find ≤52 signal527

counts with a coverage probability of 97.5%, according to Equation (11).528

As expected, the obtained values are sensitive to the choice of prior. Since529

we know that Data Set 3 was generated with 35 signal counts, and we can530

also see visually a (albeit weak) peak in the spectrum (see bottom panel531

in Figure 1, and Figure 4), we find that the choice of the half-Gaussian532

prior provides more reliable results. Using the Jeffreys prior, all that can533

reasonably be reported is an upper bound for the signal counts and thus no534

value for the centroid should be reported.535

Method C: An informative prior is again used for the Gaussian standard536

deviation, using the value and uncertainty found in the analysis of Data Set537

1. The derived signal counts and centroid amount to 32±11 and 985.16±0.77,538

respectively. These results agree with the actual values.539

Results are shown in Figure 6. Part of the spectrum is depicted in the540

bottom panel, together with 50 credible lines chosen randomly from among541

50, 000 samples. The top panel displays the probability density of the signal542

counts, which is given by the areas under the Gaussian credible lines shown in543
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the bottom panel. It can be seen that the probability density is single-peaked544

and the probability for zero counts is negligible.545

Summary: For low signal-to-noise data, Method A, which is based on546

count summation, does not provide any probability estimates to assess if a547

signal is present in the data or not. With this method, a result such as548

“25±17” signal counts has no statistical meaning. Furthermore, Method A549

severely underpredicts the uncertainty in the peak centroid for the reasons550

outlined above.551

Methods B and C provide probability densities that are used to define552

statistically meaningful values for the signal counts and the centroid. For553

Method B, adoption of the normal prior is preferred over the Jeffreys prior, as554

discussed above. As was the case for Data Set 2, the signal count uncertainty555

from Method C (±11) is similar to the actual signal count uncertainty (±10).556

Again, it appears that the additional assumption of a given peak shape (here,557

a Gaussian) results in a signal count uncertainty similar to that obtained558

before the background was added to the signal histogram (i.e., the actual559

value).560

4.4. Trends with additional data sets561

To check on our results discussed above and to reveal trends for data gen-562

erated with a varying number of true signal counts, we show in the top panels563

of Figures 7 and 8 the actual (black) signal counts and centroids, respectively,564

and the observed values obtained with Method A (yellow), B (blue), and C565

(red). The bottom panels in the two figures show the uncertainties and make566

the trends more apparent.567

For the observed signal counts (Figure 7), it can be seen that the uncer-568

tainties from Methods A and B are very similar in magnitude, independent569

of the true signal counts. The uncertainties from Method C, which are sig-570

nificantly smaller than those from Methods A and B, agree with the actual571

uncertainties over the entire range shown. We conclude that Method C pro-572

vides superior results for signal counts compared to other methods.573

For the observed centroids (Figure 8), the uncertainties of Methods B574

and C are similar in magnitude, and larger than those from Method A or575

the actual values. The fact that Method A provides uncertainties in agree-576

ment with the actual values is most likely caused by the bias of disregarding577

channels with a negative number of signal counts. We conclude that either578

Method B or C will provide reliable results for the centroid uncertainty.579
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Figure 7: Signal counts (top panel) and signal count uncertainty (bottom panel) versus
true signal counts used to generate the artificial data. Black, yellow, blue, and red symbols
correspond to results for the actual values, Method A, B, and C, respectively.
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Figure 8: Centroid (top panel) and centroid uncertainty (bottom panel) versus true signal
counts used to generate the artificial data. The y-axis is in units of channels. Black,
yellow, blue, and red symbols correspond to results for the actual values, Method A, B,
and C, respectively. The true peak centroid is channel 985.0.
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5. Summary and conclusions580

We discussed the estimation of signal centroid and signal counts in the581

presence of background counts using three different methods.582

Method A is based on count summation. The analysis is straightforward,583

and does not involve any statistical modeling. It provides reliable results584

only for high signal-to-noise data. In all other cases, it has severe limita-585

tions. First, it gives significantly larger signal count uncertainties compared586

to Method C. Second, it provided centroid uncertainties that are biased to-587

wards values that are too small. Third, for low signal-to-noise data, the588

results are not quantifiable in terms of probabilities. For example, a result589

such as “25±17” signal counts has no rigorous statistical meaning.590

Method B employs a Bayesian model to extract signal counts and centroid591

from the measured total and background counts. The resulting values are592

derived from the respective posteriors and, therefore, have a rigorous statisti-593

cal meaning that are associated with user-defined probabilities. The method594

makes no assumptions about the peak shape. As expected, for low signal-595

to-noise data the results are sensitive to the choice of priors for the signal596

and background counts. We found that assuming a non-informative prior597

based on a half-normal probability density reproduces the original values598

used to generate the artificial data. Method B yields reliable and relatively599

small centroid uncertainties. A limitation shared with Method A is that it600

provides significantly larger signal count uncertainties compared to Method601

C.602

Method C makes a strong assumption regarding the peak shape by fitting603

a Gaussian function to the data. The fit is, again, based on a Bayesian604

model. Unlike for Methods A and B, the method is insensitive to the choice605

of the width of the user-defined peak region. However, it does require careful606

consideration of the Gaussian width used in the fitting, which is usually given607

by the detector resolution. For high signal-to-noise data, the prior for the608

width should be non-informative, so that the Gaussian width can be found609

directly from the fit to the data. For low or moderate signal-to-noise data,610

the prior of the Gaussian width should be informative and based on the611

result obtained in the analysis of the high signal-to-noise data. Under these612

conditions, Method C provides reliable and relatively small uncertainties both613

for the signal counts and the centroid.614
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