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ABSTRACT

We use ZEUS-MP to perform high-resolution, three-dimensional, super-Alfvénic turbulent simulations in
order to investigate the role of magnetic fields in self-gravitating core formation within turbulent molecular
clouds. Statistical properties of our super-Alfvénic model without gravity agree with previous similar studies.
Including self-gravity, our models give the following results. They are consistent with the turbulent frag-
mentation prediction of the core mass distribution of Padoan & Nordlund. They also confirm that local
gravitational collapse is not prevented by magnetohydrodynamic waves driven by turbulent flows, even when
the turbulent Jeans mass exceeds the mass in the simulation volume. Comparison of results between 2563 and
5123 zone simulations reveals convergence in the collapse rate. Analysis of self-gravitating cores formed in the
simulation shows the following: (1) All cores formed are magnetically supercritical by at least an order of
magnitude. (2) A power-law relation between central magnetic field strength and density Bc / �1=2c is observed
despite the cores being strongly supercritical. (3) Specific angular momentum j / R3=2 for cores with radius R.
(4) Most cores are prolate and triaxial in shape, in agreement with the results of Gammie and coworkers. We
find a weak correlation between the minor axis of the core and the local magnetic field in our simulation at late
times, different from the uncorrelated results reported by Gammie and coworkers. The core shape analysis and
the power-law relationship between core mass and radius M / R2:75 suggest the formation of some highly
flattened cores. We identified 12 cloud cores with disklike appearance at a later stage of our high-resolution
simulation. Instead of being tidally truncated or disrupted, the core disks survive and flourish while undergoing
strong interactions. We discuss the physical properties of these disklike cores under the constraints of resolution
limits.

Subject headings: ISM: clouds — ISM: kinematics and dynamics — ISM: magnetic fields —
methods: numerical — stars: formation — turbulence

On-line material: mpeg animation

1. INTRODUCTION

In the standard theory of isolated star formation, the pres-
ence of magnetic fields in molecular clouds plays a vital role.
Based on the Jeans argument, observed high-density molec-
ular clouds should collapse within a few free-fall times to form
stars. Instead, the molecular clouds were thought to be quasi-
stable. Turbulence in molecular clouds and magnetic field
support were proposed to explain these apparently stable
clouds (e.g., McKee 1999; Williams, Blitz, & McKee 2000;
Vázquez-Semadeni et al. 2000). Molecular clouds were sug-
gested to be supported magnetostatically (e.g., Mouschovias &
Spitzer 1976; Fiege & Pudritz 1999) or dynamically by mag-
netohydrodynamic (MHD) waves, especially Alfvén waves

(e.g., Dewar1970; Shu, Adams, & Lizano1987). Alfvén waves
are transverse waves and produce perturbation perpendicular
to the mean magnetic field. McKee & Zweibel (1995) pointed
out that Alfvén waves can lead to an isotropic turbulence
pressure to counteract gravitational collapse, provided that the
waves are neither damped nor driven. However, this mecha-
nism requires a negative radial gradient in wave sources in the
cloud in order to support the cloud from collapsing (Shu et al.
1987).
Observationally, the question of whether magnetic fields are

sufficiently strong to support molecular clouds alone from
collapsing remains unresolved. Crutcher (1999) concludes that
static magnetic fields are insufficient to support the observed
clouds and that MHD waves are equally important in cloud
energetics. McKee (1999), however, points out that ambipolar
diffusion might already have altered the mass-to-flux ratio
observed by Crutcher. Observations by Bourke et al. (2001)
yield similar conclusions to Crutcher (1999), although they
caution that the measured magnetic field strength may be
significantly lower than the true values as a result of the low
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volume filling fraction of dense cores. Nakano (1998) argues
that observed cloud cores cannot be magnetically supported.
A magnetically supported core should not have a column
density much higher than its surroundings, and the core cannot
maintain a large velocity dispersion inside it for its whole
lifetime. However, observed cloud cores generally have
superthermal velocity dispersions and column densities much
higher than their surroundings, suggesting that most cloud
cores are not magnetostatically supported.

Significant progress in the understanding of the roles of
turbulence and MHD waves in supporting gravitationally
unstable cloud cores has been made recently using three-
dimensional numerical simulations (e.g., Vázquez-Semadeni,
Passot, & Pouquet 1996; Mac Low et al. 1998; Padoan &
Nordlund 1999a; Ostriker, Gammie, & Stone 1999; for a re-
view see Mac Low & Klessen2004). Klessen, Heitsch, & Mac
Low (2000, hereafter Paper I), using models computed with
both ZEUS-3D and a smoothed particle hydrodynamics (SPH)
code, conclude that hydrodynamical turbulence can prevent
global collapse but not local collapse under typical molecular
cloud conditions. Heitsch, Mac Low, & Klessen (2001, here-
after Paper II) include magnetic fields and conclude that
local collapse cannot be prevented much longer than a global
free-fall time by magnetized turbulence, in the absence of
mean field support. However, they find that magnetic fields
delay local collapse by decreasing local density enhancements
via magnetic pressure. Stars begin to form quickly when local
density enhancements collapse. This result favors the dy-
namical picture of molecular clouds being a transient feature in
the interstellar medium (Ballesteros-Paredes, Hartmann, &
Vázquez-Semadeni 1999; Elmegreen 2000; Hartmann,
Ballesteros-Paredes, & Bergin 2001) instead of existing for
many free-fall times.

Another interesting result from the 2563 resolution simula-
tions of Papers I and II is that several cores begin to evolve
into flattened (or disklike) objects, which leads to the specu-
lation that they were beginning to resolve the formation of
protostellar cores. Unfortunately, the resolution and number of
disklike cores were not high enough to perform a statistically
meaningful study. Therefore, these flattened cores were not
discussed inPaper II.

Simulations suggest that supersonic turbulent flows, driven
at large scale by supernovae and density waves, produce
shock-compressed gas sheets or filaments that fragment into
dense cores and drive the observed supersonic turbulence in
the clouds (Mac Low & Klessen 2004). Differential rotation of
galactic disks (Fleck1981) provides another plausible driving
mechanism to maintain interstellar turbulence, especially at
galactic radii with little massive star formation. The coupling
from large-scale shear down to turbulent scales could be
through the magnetorotational instability (e.g., Balbus &
Hawley 1998; Sellwood & Balbus 1999; Kim, Ostriker, &
Stone 2003). Ionizing radiation (McKee 1989; Vázquez-
Semadeni, Passot, & Pouquet 1995; Bertoldi & McKee 1997;
Kritsuk & Norman 2002) and stellar winds from massive
stars may also be important, but supernovae (e.g., Norman &
Ferrara 1996; de Avillez 2000) probably provide most of
the energy required to maintain interstellar turbulence, as well
as the turbulence within molecular clouds (Mac Low & Klessen
2004).

Recent numerical studies indicate that supersonic turbu-
lence may play an important role in shaping the initial mass
function (IMF) of the stellar population that forms in mo-
lecular clouds (Padoan & Nordlund 2002). Observations of

the IMF appear consistent with a general form having a
power law in the high-mass wing and then flattening and
turning over at the low-mass end (e.g., Kroupa 2002 and
references therein). This is an important constraint on star
formation theories. Interestingly, and perhaps significantly,
the probability distribution function (PDF) of gas density in
isothermal supersonic turbulence is well approximated by a
lognormal distribution. Padoan, Nordlund, & Jones (1997)
and Padoan & Nordlund (2002) suggest that the IMF and
density PDF in turbulent clouds are intimately related, and
they predict that the mass distribution of dense cores is
controlled by the density, the Mach number, and velocity
dispersion of the supersonic turbulence. Previous simulations
of molecular cloud collapse (e.g., Padoan et al.2001; Klessen
2001; Bate, Bonnell, & Bromm 2003; Gammie et al. 2003)
indicate that the mass distribution of cores (or clumps)
roughly resembles a lognormal distribution, but with the high-
mass wing following a power law approximately consistent
with the Salpeter law (Salpeter 1955). However, these simu-
lations either lack magnetic fields or do not have a sufficient
number of gravitationally bound cores for accurate statistical
analysis because of low numerical resolution. Higher reso-
lution MHD turbulence simulations are required to verify the
importance of super-Alfvénic turbulent fragmentation to the
stellar IMF.

In this paper we report on results of our latest three-
dimensional, turbulent simulation of a magnetized molecular
cloud, increasing the spatial resolution in each dimension by a
factor of 2 relative to the simulations in Paper II, using the
ZEUS-MP code. The excellent parallel scalability of ZEUS-
MP allows us to study MHD turbulent molecular clouds on a
5123 grid, sufficient to study the global physical properties of
cores and their formation process. In x 2 we describe the
techniques, assumptions, and parameters used in our simu-
lations. In x 3 we discuss the statistical properties of the super-
Alfvénic turbulent cloud before gravitation is turned on. The
global physical properties of self-gravitating cores and their
time evolution are reported in x 4. We also examine the tur-
bulent fragmentation theory by comparing its predictions to
our simulation results. In x 5 we perform a resolution study
and investigate the physical properties of some disklike cores
observed at later stages of our simulation. We discuss our
results and present conclusions in x 6.

2. SIMULATIONS

Our simulations are performed on 256 SGI/Cray Origin
2000 processors at the National Center for Supercomputing
Applications (NCSA) using the ZEUS-MP code. ZEUS-MP is
a multiphysics, massively parallel, message-passing code for
astrophysical fluid dynamic simulations in three dimensions,
developed by the Laboratory for Computational Astrophysics
at NCSA. ZEUS-MP is a distributed memory version of the
shared-memory code ZEUS-3D, which uses block domain
decomposition to achieve scalable parallelism (Norman2000).
The code includes ideal hydrodynamics, ideal MHD, and self-
gravity. Self-gravity is implemented using the FFTW library
(Frigo & Johnson1998).

Our scale-free MHD turbulent simulations are basically
the same as model Eh1w in Paper II, but performed at reso-
lutions up to 5123. All parameters are given in normalized
units, where physical constants are scaled to unity. The total
mass in the box is M ¼ 1 and the side length is L ¼ 2. The
average density is �0 ¼ 0:125. The initial conditions of our
simulation are identical to model Eh1w in Paper II. In this
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model, the sound speed is cs ¼ 0:1. The corresponding Jeans
length is kJ ¼ 0:5, and the Jeans mass is

MJ � �0k
3
J ¼

�

G

� �3=2
�
�1=2
0 c3s ¼ 0:0156: ð1Þ

Therefore, the mass in the box is M ¼ 64MJ and the length
of the box is L ¼ 4kJ. The magnetic field is initially uniform
and along the z-direction with strength B0 ¼ 0:188. The ratio
M=Mcr ¼ 8:3, which means that our entire cloud is magneti-
cally supercritical (see, e.g., Mouschovias & Spitzer 1976).
The ratio of thermal to magnetic pressure is 0.9, and the rms
Mach number for this parameter set is Mrms ¼ 10. Iso-
thermality is assumed throughout the simulation, which is
justified as the cooling time is much shorter than the dy-
namical time inside high-density molecular clouds. No
ambipolar diffusion is included in the calculation.

Periodic boundary conditions are applied in all three
dimensions. In effect, we simulate a small portion of a larger
cloud. We do this for simplicity, to avoid addressing the
structure of the non-isothermal boundaries of molecular
clouds. We do not expect that our results will be contradicted
by unified models that include larger-scale flows in the in-
terstellar medium. In our analysis, we examine column den-
sities through one realization of our periodic cube, which
should give statistically valid answers to the questions we ask
for molecular clouds of finite size.

The procedure of setting up the turbulent flow is explained
in Mac Low (1999). We briefly review it here. We assume that
each component of the velocity perturbation is a Gaussian
random field with flat power spectrum in the range
1 � kj j � 2. Random phases and amplitudes are generated in
that spherical shell in Fourier space and then transformed back
into real space to generate each component of the driving
velocity perturbation. When all three components are
obtained, the amplitude of the velocity is scaled to a desired
initial rms velocity, which is unity in our case. This velocity
field is then normalized at each time step to ensure a constant
kinetic energy input rate and added in as a perturbation to the
evolved velocity field. The dynamical behavior of isothermal
self-gravitating gas is scale-free. Equations (2)–(4) can be
used to scale back to astrophysical units with a mass scale of
the thermal Jeans mass, length scale given by the thermal
Jeans length, and a timescale given by the free-fall timescale
(seePaper I),

L ¼ 0:89 pc
cs

0:2 km s�1

� � n

104 cm�3

� ��1=2
; ð2Þ

M ¼ 413 M�
cs

0:2 km s�1

� �3 n

104 cm�3

� ��1=2
; ð3Þ

�A ¼ 3�

32G�

� �1=2

¼ 0:34 Myr
n

104 cm�3

� ��1=2
: ð4Þ

Therefore, if we choose a high-density scaling such as the
BN region in Orion, in which cs ¼ 0:2 km s�1 and the num-
ber density n ¼ 105 cm�3, the region in the simulation box is
0.28 pc in size. The total mass in this region is 130.6 M�, and
one system time unit, which is 0.65 free-fall time, is 0.07 Myr.

A total of 110,000 CPU hours were required for the 5123

zone simulation to run to 4.325 time units, or �2.82� ff. In our
case, �A ¼ 1:53 system time units. At the beginning of the
simulation, no gravitational forces are applied. Turbulence is

allowed to develop from the relatively smooth initial con-
ditions until t ¼ 2:0 time units. Gravitation is then turned on.
Density fluctuations generated by the supersonic turbulence in
converging and interacting shock fronts that locally exceed the
Jeans limit begin to contract. In the 2563 simulations reported
inPaper II, there were only a dozen gravitationally collapsing
cores, which were underresolved and insufficient for statistical
analysis. In our 5123 simulation, there are 15 cores that satisfy
our definition of gravitationally bound at t ¼ 2:0 when gravity
is turned on. By the end of the simulation at t ¼ 4:325, we
have 83 gravitationally bound cores. The simulation was ter-
minated then because too many cells violate the Jeans con-
dition (Truelove et al.1997), which dictates that the local Jeans
length must be resolved by several zones. In addition, the
densities of some cores became so high that the isothermal
assumption would be invalid. Henceforth, we adopt the same
time convention as in Paper II, where the time t ¼ 0 is defined
as the time that gravity is turned on. According to this defi-
nition, the simulation is terminated at t ¼ 2:325 system time,
or 1.52� ff. We use free-fall time as the time unit for the rest of
the paper.

3. STATISTICAL PROPERTIES

3.1. Power Spectra

Kolmogorov (1941) heuristically derived a simple scaling
for the one-dimensional energy spectrum in incompressible
turbulence, EðkÞ / k�5=3, where k is the magnitude of the
wavenumber. Astrophysical fluids are magnetized and highly
compressible. Dynamically important magnetic fields and
strong shocks should interfere with eddy motions, which in
turn will affect the final velocity power spectrum. However,
observations and some simulations (e.g., Paper I; Lazarian,
Pogosyan, & Esquivel 2002; Cho, Lazarian, & Vishniac
2003) suggest that MHD compressible turbulence also closely
follows the Kolmogorov spectrum. The theory of Goldreich &
Sridhar (1995) points out that it is the perpendicular motion
of sub-Alfvénic incompressible turbulence that behaves as
Kolmogorov, EðkÞ / k�5=3. Some other MHD turbulence
simulations suggest that the scaling law for MHD compress-
ible turbulence is not exactly Kolmogorov. Boldyrev, Nord-
lund, & Padoan (2002) reported that the power spectrum of
the solenoidal component of the velocity field in a super-
Alfvénic compressible turbulence is EðkÞ � k�1:74, steeper
than the Kolmogorov spectrum. In the latest simulations by
Vestuto, Ostriker, & Stone (2003) on 2563 and 5123 grids, the
slope of the power spectra varies from Kolmogorov to even
larger than the EðkÞ � k�2 Burgers’ model of shock-domi-
nated turbulence (Burgers1974) for models ranging from sub-
Alfvénic to super-Alfvénic. The measurement of the slopes in
their simulations might be affected by the short (or nonexis-
tent!) inertial range of their power spectra, however.
Figure 1a shows the power spectra of density, velocity, and

the energies of our turbulent cube at t ¼ 0, after the turbulence
has fully developed, but before gravity has been turned on.
The long-dashed line is the driving spectrum. The power
spectrum of velocity averaged over all directions is basically a
Kolmogorov power spectrum (Fig. 1a, thin straight line). The
inertial range of the velocity power spectrum spans more than
an order of magnitude of the wavenumber (2 � kj j � 30). The
power spectrum of the magnetic field shows a similar result.
The density spectrum has a shallower slope with index ap-
proximately �1.15. Both the kinetic and potential energies
have shallower slopes because of the modulation by the
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density spectrum. Figure 1b is a compensated plot of the
velocity power spectrum multiplied by k5/3 that highlights
the excellent fit of the Kolmogorov power spectrum to the
velocity power spectrum. We also plot the compensated ve-
locity power spectrum for the 2563 resolution simulation for
comparison. The inertial range of the turbulent flow in this
lower resolution simulation is shorter but still close to the
Kolmogorov power spectrum.

3.2. Density PDF and Core Mass Spectrum

The PDF provides important and complementary informa-
tion to the power spectrum. The PDF of isothermal turbulent
flows can be approximated by a lognormal function (e.g.,
Vázquez-Semadeni1994; Padoan et al.1997; Scalo et al.1998;
Nordlund & Padoan 1999). With a lognormal PDF of mass
density, most of the material concentrates in a small fraction of
the total volume in the simulation. Figure 2 shows the best
lognormal fit to the PDFs of all the cells in the 2563 and 5123

simulations at t ¼ 0. The standard deviation of the best fit is
1:46 � 0:06 and 1:42 � 0:03, as defined in equation (6) in
Padoan & Nordlund (2002). Using equation (9) in Padoan &

Nordlund (2002), �2 ¼ ln ð1þM 2
A; rms�

2Þ, we calculate � to
be 0.41 and 0.38, respectively, a little smaller than the value
� � 0:5 reported in Padoan & Nordlund (2002) from numer-
ical experiments.

Figure 3 shows the projected density (column density)
images of the simulation, in logarithmic scale, along the x-, y-,
and z-directions, which shows the clumpiness expected from a
lognormal PDF. The first row of plots is at t ¼ 0, just before
gravitation is switched on. The second and third rows are at
t ¼ 0:65�A and 1.31� ff, respectively. At t ¼ 0 (Figs. 3a–3c),
filamentary structures dominate the view and we see some
higher density nodes on the filaments. Later (Figs. 3d–3f ),
gravity breaks the filaments into pieces and higher density
clumps slowly increase their mass by accretion. The peak
density at this moment is about 1000 times the average den-
sity. At t ¼ 1:31�A (Figs. 3g–3i), many cores with high col-
umn densities have formed. The peak density is about 4 orders
of magnitude above the average density, and the total mass in
cores is less than 9% of the total mass in the box. Qualita-
tively, this picture does not change during the subsequent
simulation time (up to t ¼ 1:52�A), except that more cores
form and their peak densities grow. Most of the volume in the
simulation corresponds to low-density voids. The clumpiness
can also be seen in Figure 4, which shows a volume rendering
of the logarithmic density and the magnetic pressure of the
turbulent box in three dimensions at t ¼ 1:31�A. An animation
of the evolution of density and magnetic pressure of the 5123

simulation is included in the electronic version of this paper.
Padoan & Nordlund (2002) propose that the stellar IMF is a

direct result of turbulent fragmentation of molecular clouds.
As shown in Figure 3, the gas is compressed into one-
dimensional filaments and two-dimensional sheets by super-
sonic turbulence. Therefore, the core mass distribution will be
dependent on the jump conditions for isothermal shocks in a
magnetized gas. The typical size of a dense core is comparable
to the thickness of the postshock gas. Based on this, Padoan &
Nordlund (2002) calculate by taking into account the scale-
dependent Mach number that the mass distribution of cores
formed inside a supersonic MHD turbulent cloud is

NðmÞ d log ðmÞ / m�3=ð4��Þ d log ðmÞ; ð5Þ

Fig. 2.—Density PDF and lognormal fit in 2563 (open squares and dashed
line) and 5123 (open circles and solid line) simulations at t ¼ 0.

Fig. 1.—(a) Power spectra of density � (solid line), velocity v (dashed line),
potential energy UP (dotted line), kinetic energy UK (triple-dot–dashed line),
and magnetic energy UB (dot-dashed line) of the 5123 simulation. The thin
straight line is the Kolmogorov power spectrum, which fits well to the inertial
range of velocity and magnetic energy power spectra. The long-dashed line is
the driving spectrum. (b) Velocity power spectra of 2563 (circles) and 5123

(triangles) simulations of the turbulence, compensated by k5/3, at t ¼ 0 when
gravity is turned on. The horizontal straight line is the Kolmogorov power
spectrum.
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where � is the spectral power index. With our 5123 simulation,
we have sufficient resolution to check the turbulent fragmen-
tation prediction. We proceed as follows.

The clumpy structure inside the turbulent molecular cloud in
our simulation is determined using the algorithm CLUMP-
FIND described by Williams, de Geus, & Blitz (1994). The
algorithm is also described in Paper I. A ‘‘core’’ is defined as
a gravitationally bound region. We define it to consist of a set
of connected zones with average density exceeding the mean
density expected for isothermal shocks, � > M 2

rms�0, potential
energy exceeding kinetic energy, jEcell

pot j > Ecell
kin , and core mass

exceeding the local Jeans mass, Mcore > MJð�Þ. We use loga-
rithmic density contours in CLUMPFIND to get a wide enough

density range, as in Paper I. We believe that the core definition
chosen here is more rigorous than the simple gravitationally
unstable overdensity criterion of Padoan et al. (2001). How-
ever, our definition identifies fewer cores. This definition of
core will be applied to all results on cores in this paper. We also
define ‘‘clumps’’ to be overdense regions that do not satisfy the
other criteria. We choose the overdensity threshold for clumps
somewhat arbitrarily to be � > 0:1M 2

rms�0.
In Figure 5 we plot the mass spectra of cores (dot-dashed

line) and clumps (dashed line) in the 2563 simulation and the
spectrum of cores (solid line) in the 5123 simulation at t ¼ 0,
normalized by the Jeans mass MJ(�0). There are only 11 cores
in the 2563 simulation. Therefore, we also plot the clump

Fig. 3.—Column density of the 5123 simulation projected along the x-, y-, and z-directions. All images are plotted using the same gray scale. A logarithmic
column density of �0.602 corresponds to gas at the mean density times the box length. (a–c) At t ¼ 0, when gravitation is switched on, filamentary structure
dominates the appearance. (d–f ) At t ¼ 0:65�A, filaments break into pieces and higher density clumps slowly increase their mass by accreting material around them.
(g–i) At t ¼ 1:31�A, many cores with high column density contrast are formed.
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spectrum for comparison. Many of these clumps could be just
density fluctuation created by the isothermal shocks that will
be destroyed later. The 2563 clump spectrum and 5123 core
spectrum both show a well-defined ‘‘universal’’ IMF (see the
latest review by Kroupa 2002). From Figures 1a and 1b, the
velocity power spectral index � � �5

3
. Substituting � into

equation (5), we expect that the slope of the high-mass wing
of the core mass spectrum will be �1.29. This spectral index
is plotted by a thin line in Figure 5 and is consistent with the
high-density wings of all the spectra, as predicted by the
turbulent fragmentation. Even the 2563 core spectrum appears
consistent with the prediction. Note that the number of cores

in Figure 5 is still too few to have an accurate fitting unless we
relax the definitions of the cores to clumps.

4. CLOUD CORE EVOLUTION

4.1. Delay of Core Collapse

Papers I and II concluded that local collapse could not be
prevented even when the turbulent velocity field carries
enough energy to balance the gravitational contraction on
global scales. Paper II found that the comparison between
1283 and 2563 MHD results did not show full convergence,
with increasing resolution delaying local collapse (see Fig. 6 in
Paper II). This occurs because increasing the resolution pro-
duces thinner shocks with peak densities closer to the theo-
retical value. The resulting deeper potential wells accrete more
mass and collapse more quickly. At the same time, the sim-
ulation can better follow the short-wavelength MHD Alfvén
waves, which could create an isotropic pressure to counteract
the gravitational collapse. From the 2563 simulations in
Paper II, it appears that the MHD waves are able to delay the
collapse but not to prevent it. In our new 5123 simulation, this
imbalance between gravitation and Alfvén wave pressure is
verified. Figure 6 combines our new results with the previous
643, 1283, and 2563 results. We plot the collapsed mass M�,
defined as the sum of the core masses, versus time. Collapse
still occurs in all cases. Comparison between the 2563 and
5123 models suggests that the 2563 result of Paper II is, in fact,
converged. Remaining discrepancies are produced by the
chaotic nature of the flow, as was shown by comparisons of
different realizations of the same resolution model in Paper I.

4.2. Core Formation and Evolution

In the models, we find that self-gravitating cores form out of
initially overdense clumps created by supersonic turbulence.
We also find that dense clumps can be destroyed by passing
shocks, as well as by the merging of clumps, to form larger
and denser objects. The formation and destruction of cores is
thus a complex dynamical process. The core formation and

Fig. 4.—Three-dimensional volume rendering of the logarithm of density (left) and the magnetic pressure (right) of the turbulence box at t ¼ 1:31�A. This figure
is also available as an mpeg animation in the electronic edition of the Astrophysical Journal.

Fig. 5.—Mass spectrum of cores (dot-dashed line) and clumps (dashed
line) in the 2563 simulation and the mass spectrum of cores (solid line) in the
5123 simulation at t ¼ 0. The spectra are normalized by the Jeans mass, MJ(�).
The straight lines are the power law with index �1.29 predicted by Padoan &
Nordlund (2002) for our velocity power spectrum. High-mass wings of all
three spectra are consistent with the predicted power law.
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destruction process is shown in Figure 7 in terms of number of
cores formed as a function of time. Instead of monotonically
increasing, the core number drops sometimes because of
merging or destruction.

Figures 8, 9, and 10 show the evolution of the physical
properties of cores after gravitation is turned on and before the
Jeans criterion (Truelove et al. 1997) is violated.

Figures 8a and 8b show the ratio of core mass to the mass
that the local magnetic field can support, M/Mcr. The ratio is

M

Mcr

¼ M=�

M=�ð Þcr
¼ N

FBlos

ffiffiffiffi
G

p

c�
; ð6Þ

where N is the column density; the geometrical correction
factor F ¼ 2 for a uniform sphere and 3 for an isothermal disk.
Here Blos is the line-of-sight magnetic field strength, G is the

gravitational constant, and c� � 0:12 for a spherical cloud or
0.16 for an isothermal disk (Bourke et al. 2001). In these two
plots, we choose F ¼ 3 and c� ¼ 0:16 for the extreme case.
The ratios exceed an order of magnitude at all time. If we
assumed spherical cloud geometry, the ratios would be even
higher. Therefore, all the cores are magnetically supercritical
during the gravitationally collapsing phase, despite the action
of gravitational fragmentation, which could be expected to
reduce the mass-to-flux ratio (Mestel & Spitzer 1956).
Figures 8c and 8d show the relationship between the central

magnetic field strength Bc and the central core density �c at
t ¼ 0 and 0.65� ff, respectively. The power law of index 0.5 is
also plotted. Interpretations of Bc / �1=2c can be that (1) cores
are magnetically subcritical (e.g., Mouschovias1991; Basu &
Mouschovias 1994, 1995), (2) cores are magnetically super-
critical but the Alfvénic speed is about constant (�1) for the
cores (e.g., Bertoldi & McKee 1992; Crutcher 1999), and (3)
cores are magnetically supercritical and dense cores tend to
accrete mass along magnetic field lines and reduce their
magnetic flux–to–mass ratio efficiently, even in the absence of
ambipolar diffusion (Padoan & Nordlund1999b). The cores in
the simulations are all magnetically supercritical, and there is
no ambipolar diffusion implemented in ZEUS-MP. Therefore,
Figure 8 could be a result of case 2 or case 3. Magnetically
subcritical cores are no longer a unique explanation of the
Bc / �1=2c relation.
In Figures 9a and 9b we plot the specific angular momen-

tum, j, of each core against the radius, R, of the core at t ¼ 0
and 0.65� ff . The radius R is determined from the maximum
dimension of the core determined using CLUMPFIND. The
majority of cores obey the power-law relationship, j / Rp,
with index p ¼ 3

2
, which is plotted for comparison. From

observations, Goodman et al. (1993) conclude that j scales
roughly as R3/2 based on the velocity gradients of 29 cores in
dark clouds. They interpreted this relationship between spe-
cific angular momentum and core size to imply that cores are
in approximate ‘‘virial equilibrium.’’ With the isothermal
equation of state and relatively weak magnetic field support in
our simulation, the equilibrium in cores is basically between
gravitational force and rotational angular momentum, pro-
ducing rotationally supported cores. In their study of rota-
tional properties of centrally condensed, turbulent, molecular
cloud cores, Burkert & Bodenheimer (2000) conclude that the
specific angular momentum is related to the radius by
j / �R2, where � is the angular speed of the core. Therefore,
j ¼ �R2 / R3=2 implies � / R�1=2. This agrees reasonably
well with observations that suggest that � scales roughly as
R�0.4 (Goodman et al. 1993; Barranco & Goodman 1998).
However, we cannot conclude just from Figure 9 that the cores
are in Keplerian rotation, �ðrÞ / r�0:5, or in angular mo-
mentum conserved rotation, �ðrÞ / r�1. In addition, there is
still a slight scattering of data in Figure 9. The rotation could
indeed be Keplerian at the inner parts of the core but angular
momentum conserved in the outer parts.
In Figure 10a we plot the relationship between mean den-

sity and radius of each core at t ¼ 0 (circles) and 0.65� ff
(triangles), where mean density �h i ¼ Mcore=Vcore and Vcore

is the volume of the core. The result agrees with that of
Ballesteros-Paredes & Mac Low (2002; see their Fig. 9) that
mean density is basically independent of radius. In Figure 10b
we plot the mass-to-radius relationship of each core. A power-
law relationship is seen, with Mcore / R2:75 from t ¼ 0.
Figures 10a and 10b would seem to be inconsistent because
we would expect Mcore / R3 if cores are spherical. If we have

Fig. 7.—Core number counted from the simulation using the modified
CLUMPFIND. The decrease in core number is caused by the destruction of
cores by supersonic turbulence or merging of cores.

Fig. 6.—Comparison of the mass in gravitationally bound cores for runs
driven at k ¼ 1 2 with varying resolution 643 (triangles), 1283 (squares),
2563 ( plus signs), and 5123 (circles). The M�, denotes the sum of masses
found in all cores, in units of box mass, determined by the modified
CLUMPFIND (Williams et al.1994; see also Paper I). Collapse rates vary, but
collapse occurs in all cases.
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Fig. 9.—Evolution of specific angular momentum j vs. radius R of cores at (a) t ¼ 0 and (b) t ¼ 0:65�A. The straight line is a power law of index 3
2
. The data

distribution matches well with observations of dark cloud cores (e.g., Goodman et al.1993).

Fig. 8.—Evolution of magnetic field and density of cores. Ratio of core mass to critical mass for magnetostatic support M/Mcr is shown for cores at (a) t ¼ 0 and
(b) t ¼ 0:65�A in x- (circles), y- (triangles), and z-directions (squares). Cores are magnetically supercritical. Central magnetic field strength Bc vs. central density of
cores �c is shown at (c) t ¼ 0 and (d) t ¼ 0:65�A. The straight line is a power law of index 0.5.



Vcore / R2:75 from Figure 10, that means either that the ge-
ometry of the cores lies between a sphere and a disk or that the
cores are a mixture of prolate, triaxial, and oblate objects, as
data points are scattered around the straight line. We investi-
gate the shapes and orientation of cores in x 4.4 and confirm
this conjecture. The correlations seen in Figures 8–10 remain
valid for the whole simulation even after the Truelove et al.
(1997) criterion is violated. They are also found at lower
significance in the 2563 resolution simulation.

The number of cores found with CLUMPFIND from t ¼ 0:0
to 2.25 basically increaseswith time, as shown in Figure 7. Some
cores are destroyed by the supersonic turbulence in the simu-
lation. At the same time, some other cores actually merge to
form more massive cores through gravitation (e.g., Bonnell
et al.1997,2001a,2001b; Klessen & Burkert 2000). Figure 11
shows the merging of two cores, or, to be more specific, the
accretion of a small clump by a massive clump. The three col-
umns of subplots in Figure 11 show views along three different
axes of the merging sequence. The time interval between two
rows is 0.05� ff . As the result of core mergers and accretion
of surrounding material, the final cores possess much larger
angular momentum than the initial clumps. This leads to
the formation of disklike cores during the simulation. This
phenomenon is entirely absent in isolated star formation simu-
lations,which consider only a single, gravitationally bound core.

4.3. Core Mass Spectrum Evolution

It is interesting to examine the effect of core mergers on the
core mass spectrum. In Figure 12 we plot the evolution of the
core mass spectrum from t ¼ 0 to the end of the simulation. In
each panel we plot a power law with slope �1.29 for refer-
ence. As discussed in x 3.2, at t ¼ 0, the core mass spectrum
resembles closely a lognormal distribution, and the slope of
the high-mass wing is consistent with the power law with
index predicted by turbulent fragmentation theory (Padoan &
Nordlund 2002). There are some fluctuations of the core mass
spectra at later time, but the slopes of the high-mass wing
remain about the same until t � 1�A. The slope becomes
shallower at yet later times, but we do not have too much
confidence in the correctness of the core mass spectra after

t ¼ 0:65�A, as the centers of the cores become unresolved.
The hydrodynamical simulation by Klessen (2001), using
SPH and sink particles, also shows shallower slope at the later
stages of the simulation, which he attributes to the coalescence
of cores, but again, fragmentation in the centers of cores is
suppressed, in this case by the use of sink particles. Even if the
trend of increasingly shallower slope in core mass spectra is
qualitatively correct in our simulation, the rate of slope in-
crease may be overestimated. Our assumed periodic boundary
condition means that the cores have no place to disperse ex-
cept merging in the later stage. The finite resolution in the
simulation prevents cores from collapsing as far as real cores
would, so that the simulated cores have larger cross sections
for merging (Paper I). Nevertheless, for a dense cluster, the
core merging rate may still be high. Recent millimeter-wave
observations of cloud cores also reveal mass spectra of clumps
similar to the stellar IMF (e.g., Motte, André, & Neri 1998;
Testi & Sargent 1998), with slope of the high-mass wing of
approximately �1.1 to �1.5, closer to the Salpeter �1.35 than
that derived for gaseous clumps of �0.5 (Blitz 1993), using
the form of IMF definition in equation (5). Our simulations are
in good agreement with these studies.
Because of the higher resolution of our 5123 simulation, we

have many more cores to analyze than in Gammie et al. (2003;
see their Fig. 4), and we are able to demonstrate a core mass
distribution similar to the general IMF. Note that not all ma-
terial within a core will finally end up in the protostar. In x 5
we find out that more than half of the core mass resides out-
side the central region. Even material inside the central region
may be evaporated or ejected away during star formation. In
addition, the cores that we observed in the simulation may
further fragment into binaries or even multiple systems if
the resolution of the simulation can be increased further. The
Truelove et al. (1997) criterion is eventually violated at the
centers of our cores (see x 5), so we cannot follow this evo-
lution. We note that, despite the emphasis on artificial frag-
mentation because of the particular test problem chosen by
Truelove et al. (1997), regions that are underresolved by their
criterion may also show too little fragmentation if the geom-
etry is less pathological. Competitive coagulation (e.g., Silk &

Fig. 10.—(a) Average density �h i vs. core radius R at t ¼ 0 (open circles) and 0.65� ff (open triangles). Basically, core radius is unrelated to core average density
(Ballesteros-Paredes & Mac Low 2002). (b) Core radius R vs. core mass Mcore at t ¼ 0 (open circles) and 0.65� ff (open triangles). The straight line is a power law of
index 2.75. All quantities are in scaled system units.
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Takahashi1979; Lejeune & Bastien1986; Murray & Lin 1996;
Bonnell et al. 2001a, 2001b) may reshape the final IMF when
gravitation becomes more important. Therefore, we cannot
reach a definite conclusion that the final stellar IMF is similar
to the core mass spectrum.

4.4. Core Shapes and Orientation

Gammie et al. (2003) recently studied gravitationally col-
lapsed clumps in decaying MHD turbulence simulations on
2563 grids with different magnetic field strengths. In our 5123

driven turbulence simulation, vA=cs ¼ 1:5, which is close to
the value for their run C. Using the same definition and symbols
of principal axis lengths and ratios as in Gammie et al. (2003),
we calculated the principal axes of the cores in our simulation
at t ¼ 0, 0.65� ff , and 1.31� ff and plotted the axis ratios in
Figure 13. It is useful to divide the lower triangular part of
the figure into three regions: a prolate region of b=a ¼ 0 0:33,
a triaxial region of b=a ¼ 0:33 0:66, and an oblate region of
b=a ¼ 0:66 1. The result from our higher resolution driven
run basically resembles that of Gammie et al. (2003; see their

Fig. 12). The majority of cores are prolate or triaxial in shape,
even near the end of our simulation. We also see a small
number of cores that become oblate late in the simulation, with
large axis ratios. This implies that some cores become disklike.
Figure 14 shows the angles between the shortest core axis and
the density-weightedmeanmagnetic field in cores at t ¼ 0:65�A
(dot-dashed line) and 1.31� ff (solid line). We see a slight
correlation in the angles between the shortest core axis and the
density-weighted local mean magnetic field at t ¼ 0:65�A and
an even stronger correlation at 1.31� ff , which is different from
the result of Gammie et al. (2003). This difference could
possibly be a result of higher resolution in our simulation.

5. DISKLIKE CORES

In Figure 13 we see a relatively small number of cores
inside the oblate region. The cores are too small to study at
t ¼ 0 but large enough to study at t ¼ 1:31�A. Most of these
cores have a well-defined disklike appearance that could
provide some hints about protostellar disk formation. Before
we begin the discussion of disklike core, we must emphasize

Fig. 11.—Different views of a core accretion event along the x-, y-, and z-directions. The time interval between two rows of the figures is 0.05� ff. Core merging
and accretion of large material clump are an important process in forming disklike cores.
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that for some cores, the density of the inner cells grows so
high that the local Jeans length is no longer resolved in their
centers, violating the Truelove et al. (1997) criterion. Unfor-
tunately, these cores are also the largest whose physical
properties can be studied with reasonable statistical signifi-
cance. Other models using SPH and sink particles also find
disklike cores in the later stages (e.g., Bate et al. 2003). Al-
though our cores are underresolved at t ¼ 1:31�A, the external
disks of cores may still provide some useful information on
the dynamics of core accretion. With the clear realization that
even higher resolution will ultimately be needed to properly
address the structure of these objects, we proceed with an
analysis of the data we have in hand, bearing in mind that our
5123 model is the highest resolution driven, self-gravitating
MHD simulation currently available.

5.1. General Properties of Disklike Cores

We select 12 cores inside or near the oblate region in
Figure 13 with well-defined disklike appearance and tabulate
their mass and diameters in Table 1. The cores selected are

shown in the surface density map (Fig. 15). Core numbering is
arbitrary. The orientation of the disklike cores is uncorrelated
to the three-dimensional grid in the simulation even though
they accidentally appear correlated in Figure 15. We have
examined the orientation of the shortest axis of each disklike
core, and they are basically random with respect to the three-
dimensional grid. The corresponding masses and radii using
the high-density scaling mentioned in x 2 are also shown for
easy comparison with observations. The masses of cores range
from 0.1 to 2.5 M�, and the diameters of the disks are a few
thousand AU. The accretion rates of the cores are discussed
later in this section. The 12 cores can be roughly categorized
in two groups: (1) a cluster of seven cores that remain close to
each other in a region with higher mean magnetic field, and
(2) five cores that are basically isolated and with higher spatial
velocity (see Table 1). Cores in category 1 have higher mass,
central density, magnetic pressure, and accretion rates com-
pared to cores in category 2. The mean magnetic field is an
order of magnitude higher inside the cluster. The sizes of both
grouped and isolated cores appear similar. By looking at these

Fig. 12.—Evolution of the core mass spectrum, normalized by the Jeans mass MJ(�0), in the 5123 simulation. The straight line is the power law with index �1.29
predicted by Padoan & Nordlund (2002) for � ¼ �5

3
(see text). The core mass spectra generally show a ‘‘universal’’ IMF appearance (Kroupa 2002) in the simulation

with a clear turnover at the low-mass region. The slope of the high-mass wing of the spectra matches well with the turbulent fragmentation prediction and remains
about the same until t ¼ 0:49�A. Later the slope becomes shallower as the result of core coalescence.
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two categories of disklike cores, we can see some manifesta-
tion ofmass segregation in that low-mass cores are preferentially
found at large radii from the cluster whereas massive cores sink
toward the center (e.g., Bonnell & David 1998).

The mass and sizes of the 12 disklike cores shown in Table 1,
using high-density scaling, are in the range of the recent
observations of young stellar objects that possess disklike
envelopes or circumstellar disks (e.g., Zhang, Hunter, &
Sridharan 1998; Fuente et al. 2001; Hogerheide 2001;
Jayawardhana et al. 2001; Wiseman et al. 2001). Most of
these observations suggest that the sizes of the circumstellar
disks of many young stellar objects are just a few hundred AU
and the sizes of the disklike envelopes are a few thousand

AU. In addition, most of the studied protostars inside the
disklike cores are low- or medium-mass stars of mass �1 M�.
The estimated mass of the circumstellar disk is only a small
fraction of the central star. The more massive objects we find
in our simulation are better thought of as disklike envelopes
rather than true protostellar disks.

5.2. Resolution Study of Disklike Cores

In order to better understand how well the cores are
being resolved in our simulation, we compare them with typ-
ical cores formed in other lower resolution simulations. In
Figure 16 we show images of the projected column density
of four cores from four simulations at the time when the total
mass inside cores is �10% of the total box mass. In the
643 run (first row in Fig. 16), there are four cores found by
CLUMPFIND, and we cannot identify any disklike core (axis
ratio greater than 2:1). In the 1283 run, there are 24 cores
found, and still no disklike core is identified (second row in
Fig. 16). In the 2563 run, there are 38 cores determined, and
four are disklike (third row in Fig. 16). In the 5123 run, there
are 67 cores, and 12 are disklike. In the last row in Figure 16,
we show core 1 from the 5123 run. Note that the coordinates
shown in Figure 16 are grid zones, not spatial distance. The
spatial size of the core in 643 is the largest, but the diam-
eters of cores in 1283, 2563, and 5123 are about the same,
indicating the convergence of core size with increasing sim-
ulation resolution. We can also see that the disklike appear-
ance of cores becomes more pronounced with higher
resolution. Figure 17 shows the surface density profiles of the
cores in Figure 16. The curves are offset for ease of compar-
ison. We can see a converging density profile of the core with
almost uniform density at the center and a power-law distri-
bution of the disk/envelope with higher resolution, as pre-
dicted by other single cloud core simulations. Core 1 has the
largest spatial diameter and is selected for further study below.

5.3. Physical Properties of a Disklike Core

In Figure 18 we show close-up column density images of
core 1 projected along the x-, y-, and z-axes. At the end of the
simulation, core 1 seems to be an isolated core as it is far from
other cores. The closest neighbor is about half a box size
(>0.14 pc) away from it. In fact, core 1 passes through a dense
region at t � 1�A, interacts with several cores, and accretes a
large amount of material. The disk only appears clearly after
this; the core remains isolated thereafter. Gravitational inter-
action among protostars in nascent star clusters is argued to
tidally truncate or even disrupt accretion disks (e.g., Clarke &
Pringle 1991; Hall, Clarke, & Pringle 1996; Scally & Clarke
2001; Kroupa & Burkert 2001). The disklike cores in this
simulation suggest the alternative that disks could survive at
least some interactions. Core 1 is not massive (�0.457 M�),
but the extent of the accretion disk is the largest (>5000 AU)
of all the cores in the simulation. In the z-direction plot of
Figure 18, we can see some evidence of spiral structure in
the disk.

In Figures 19a–19c, the radial profiles of energies, veloci-
ties, and surface densities of core 1 are shown. All the physical
quantities in the radial direction are the average values of
zones binned at the same radius from the center of mass. We
can see that the magnetic energy remains relatively small
compared to the kinetic energy (Fig. 19a). The radial velocity
(dashed line), vrad, of the disk shown in Figure 19b shows a
typical picture of angular momentum transfer inside a viscous

Fig. 13.—The distribution of core axis ratios at t ¼ 0 (squares), 0.65� ff
(circles), and 1.31� ff (triangles). Cores near the diagonal are prolate, and the
cores near b=a ¼ 1 are oblate. The region is divided into three parts, and the
cores inside the middle region are classified as triaxial (Gammie et al.2003).
The majority of cores are prolate or triaxial in shape. The principal axes of
cores are defined such that a > b > c.

Fig. 14.—Correlation of angles between the shortest body axis (êc) and the
density-weighted mean magnetic field (Bl) in the cores at t ¼ 0:65�A (dot-
dashed line) and 1.31� ff (solid line). We observe stronger correlation of the
angles in this simulation than that in the simulation by Gammie et al. (2003)
with similar initial weak field.
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disk, in which friction tries to spin up the outer part of the disk
and spin down the inner part (Lynden-Bell & Pringle 1974).
However, the largest source of viscosity is likely numerical in
our model, so we cannot draw any quantitative conclusions
from this figure.

From the choice of sound speed in the simulation, the unit
velocity corresponds to 2 km s�1. In Figure 19b, the radial
infall rate is �0.07 in model units, corresponding to �0.14 km
s�1, on the order of what is observed or modeled (Williams
et al. 1999; Myers, Evans, & Ohashi 2000). Error bars that

TABLE 1

Physical Properties of 12 Disklike Cores

Core Category Massa Diametera Accretion Ratea
Massb

(M�)

Diameterb

(AU)

Accretion Rateb

(M� yr�1)

1...................... 1 0.0035 0.0977 5.25 	 102 0.457 5642 9.72 	 10�6

2...................... 2 0.0114 0.0586 2.18 	 103 1.489 3384 4.04 	 10�5

3...................... 1 0.0028 0.0547 3.94 	 102 0.366 3159 7.30 	 10�6

4...................... 1 0.0033 0.0508 2.07 	 103 0.431 2934 3.84 	 10�5

5...................... 2 0.0192 0.0625 3.91 	 103 2.508 3610 7.25 	 10�5

6...................... 2 0.0121 0.0547 2.73 	 103 1.580 3159 5.06 	 10�5

7...................... 2 0.0015 0.0430 1.26 	 103 0.196 2483 2.34 	 10�5

8...................... 1 0.0017 0.0586 1.53 	 103 0.222 3384 2.83 	 10�5

9...................... 1 0.0011 0.0313 1.05 	 103 0.144 1808 1.95 	 10�5

10.................... 2 0.0064 0.0586 1.90 	 103 0.836 3384 3.53 	 10�5

11.................... 2 0.0048 0.0781 2.22 	 103 0.627 4511 4.12 	 10�5

12.................... 2 0.0138 0.0195 5.59 	 103 1.802 1126 1.04 	 10�4

Note.—Cores in category 1 belong to a group with density, magnetic pressure, and accretion rate generally higher than those
of category 2 cores found in open space.

a Units in simulation scaling.
b Units in high-density scaling.

Fig. 15.—Column density map highlighting the location of 12 disklike cores at t ¼ 1:31�A. The properties of core 1 are analyzed in detail in x 5.3.
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Fig. 16.—Effect of numerical resolution on core structure when a total of 10% of material is trapped inside cores: 643 ( first row), 1283 (second row), 2563 (third
row), and 5123 ( fourth row). Gray-scale images of column density are projected along x-, y-, and z-axes, and the axes denote cell number. Disklike core structure is
barely seen in 2563 resolution and becomes clear in the 5123 simulation.



plot variances of radial and rotational velocities estimated at
each radius are also shown. The disk is basically in a rota-
tionally supported state. Note that the inward or outward
radial velocity of the disk is not the velocity used in esti-
mating the accretion rate of material to the core in Table 1
because, as we show later in this section, material mostly
accretes onto the core in the direction perpendicular to the
disk after the disk is well formed.
The dot-dashed line in Figure 19b is the theoretical

Keplerian rotation curve (vrot / r�0:5). The actual core rota-
tional curve (solid line), vrot, shows typical Keplerian rotation
in most parts of the disk. The angular momentum conserved
rotational curve (dotted line) is also shown for comparison.
The rotational speed of core 1 is �0.25–0.35 within the radius
of seven zones, which corresponds to �0.13–0.18 rad kyr�1

in angular velocity. It takes about 40,000 yr for the core to
complete one full rotation. Figure 19c shows the surface
density profile (solid line) along with the best-fitting power
law of surface density /r�2.4 (dashed line).
Observationally, most of the information about true proto-

stellar disks is obtained by using the position-velocity (PV)
diagram (Richer & Padman 1991). Note that the information
on rotation and infall obtained from PV diagrams is subject to
large uncertainties if the source is poorly resolved. Figure 20
shows the PV diagram of core 1, observed in the x-direction
along the y-axis (see Fig. 19a). The contours in the PV dia-
gram are logarithmic in column density, which is proportional
to the observed intensity if the disk is optically thin and iso-
thermal. In Figure 20a, the PV diagram is shown at full res-
olution. The relative position (�Y ) in zones is plotted against
the LSR velocity in model units. The shifted appearance of
velocity in the PV diagram is the result of disk rotation. For
qualitative comparison to observations, we convolve the map
with a circular Gaussian beam having FWHM of three grid
zones (Fig. 20b). The dashed curve shows the distribution of
the rotation velocity proportional to r�1, which is characteristic
of angular momentum conserving rotation. The solid curve
shows the distribution of the rotation velocity proportional to
r�0.5, which is characteristic of Keplerian rotation. We can see
that Keplerian rotation better describes most parts of the disk
in this core, although the poor resolution of the PV diagram
limits the strength of this conclusion. If we use this PV diagram
to estimate the point mass of the central star, we would con-
clude that the central mass of core 1 is about 0.21M�, using
the high-density scaling, which is the mass enclosed by the
region of radius < 3:4 zones at the center of this core. We find

Fig. 18.—Logarithmic column density images of core 1 in three directions in gray scale and contours. The contour interval is 0.265. A spiral structure of the
accretion disk is barely visible in the z-direction.

Fig. 17.—Surface density of the cores in four simulations with resolutions
643, 1283, 2563, and 5123, as shown in Fig. 16. The surface densities of the cores
in 643, 1283, and 2563 resolution simulations are scaled by 104, 103, and 10,
respectively, for comparison. With higher resolution, the core surface density
profile converges to a uniform density central region and a power-law disk.
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that the mass of the disk outside this central region is more
than 53% of the total core mass (Table 1). An example of an
object with properties similar to core 1, in high-density scaling,
is IRAS 05413�0104 (Wiseman et al. 2001). IRAS 05413�
0104 is a flattened disklike core of average volume density
105 cm�3, with an envelope of mass �0.2 M� and a disk with
diameter of �12,000 AU, roughly twice the size of core 1.

In Figure 21 we show the velocity and magnetic field
components perpendicular and parallel to the disk for core 1.
The velocity field on the disk plane clearly shows rotation
(Fig. 21b). The edge-on view of the velocity (Fig. 21a) shows
that material above and below the disk is mostly falling onto
the core along the magnetic field lines, as expected when
magnetic field is present.

The accretion rates of all cores at t ¼ 1:31�A are listed in
Table 1. The accretion rate is calculated by integrating the
material falling onto the whole area of the disk above and be-
low. From Table 1, the accretion rates of the 12 cores are in the

range from �10�4 to 10�5 M� yr�1. If we assume that the ac-
cretion rate is constant, the ages of the cores are about 15,000–
50,000 years old, which is only �0.14� ff –0.46� ff. Therefore,
the accretion rates of cores must have dramatically increased
near t ¼ 1:31�A, as expected from a core-collapse scenario. The
rate of accretion onto core 1 is �9:72	 10�6 M� yr�1. On
average, the cores inside the cluster have an accretion rate
more than twice that of those outside. The accretion rates of all
12 cores are basically at the high end of the range of observed
envelope infall rates for protostellar cores (Ostriker 1998).

In x 4.4 we noted a weak correlation between the core minor
axis and the local magnetic field direction. Here in Figure 21c,
the vertical component of magnetic field lines does show a bi-
polar appearance in core 1, but the magnetic field is bent, as a
result of the movement of the core relative to the ambient ma-
terial. The magnetic field component along the disk also shows
rotating features, which indicates that the magnetic field is
frozen and dragging alongwith the rotating disk (Fig. 21d ). This

Fig. 19.—Radial profiles of spherically averaged properties of core 1 at t ¼ 1:31�A. (a) Kinetic (solid line), magnetic (dashed line), and potential (dot-dashed
line) energy distribution along the radius. (b) Rotational (solid line) and radial (dashed line) velocity profiles. The theoretical rotational curves for a Keplerian
rotation (dot-dashed line) and angular momentum conservation rotation (dotted line) are also shown. Keplerian rotation seems to fit better to the data. (c) Surface
density of the core showing a power-law outer profile. The slope of the power-law fit (dot-dashed line) is �3.

Fig. 20.—PV diagrams of core 1. (a) PV diagram before convolution. The contours are the logarithm of column density. (b) PV diagram after convolving (a) with
a circular Gaussian beam with an FWHM of three zones. The solid curve indicates the Keplerian rotation, and the dotted curve indicates the angular momentum
conservation rotation.
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magnetic structure is common for all the disklike cores. In
Figure 22 we show the three-dimensional structure of the
magnetic field in core 6, which is helical as a result of core
rotation. The angular momenta of cores are expected to be
transferred to the ambient material by such helical Alfvén
waves, which in return brake the rotation of the cores (e.g.,
Mouschovias & Paleologou 1979,1980; Basu & Mouschovias
1994).

6. CONCLUSIONS AND DISCUSSION

Molecular clouds are magnetized and in a state of turbulent
motion. It remains an open question whether the turbulence
is sub-, trans-, or super-Alfvénic (e.g., Mac Low & Klessen
2004). Incompressible hydrodynamic turbulence has been
thoroughly studied, but compressible MHD turbulence is still
a relatively young area, especially as applied to astrophysical
problems. In the last decade, numerical studies of compress-
ible turbulence in molecular clouds have revealed important
results that may directly relate to the early stages of star for-
mation. Such simulations still suffer from either lack of
magnetic field, lack of self-gravity, or insufficient resolution.
In this paper we present the results of our latest studies on self-

gravitating core formation in a super-Alfvénic turbulent mo-
lecular cloud.
A statistical analysis of the simulation after the turbulence

has fully developed shows that the power spectra of velocity
and magnetic field basically follow Kolmogorov scaling, even
though the system is compressible and magnetized. This result
is consistent with some other recent high-resolution studies on
super-Alfvénic turbulence (e.g., Müller & Biskamp 2000; Cho
et al. 2003). The power spectra for density, kinetic, and po-
tential energies show shallower power-law indices.
We calculated the core mass spectrum in our high-resolu-

tion simulation, including both MHD and self-gravity, and
followed its evolution. At least at early times when the model
is completely resolved, our core mass spectrum is consistent
with two main predictions of the turbulent fragmentation
theory advanced by Padoan & Nordlund (2002), that the slope
of the velocity spectrum defines the slope of the high-mass
wing of the core mass spectrum, and that the low-mass end
flattens and turns over. Padoan & Nordlund (2002) propose
that this could account for the form of the stellar IMF. At later
times in our model, the slope of the high-mass wing becomes
shallower, possibly because of core coalescence or lack of

Fig. 21.—Vector plots of velocity and magnetic field in core 1. (a) Side view along the x-direction showing material accretion along the polar direction. (b) Plan
view along the z-direction showing disk rotation. (c) Side view along the x-direction showing a distorted bipolar structure of the magnetic field. (d) Plan view along
the z-direction showing dragging of magnetic field by the core rotation. Surface density images are shown in gray scale.
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resolution of fragmentation in central regions of cores. Our core
encounter rate may well be overestimated because of the
choice of periodic boundary conditions and grid resolution.

The simulation that we have presented in this paper is based
on initial conditions that are both favorable and hostile to the
formation of cores. In the case simulated, the molecular gas is
magnetically supercritical with M=Mcr ¼ 8:3. We expect a
priori that gravitational collapse is unavoidable and will occur
eventually. At the same time, the system is subjected to a
strong turbulent driving force producing flows with rms
thermal Mach number Mrms ¼ 10. The turbulence is strong
enough to formally support the entire region, so it could pre-
vent or delay the collapse of cores or even destroy some cores
in the process of collapsing. In Paper II it was shown that in
a simulation on a 2563 grid, with the same initial conditions,
the magnetic and turbulent support could not prevent local
collapse of cores in the molecular cloud. Cores form almost
immediately after the gravitational force is turned on. One of
the motivations for our higher resolution simulation (twice the
spatial resolution and 8 times the mass resolution of the 2563

model of Paper II) is to determine whether stronger Alfvén
wave support may occur when shorter wavelengths are re-
solved in a simulation using the same initial conditions. We
find that gravitational collapse still wins over magnetic and
turbulent support. The 5123 simulation lasts about 2

3
of a full

free-fall time, after the gravitation is turned on, before the first
cell in the computation violates the Jeans criterion (Truelove
et al. 1997) that the local Jeans length be resolved, a factor of
4 longer than the 2563 simulation. A resolution study shows
convergent trends with increasing simulation resolution of
both the fraction of the box mass in bound cores (Fig. 6) and
the core size (Fig. 16).

Our simulation began with the entire box magnetically su-
percritical. However, it is often argued that gravitational

fragmentation will produce smaller and smaller regions that
eventually become subcritical (Mestel & Spitzer 1956). We
found that gravitationally bound cores formed and collapsed
until they were rotationally supported (Fig. 9), while still
having masses at least an order of magnitude over the critical
mass for magnetic support (Figs. 8a–8b). We further found
that the central magnetic field strength depends on the central
density as Bc / �1=2c , suggesting that observations of such
relations do not necessarily point to subcritical cores.

Most of the cores appear to be prolate or triaxial in shape,
consistent with simulation results from Gammie et al. (2003).
However, the correlation of the shortest axis to the density-
weighted local magnetic field of the cores is found to be
stronger in our simulation.

In our simulation, we observe interaction between cores
during close encounters. The continuing accretion of large
amounts of material and merging of cores result in cores with
high specific angular momentum that helps the formation of
disklike structure. The final outcome is highly unpredictable
as both magnetic and turbulent forces are present during the
gravitational collapse process. In our simulation, we have
identified 12 disklike cores with axis ratio greater than 2:1
and large enough for statistical analysis. The sizes and mass of
the 12 cores are in the range of young protostellar objects
observed with flattened disklike structure (Table 1). All the
disklike cores are rotationally supported. Magnetic pressure
support is relatively unimportant for these cores, perhaps as a
result of the large M/Mcr ratio that we chose as an initial
condition. The surface density of most of the disklike cores
has a power-law distribution, as observed in real cores and as
predicted in isolated core-collapse simulations. Instead of
being tidally truncated or disrupted, the core disks survive and
flourish among strong interactions.

Most of the disklike cores appear to be in Keplerian rotation
from their PV diagram. Observationally, many protostellar
disks are found to be in Keplerian rotation (e.g., Wiseman et al.
2001 and references therein). There are still some observed
protostellar disks found to be in non-Keplerian rotation (e.g.,
Myers et al.2000). Wiseman et al. (2001) point out that the non-
Keplerian rotation curve reflects a mass distribution that is not
yet dominated by a central condensation. Furthermore, a system
could be in Keplerian rotation, but a high optical depth would
result in velocity maps that are dominated by the motion in the
outer layers along the line of sight toward the center of the core.
For the 12 rotationally supported disklike cores, a large amount
of matter is still accreting perpendicular to the disks (Fig. 21a);
converted to astrophysical units, this corresponds to substantial
accretion rates (see Table 1). When the mass of the disk keeps
increasing, the gravitational stability of the rotational disk may
be affected. Unfortunately, because of the limited resolution, we
cannot follow the core collapse long enough to see con-
sequences beyond the first hint of spiral structure in the disk.

There is as yet no direct detection of disks around high-
mass (>1 M�) protostars. Fuente et al. (2001) suggest that for
stellar mass greater than 5 M�, destruction mechanisms like
radiation pressure on dust or ionization by stellar ultraviolet
emission may be responsible for the rapid erosion of the
outer disk. However, these mechanisms would only operate
at the later stages of protostellar evolution. Zhang et al.
(1998) point out that the lack of direct detections of disks
around high-mass protostars may simply be due to the greater
distances to high-mass star formation regions, as well as their
clustering, which further complicates the kinematics. There-
fore, the existence of disks around high-mass protostars at the

Fig. 22.—Three-dimensional view of the helical magnetic field through
core 6 caused by core rotation. The solid rendered objects are density iso-
surfaces.
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very early stage of core collapse remains uncertain. It is
important to note that in a number of objects studied at high
resolution with radio and millimeter-wave interferometry,
flattened structures and Keplerian motions argue strongly for
the existence of rotationally supported disks (e.g., Sargent &
Beckwith 1991; Koerner, Sargent, & Beckwith 1993; Dutrey
1996). Improvements in the resolution of both observations and
simulations on the early stage of core collapse in molecular
clouds are vital to understand the details of star formation inside
magnetized turbulent molecular clouds.
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