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ABSTRACT
We revisit the problem of clump formation due to thermal instabilities in a weakly ion-

ized plasma with the help of a linear perturbation analysis, as discussed by Nejad-Asghar &

Ghanbari. In the absence of a magnetic field and ambipolar diffusion the characteristic equa-

tion reduces to the thermal instability described by Field. We derive the critical wavelengths,

which separate the spatial ranges of stability and instability. Contrary to the original analysis of

Nejad-Asghar & Ghanbari, perturbations with a wavelength larger than the critical wavelength

destabilize the cloud. Moreover, the instability regime of isentropic perturbations is drasti-

cally reduced. Isobaric modes with real values of the critical wavelength appear only if the

density dependence of the cooling rate is more pronounced than the temperature dependence.

Isentropic modes arise only if the power of the density in the cooling rate is smaller than 1/2,

which is not fulfilled for CO cooling. We find that ambipolar diffusion is not a dominating

heating process in molecular gas.
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1 I N T RO D U C T I O N

Star formation is a highly complex process whose details are still

not well understood (e.g. Shu, Adams & Lizano 1987; Mac Low

& Klessen 2004). There is no doubt, though, that thermal and

(magneto-) hydrodynamical instabilities play a crucial role in it.

While gravity certainly is the dominant agent once it comes to

actually forming stars (Jeans 1902), the non-linear seeds in molec-

ular clouds necessary for the observed fragmentation (Burkert &

Hartmann 2004) might arise from other instabilities. One strong

candidate is the thermal instability (Field 1965; Burkert & Lin 2000).

The thermal instability rests on a balance between heating and

cooling processes. We choose the atomic interstellar gas and molec-

ular gas, because protostellar cores can only fragment out of their

parent clouds, if these are cold and dense enough. The cooling pro-

cesses are dominated in the atomic interstellar gas by the collision-

ally excited C II line at 158 μm. In molecular gas the cooling process

is dominated by the collisionally excited rotational transition of CO

at 2.6 mm (j=0→1). As long as the gas is optically thin, and barring

additional heating processes, the gas would cool catastrophically if

it were not for a constant background heating source via cosmic rays

and X-rays.

Magnetic fields are omnipresent in the interstellar medium (ISM).

Therefore, they must have an influence of the structure and dynamics

of interstellar clouds. The ratio of magnetic over resistive time-scales

ranges around 1015–1021, so that the field is essentially frozen into

the gas. This has led to the notion of magnetic core support, which
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requires a critical field strength defined by the mass loading of the

field line (e.g. Mouschovias & Spitzer 1976). Observations indicate

that the field is transcritical, meaning that a good fraction of the

cores could well be magnetically supported (e.g. Bourke et al. 2001),

although the converse conclusion seems also valid (e.g. Mac Low

& Klessen 2004).

Therefore, it is interesting to include magnetic fields to an analy-

sis of thermal instability (see e.g. Nejad-Asghar & Ghanbari 2003,

hereafter NAG). In the dense ISM ambipolar drift (Mestel 1985)

can lead to a decoupling of ions and neutrals, a mechanism which

Shu et al. (1987) made responsible for the control of low-mass star

formation. Furthermore, ambipolar drift is associated with a fric-

tional heating rate, which provides an additional heating source in

molecular clouds (e.g. Padoan, Zweibel & Nordlund 2000).

We revisit an analysis by NAG, discussing the balance between

the thermal instability and ambipolar drift in the context of frag-

mentation of the molecular gas phase into clumps. We find that

– compared to the original analysis – the wavelength dependence

of the regions of stability and instability has been inverted. If the

wavelength of perturbation is larger than a critical wavelength,

the cloud gets unstable. Moreover, the instability regime of isen-

tropic perturbations is drastically reduced.

In Section 2, we use a linear perturbation analysis to find the

characteristic equation. The criteria for the domains of stability and

instability are derived in Section 3. Including the cooling and heating

rates to these criteria, we find critical wavelengths. The requirement

of real critical wavelengths leads us to relations between the parame-

ters of the cooling and heating rates (Section 4.1). In Section 4.2, the

physical content of these relations is elaborated by applying them

to specific cooling rates.
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2 E QUAT I O N S

We begin with the equations of magnetohydrodynamics (MHD),

including ambipolar drift, heat conduction and cooling:

∂t ρ + ∇· (ρ vn) = 0, (1)

ρ (∂t + vn·∇) vn + ∇p + (∇ × B) × B = 0, (2)

1

γ − 1
(∂t + vn·∇) p − γ

γ − 1

p

ρ
(∂t + vn·∇) ρ

+ρ � − ∇(K∇T ) = 0, (3)

∂t B + ∇ × (B × vn)

= ∇ ×
{

B
γADερ1+ν × [B × (∇ × B)]

}
, (4)

p − R

μ
ρT = 0. (5)

K is the coefficient of thermal conduction, γ is the polytropic

index of the ideal gas, μ is the mean atomic mass per particle and

R is the universal gas constant.

Equation (4) describes the effect of ambipolar diffusion. γ AD

represents the drag coefficient, which follows from the frictional

force between the ions and the neutrals (for details see Shu 1992).

Furthermore, we use the relation ρ i = ερν
n. This relation repre-

sents the fact that in the equilibrium state the recombination rate

(∼n2
i ) equals the ionization rate (∼nn). Thus ρ i = ερ1/2

n . So in the

equilibrium state ν = 1/2 is valid. Therefore, ν �= 1/2 represents

a deviation from equilibrium state. Since the ion density is much

smaller than the neutral density we approximate ρ = ρ i + ρn ≈ ρn.

The assumption of constant ionization will only be justified if the

recombination time-scale is shorter than the cooling time-scale. For

hydrogen atoms we can derive the recombination time-scale using

the approximation for the recombination coefficient α(2) given by

Spitzer (1978):

α(2) = 2.06 × 10−11 Z 2

T 1/2
φ2 (β)

cm3

s
, (6)

where T denotes the temperature, Z is the nuclear charge and

β = 158 000Z 2

T
. (7)

The values for φ2(β) can be found in table 5.2 of Spitzer (1978).

For the temperatures of the cold atomic gas we derive the following

expression from that table:

φ2 (β) = −152.77
1

T 2/3
+ 82.957

1

T 1/2
+ 104.537

1

T
+ 1.11. (8)

Comparing the recombination time-scales

trec = 1

α(2) n
(9)

with the cooling time-scales (used density and temperature values

can be found in Table 1), we find that the recombination times are

more than a magnitude shorter than the cooling times, supporting

the assumption of low ionization. In Fig. 1 the dotted lines show the

logarithm of the ratio of the recombination time-scale to the cooling

time-scale. As both time-scales are proportional to 1/n we do not

find any density dependence of the ratio.

The net cooling function �(ρ, T) (erg s−1 g−1) is defined by

�(ρ, T ) = �(ρ, T ) − �tot, (10)

Table 1. Temperature and density values for the different components of

the ISM, used to derive the different time-scales. The values are taken from

Ferriére (2001).

Gas Temperature T (K) Density n (cm−3)

Molecular 10–20 102–106

Cold atomic 50–100 20–50

Warm atomic 6 000–10 000 0.2–0.5

Warm ionized ∼8 000 0.2–0.5

Hot ionized ∼106 ∼0.0065

where �(ρ, T) is the cooling rate given by

�(ρ, T ) = �0ρ
δT β (11)

and �tot is the total heating rate given by

�tot = �0 + �′
0 ρν. (12)

In �tot the second term describes a estimation of the heating rate due

to ambipolar drift:

�AD = γADερνv2
d . (13)

So �′
0 ≡ γ AD εv2

d, where

vd ≡ vi − vn = 1

γADρnρi

(∇ × B) × B. (14)

Note that the pressure and gravitational forces on the charged fluid

component are negligible compared to the Lorentz force because of

the low ionization fraction. Therefore, we assume that the drag force

is balanced against the Lorentz force to determine the ion velocity

(see equation 14).

Because we are only interested in the effect of ambipolar drift

heating, we treat all other contributions to the heating rate as con-

stant, since they depend only weakly on temperature and density

e.g. such as photoelectric heating or heating due to cosmic rays and

X-rays (see Wolfire et al. 1995).

The cooling rate defines cooling time-scale by

tcool = kBT

μmH�(ρ, T )
, (15)

where mH is the mass of a hydrogen atom.

Another important time-scale is the local free-fall time-scale

which is given by

tff =
√

3π

32Gρ
(16)

with the gravitational constant G.

Comparing these two time-scales we find that for atomic gas the

free-fall times are at least three orders of magnitude larger than the

cooling times. This is shown by the solid lines in Fig. 1 which give

the logarithm of the ratio of the free-fall time-scale to the cooling

time-scale. For molecular gas the free-fall times exceed the cool-

ing times by at least five orders of magnitude, as shown by the

solid lines of Fig. 2. This time-scale hierarchy means that at the

beginning of fragmentation thermal instabilities are more important

than gravity (used density and temperature values can be found in

Table 1).

For the atomic gas we can achieve a dynamical time-scale by

using

tdyn = L√
c2

s + a2
, (17)
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Figure 1. These plots show the logarithm of the ratio of the different time-scales to the cooling time-scale depending on the temperature for different densities

(n = 20, 30, 40, 50) in the cold atomic gas. The dotted lines belong to the recombination time-scale. The solid and dashed lines correspond to the free-fall and

dynamical time-scale, respectively. As the recombination time-scale is more than one order of magnitude shorter than the cooling time-scale the assumption

of low ionization is valid. At the beginning of fragmentation thermal instabilities are more important than gravity, due to the fact that the free-fall time-scale

exceeds the cooling time-scale by at least three orders of magnitude. The dashed lines show that the cooling time-scale is significantly shorter than the dynamical

time-scale.

Figure 2. These plots show the logarithm of the ratio of the different time-scales to the cooling time-scale depending on the density for different temperatures

(T = 10, 20) in molecular clouds. The solid and dashed lines belong to the free-fall and dynamical time-scale, respectively. At the beginning of fragmentation

thermal instabilities are more important than gravity, due to the fact that the free-fall time-scale exceeds the cooling time-scale by at least five orders of

magnitude. The dashed lines show that the cooling time-scale is significantly shorter than the dynamical time-scale.

where L is the length of the system and a denotes the Alfvén speed.

For the molecular gas the velocity can be up to a factor of 10 higher

due to turbulent motion. We find from the dashed lines in Figs 1

and 2, which give the logarithm of the ratio of the dynamical time-

scale to the cooling time-scale, that for both regimes the cooling

time-scale is significantly shorter than the dynamical time-scale.

In the local homogeneous equilibrium state, we have ρ = ρ0,

T = T0, p = p0, B = B0, v= 0 and �(ρ0, T0) = 0. Moreover, we

set vn ≡ v. We assume perturbations of the form

A(r , t) = A1 exp(ht + ik · r ), (18)

resulting in a set of linearized equations:

hρ1 + iρ0(k · v1) = 0, (19)

hρ0v1 + ikp1 + i(B0 · B1)k − i(k · B0)B1 = 0, (20)

h

γ − 1
p1 − hγ

γ − 1

p0

ρ0

ρ1 + ρ0�ρρ1 + ρ0�T T1 + K k2T1 = 0, (21)

h B1 + iB0(k · v1) − i(k · B0)v1

= ik ×
{

B0

γADερ1+ν
0

× [B0 × (ik × B1)]

}
, (22)

p1

p0

− ρ1

ρ0

− T1

T0

= 0, (23)

where �ρ ≡ (∂�/∂ρ)T and �T ≡ (∂�/∂T)ρ are evaluated for the

equilibrium state.

We introduce a coordinate system with the following unit vectors:

êz = B0

B0

, êy = B0 × k
|B0 × k| , êx = êy × êz . (24)
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The set of equations splits into two subsystems, one depending only

on the y direction and one depending on x and z directions.

The system depending on y describes disturbances perpendicular

to the (B0, k) plane:

hρ0v1y − ikz B0 B1y = 0, (25)

−ikz B0v1y +
(

h + B2
0 k2

z

γADερ1+ν
0

)
B1y = 0. (26)

They have a solution of the form

h1,2 = − (akz)
2

2γADερν
0

± ikza

√
1 −

(
kza

2γADερν
0

)2

(27)

with a ≡ (B0/
√

ρ0) the Alfvén speed.

As the real part of these solutions is negative, the system is stable.

Therefore, we are not interested in these solutions.

For the system in the x, z plane we introduce some ‘shortcuts’:

k2
z = k2 cos2 θ, h′ = k2a2

γADερν
0

, cs =
√

γ
p0

ρ0

, (28)

kρ = μ(γ − 1)ρ0�ρ

RcsT0

, kT = μ(γ − 1)�T

Rcs

+ μ(γ − 1)K

Rcsρ0

k2 (29)

and a few dimensionless quantities:

y ≡ h

kcs

, σρ ≡ kρ

k
, σT ≡ kT

k
, α =

(
a

cs

)2

, D ≡ h′

kcs

(30)

and find the following characteristic equation:

y5 + y4 (σT + D) + y3 (1 + α + σT D)

+ y2
[
γ −1(σT − σρ) + ασT + D

]
+ y

[
α cos2 θ + γ −1(σT − σρ)D

]
+ γ −1α(σT − σρ) cos2 θ = 0, (31)

where θ is the angle between the direction of propagation of the

perturbations and the magnetic field lines, α describes the ratio of the

Alfvén speed to the sound speed (cs), the reciprocal of h′ corresponds

to the time-scale of ambipolar diffusion and thus D represents the

ratio of h′ to the angular frequency of a perturbation propagating

with the sound speed. σρ (kρ) and σ T (kT ) depend on the density

and temperature derivative of the net cooling function, respectively,

whereas σ T (kT ) also depend on the thermal conduction. y denotes

the dimensionless angular frequency, which we are interested in.

3 R E G I O N S O F S TA B I L I T Y A N D I N S TA B I L I T Y

To separate the regions of stability (all �(y) < 0) and instability (at

least one �(y) > 0), we investigate the change of the sign of the

roots, depending on the parameters σρ and σ T , knowing the values

of α, D and θ . The situation for a negligible magnetic field is shown

in Fig. 3 and for a non-negligible magnetic field there are some

examples given in Fig. 4.

For σρ > 0 the change of the sign does not depend on the values

of α, D and θ and can be described by

σρ = σT . (32)

For σρ < 0 and θ = 0 the change of the sign does not depend on the

values of α and D and we can describe it by

σT + 3

2
σρ = 0. (33)

Figure 3. Regions of stability and instability, in the case of a negligible mag-

netic field. The abscissa is the normalized form of the temperature derivative

of �, as modified by thermal conduction in equations (29 and 30) and

the ordinate is related to the density derivative of �. In the shaded area

the system is stable, whereas the unshaded areas represent the regions of

instability. The changes due to a non-negligible magnetic field are shown in

Fig. 4.

If θ �= 0 the change of the sign does depend on the values of α and

D. This leads to regions of semistability.

Semistable indicates that the exact shape of the curve which de-

scribes the change between the region of stability and instability

depends on θ , the angle between the direction of propagation of the

perturbations and the magnetic field lines.

Fig. 4 should be compared to fig. 2 of NAG. Note that from

equations (29) and (30), we find that σ T can only be negative if

�T < 0. As the chosen heating rate does not depend on the tem-

perature, �T can only be negative if d(�0ρ
δT β )/dT < 0. This is

only possible if β is negative, which contradicts the behaviour of

the cooling functions. Thus σT > 0.

With the net cooling function equation (10), we get for σρ :

σρ = μ (γ − 1)

k RcsT0

� (ρ0, T0) (δ − νξ ) (34)

with

ξ = �′
0ρ

ν
0

� (ρ0, T0)
. (35)

Note that equation (35) is the inverse of the expression given by

NAG, equation (25).

Similarly, σ T can be derived as

σT = μ (γ − 1)

k RcsT0

β� (ρ0, T0)

[
1 +

(
λ0

λ

)2
]

(36)

with λ0 = 2π
√

(K T0)/(ρ0β�(ρ0, T0)) and k = (2π/λ).

This expression is derived from equation (29) and (30), so that

σT > 0∀λ. Due to a sign error NAG arrive at a different conclusion,

namely that the final factor of equation (36) is [1− (λ0/λ)2] (Nejad-

Asghar and Ghanbari, private communication).

Since σT > 0 ∀λ, the behaviour of the system will depend on the

sign of σρ . From the definition of σρ (equation 34) we find that the

sign is defined by δ − νξ . The behaviour of that expression will be

discussed in the next section.

For kρ > 0 follows δ > ξν and thus (equation 32)

σρ = σT .

With equations (34) and (36) we find a critical wavelength of

λc1 = λ0√
(δ − νξ )/(β) − 1

. (37)
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Figure 4. Regions of stability and instability. The shaded areas are semistable regions, where the exact shape of the curve which describes the change between

the region of stability and instability depends on θ , the angle between the direction of propagation of the perturbations and the magnetic field lines. For σρ >

0 there are only isobaric instabilities possible, whereas for σρ < 0 there occur only isentropic instabilities.

Compared to the result of NAG the sign of the summands in the

square root are reversed, meaning that real critical wavelengths of

NAG will get imaginary and vice versa. Furthermore, the wavelength

dependence of the stability relation is inverted: if the wavelength of

the perturbation is larger than the critical wavelength (equation 37),

there will occur isobaric instabilities. Otherwise the system is stable

(see equation 44).

For the case kρ < 0, i.e. δ < ξν, we get (equation 33)

σT + 3

2
σρ = 0,

and again with equations (34) and (36) we arrive at a critical wave-

length

λc2 = λ0√
(3/2 (νξ − δ))/(β) − 1

. (38)

Compared to λc3 of NAG (equation 28 of NAG) the sign of the

summands in the square root are reversed. Again the wavelength

dependence is inverted. This time a wavelength larger than the criti-

cal one allows isentropic perturbations. For λ < λc2 the system stays

stable (see equation 45).

As discussed previously it is not possible to reach σT < 0 for

chosen cooling and heating rates. Therefore, it cannot be used to

derive a critical wavelength. Anyhow NAG derived a critical wave-

length and called it λc2, but it also suffers from the sign error in

equation (36).

The behaviour of the isobaric mode can be gleaned from rewriting

σρ and σ T and assuming that the wavelength is a multiple of the

critical wavelength: λ = bλc1.

σρ = μ(γ − 1)

2πRcsT0

�(ρ0, T0) (δ − νξ ) bλc1, (39)

σT = μ(γ − 1)

2πRcsT0

β�(ρ0, T0)bλc1

[
1 +

(
λ0

bλc1

)2
]

, (40)

σT = μ(γ − 1)

2πRcsT0

β�(ρ0, T0)bλc1

[
1 +

(
λ0

λc1

)2
]

− μ(γ − 1)

2πRcsT0

β�(ρ0, T0)
b2 − 1

b

λ2
0

λc1

. (41)

Thus,

σρ = bσρ c, (42)

σT = bσT c + �σT . (43)

For b > 1, i.e. λ > λc1 ⇒ (b2 − 1)/(b) > 0 ⇒ �σ T < 0

⇒ unstable. (44)

For b < 1, i.e. λ < λc1 ⇒ (b2 − 1)/(b) < 0 ⇒ �σT > 0

⇒ stable.

For the isentropic mode we find the same behaviour.

For b > 1, i.e. λ > λc2 ⇒ (b2 − 1)/(b) > 0 ⇒ �σT < 0

⇒ semistable. (45)

For b < 1, i.e. λ < λc2 ⇒ (b2 − 1)/(b) < 0 ⇒ �σT > 0

⇒ stable.

If we take a wavelength, which is a factor b of the critical wave-

length for the isobaric mode (λc1), we find that σρ and σ T changes

proportional to the factor b (see equation 42 and the first summand

of equation 43). If this were correct the system would evolve along

the line which separates the region of stability from the region of in-

stability, when b changes. But in addition σ T has a second summand

(see equation 43). Therefore, (b2 − 1)/b determines the stability of

the system with wavelength λ = bλc1. For b > 1, (b2 − 1)/b is posi-

tive. From the definition of the additional term in σ T , called �σ T , it

follows that �σ T has to be negative. This means that σ T gets smaller

than in the critical case and that therefore we find the new σ T on the

left-hand side of the separation line, where the system is unstable.
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For b < 1, (b2 − 1)/b is negative and therefore �σ T is positive.

Now σ T is bigger than in the critical case and hence the system is

stable. This is expressed in a short way in equation (44).

For the isentropic mode we repeat this analysis. Now we take a

wavelength, which is a factor b of the critical wavelength for isen-

tropic perturbations, called λc2. We find again that σρ and σ T show

a behaviour proportional to b, and that σ T has again an additional

term, which shows the same b dependence as before. For b > 1,

(b2 − 1)/b is positive and hence �σT < 0. This means that σ T gets

smaller than in the critical case and that therefore we find the new

σ T on the left-hand side of the separation line, where the system

is semistable. For b < 1, (b2 − 1)/b is negative and hence �σT >

0. This time σ T is bigger than in the critical case and the system

remains stable. The short version can be found in equation (45).

Summarizing, instability can only occur for λ > λc. Although not

included explicitly in our analysis, an upper length scale limit for

the instability is set by the condition that the sound crossing time be

smaller than the cooling time (see e.g. Burkert & Lin 2000).

4 P H Y S I C A L I N T E R P R E TAT I O N

4.1 Relations between the parameters of cooling and heating
rates

For negligible thermal conduction (K = 0), the critical wavelengths

equations (37) and (38) are zero. This means that independent of

the scale of the perturbation there will always be a collapsing mode.

To find regions of stability and instability we have to assume

a non-vanishing thermal conduction. We begin with the isobaric

criterion. For λc ∈ |R|,
δ − νξ

β
> 1 (46)

is required. As δ and β depend on the cooling function and ν = 1/2

in the equilibrium state, the only free parameter is ξ . We find that

ξ <
δ − β

ν
. (47)

From equation (35) follows that 0 < ξ < 1, where the extremes

correspond to the cases no heating due to ambipolar diffusion (ξ =
0) and only heating due to ambipolar diffusion (ξ = 1). Hence, the

density dependence of the cooling function must be stronger than

the temperature dependence, i.e.

δ > β. (48)

As in the equilibrium state �(ρ0, T0) = �0 + �AD we find that

�0 = �AD

(
1

ξ
− 1

)
. (49)

Isentropic modes could occur, if δ < ξν. This requires that

δ < 1/2. (50)

Then we find that

ξ >
(2/3)β + δ

ν
, (51)

where ξ < 1 still holds.

4.2 Application to cooling rates

For the cold atomic gas C II represents the most important coolant,

because it has transitions which lie in the temperature range of

atomic gas, because this ion is highly abundant, and the relative

ease of collisional excitation (see Pottasch, Wesselius & van Duinen

1979; Gry, Lequeux & Boulanger 1992; Wolfire et al. 1995). An

expression for this cooling rate is given by Spitzer (1978):

ρ�CII = 7.9 × 10−27 exp

(−92

T

)
n2 erg cm−3 s−1. (52)

Since in our formalism we have to write the cooling function as

� = �0ρ
δ Tβ , we parametrize equation (52) for T < 500 K as

�CII = 7.9 × 10−27

μ2m2
H

2.2 × 10−2T 0.60ρ
erg

g s
. (53)

Thus δ = 1 and β = 0.6. It should be remarked that owing to the na-

ture of the exponential and power function, we only get a very rough

estimate. The approximation shows deviations of 20–40 per cent

from equation (52). Depending on the chosen temperature range the

value of β can differ considerably (0.2 � β < 1.1). As δ > 0.5 (see

equation 50) we can only expect isobaric instabilities. Because δ >

β (see equation 48) we can calculate ξ as ξ < 0.8. Thus we find

that �0 > 0.25 �AD. Taking K = 2.8 × 102 erg cm−1 s−1 K−1 (see

Vazquenz-Semadeni et al. 2003) we achieve critical wavelengths of

a few thousandth parsec, above which the system will be unstable.

For molecular gas CO is the most important coolant, because it

has a rotational transition and is the second frequent molecule in

the ISM. We take the CO cooling rate (j = 0 → 1, excitation due

to collisions with hydrogen atoms) given by Dalgarno & McCray

(1972):

ρ�CO = 7.5 × 10−27T 1/2 exp (−5.3/T ) n2 erg

cm3 s
(54)

and rewrite it as (10 � T < 50)

�CO = 7.5 × 10−27

μ2m2
H

3.3 × 10−1T 0.76ρ
erg

g s
. (55)

This means that δ = 1 and β = 0.76. As again δ > 0.5 (see equa-

tion 50) the modes can only be isobaric. Calculating ξ we get that

ξ < 0.48. This means that heating due to ambipolar diffusion only

provides a contribution to the total heat input into the molecular

cloud. Taking �0 > 1.08�AD and K = 2.8 × 102 erg cm−1 s−1 K−1

we achieve again critical wavelengths of a few thousandth parsec.

Another CO cooling rate (excitation due to collisions with He

atoms and H2 molecules), given as a plot, can be found in Gilden

(1984). With a two-dimensional fit we can write it as

�CO = 2.3 × 10−25

μ1.58m1.58
H

T 0.77ρ0.58 erg

g s
. (56)

This time δ = 0.58 and β = 0.77. As δ > 0.5 we expect isobaric

modes, but get an imaginary critical wavelength, because β > δ.

The results are summarized in Fig. 5.

5 S U M M A RY

In this paper we have examined the conditions for clump formation

due to thermal instabilities in the presence of a magnetic field.

Comparing the cooling time-scales to the dynamical time-scales

and local free-fall time-scales, we found that the first of these is

clearly shorter (at least two orders of magnitude) than either of the

other two. This suggests that the gas will lose all memory of any

structure imposed by the cooling instability during its subsequent

turbulent collapse.

A linear perturbation analysis of the MHD equations including

ambipolar drift yields the characteristic equation, following NAG.

Neglecting the effects of the magnetic field, we retrieved the prior
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Figure 5. Isobaric instability regimes in terms of temperature dependence

β and density dependence δ. The isentropic mode is shaded vertically. ∗
represents C II cooling. ♦ (Dalgarno & McCray) and � (Gilden) stand for

CO cooling. + denotes CH cooling, × Si II cooling and � H2 cooling. In

the cases ∗, x and ♦ the critical wavelength is real, meaning that only

in this regime physical conclusions are possible. Whereas in cases � and

+ it is imaginary. This shows the limitation of the method used. Because

of the linearization of the cooling and heating rates it can only be applied

to specific cooling rates. In the case of H2 cooling (�) we have isentropic

perturbations.

results of the linear thermal instability (Field 1965). From the inves-

tigation of the sign of the roots we isolated conditions to distinguish

between regions of stability and instability. Inserting a parametrized

cooling rate and heating due to ambipolar diffusion in these expres-

sions, we derived critical wavelengths λc. Requiring real critical

wavelengths (λc ∈ |R|) led to relations between the parameters of

the cooling and heating rates. To elaborate the physical content of

these relations we applied them to specific cooling rates.

Comparing to the analysis of NAG we found that the wavelength

dependence of the regions of stability and instability has been in-

verted. If the wavelength of perturbation is larger than the critical

wavelength the cloud gets unstable. In the case of isentropic pertur-

bations we still find a region of semistability, where thermal instabil-

ity allows compression along the local magnetic field lines but not

perpendicular to it. However, the parameter space for semistability

and instability is reduced, because for the chosen heating and cool-

ing rates it is not possible to reach a negative temperature derivative

of the net cooling function (i.e. σT < 0).

Molecular clouds with negligible thermal conduction will always

collapse, independent from the length scale of the perturbation. The

upper length scale for instability is set by the sound crossing time

(e.g. Burkert & Lin 2000). To simplify our analysis we have ne-

glected the effect of self-gravity. Taking it into account must be the

aim of a subsequent investigation. We would expect that self-gravity

contributes to fragmentation and accelerates clump formation in

molecular clouds.

Including thermal conduction isobaric modes can only occur if

the density dependence of the cooling rate is more pronounced than

the temperature dependence. We have found also that in molecular

clouds heating due to ambipolar diffusion only provides a contribu-

tion to the total heating rate, which is at maximum 48 per cent of

the cooling rate. To reach an equilibrium state on which the analy-

sis is based, there must be other heating rates which are at least as

important as heating due to ambipolar diffusion e.g. heating due to

cosmic rays and X-rays, reconnection heating or photoelectric heat-

ing on grain surface. They should provide more than 50 per cent to

the heating rate. To get isentropic modes the power of the density in

the cooling rate δ < 1/2, which is not fulfilled for CO cooling, the

most important cooling for molecular clouds.

In the context of our thermal instability analysis, we find only a

weak influence of the magnetic field on the stability of the molecular

cloud.
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