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Abstract

We present a coscaling-grid formalism and its implementation in the magnetohydrodynamics code Athena++. The
formalism relies on flow symmetries in astrophysical problems involving expansion, contraction, and center-of-
mass motion. The grid is evolved at the same time order as the fluid variables. The user specifies grid evolution
laws, which can be independent of the fluid motion. Applying our implementation to standard hydrodynamic test
cases leads to improved results and higher efficiency, compared to the fixed-grid solutions.

Unified Astronomy Thesaurus concepts: Computational methods (1965); Hydrodynamical simulations (767);

Astronomical simulations (1857)

1. Introduction

Many astrophysical phenomena involve evolution in length
scale over orders of magnitude. Supernova and kilonova ejecta
expand from stellar radii to parsecs before fully mixing with the
interstellar gas (Ostriker & McKee 1988; Montes et al. 2016;
Metzger 2019). Ionization and stellar-wind-driven supershells
expand from the scales of a small stellar association to tens of
parsecs (McCray & Kafatos 1987), impacting the ambient gas
and possibly triggering star formation (Elmegreen &
Lada 1977). Protostellar collapse occurs from parsec scales to
a few astronomical units.

Numerical modeling of phenomena evolving over a large
range of scales requires methods capable of adapting the scale
of the spatial discretization. Lagrangian methods such as
smoothed-particle hydrodynamics (Monaghan 1992) achieve
this by following fluid elements defined by a fixed mass rather
than a fixed volume. Eulerian methods—the choice for many
applications because conservation laws are more easily realized
—require adaptive mesh algorithms to cover similar scale
ranges as smoothed-particle hydrodynamics (Krumholz et al.
2007; Klein 2017). Lagrangian remapping combines elements
of Lagrangian methods with those of Eulerian ones, evolving
fluid elements in a Lagrangian frame, but continually
remapping the motion onto an Eulerian grid (Lufkin &
Hawley 1993). A more recent development is moving-mesh
codes, solving flux-conservative problems on meshes that
move with the fluid in a Lagrangian fashion (Springel 2010;
Hopkins 2015), preserving the strength of finite volume
methods over smoothed-particle hydrodynamics for some
applications (Heitsch et al. 2011).

A conceptually simpler alternative to moving-mesh codes
exploits possible symmetries in an astrophysical problem. The
relativistic hydrodynamic codes JET and DISCO have shown
the effectiveness of limiting mesh movement to a particular
direction in cylindrical coordinates (Duffell & MacFa-
dyen 2013; Duffell 2016). While symmetries appear during
spherical and cylindrical expansion and contraction, they also
appear as a “comoving” motion in a single Cartesian direction.
For problems involving a drastic change in spatial scale, a
coscaling grid can be more efficient than adaptive mesh-
refinement techniques (Ropke 2005). If uniformity of dis-
sipative properties is relevant, such as for problems involving

turbulent transport, a coexpanding grid may be preferable over
adaptive mesh refinement. To make use of these advantages for
coscaling grids, we implemented the method in the Eulerian
grid code Athena++ (Stone et al. 2020).3

The grid can be comoving or rescaled, in both cases retaining
the initial cell aspect ratio. The grid evolution is integrated at
the same time order as the fluid variables. The motion of cell
walls necessitates additional wall-flux terms when updating the
fluid variables. The time dependence of the grid scaling is
defined by a user-specified function. The coscaling grid can be
combined with the adaptive mesh capabilities of Athena+-+.

The method improves results of standard test cases. Here, we
include the Sod shock tube test and a spherical blast wave test.
The sphericity of multidimensional blast waves is preserved on
Cartesian grids by a factor of 3 better than for fixed-grid
simulations. While the implementation is a factor ~1.1 slower
across resolutions and processor number than the stock version
of Athena++ for standard hydrodynamics, the advantage of
the coscaling grid lies in its ability to cover spatial (and thus
dynamical) ranges over orders of magnitude, resulting in a net
efficiency gain.

2. Formalism

Eulerian ideal magnetohydrodynamics solve the conserva-
tion laws

"
WD - ¢ w0 @

The row vector U’ contains the conservative variables. The
matrix T' has columns with the flux of each conservative
quantity. These fluxes have rows corresponding to the various
coordinate directions (Xi, X,, and &3) (Stone et al. 2008). The
length of U” depends on the physics of the problem. For ideal
MHD, U” has eight components and the matrix T has three
rows and eight columns. Altogether, the right-hand side is the
flux divergence. For a Cartesian grid, the matrix T has the form

T=F"*+G"™y +H"3 2)

3 https://github.com/roarkhabegger/athena-TimeDependentGrid
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where each boldfaced vector of conservative variables is the
flux of those quantities in the given direction.

By integrating Equation (1) over a discrete volume AV, the
differential equation becomes an integrodifferential equation.
For static grids, this equation can be rewritten as an ordinary
differential equation for the conservative variables U of each
cell, indexed by (i, j, k):

d 1
ZU,-J,k = _E(E+%,j,k - Ef%,j,k)
1
- E(Gi,jJr%,k = Gij-14)
J
1
- E(EJ‘,IHr% — Hj—1), ®)
k

where the conservative variables U are averaged over the cell
volume and the flux vectors F, G, H are averaged over a cell
wall (see Stone et al. 2020; Felker & Stone 2018). In
Equation (3), we have removed the row and column vector
notation since there are no vector operations left. Therefore,
either case (row or column vectors) would satisfy the equation
as it is shown. We show a more detailed derivation of
Equation (3) in the Appendix.

A critical part of the discrete averaging leading to
Equation (3) is moving the time derivative out of the volume
integral on the left-hand side of Equation (1) (see the
Appendix). The justification for that step is the Reynolds
transport theorem for a quantity f over a volume V and
boundary B,

%j;/de:j;dV%JrLdA(W'ﬁ)f )

For a static grid, the velocity w of the boundary is 0, so
Equation (4) reduces to

%j; de:fvdV%, (5)

allowing the time derivative to be moved in and out of any
volume integral.

A coscaling grid will lead to additional fluxes due to moving
cell walls, rendering the surface integral in Equation (4)
nonzero (Springel 2011). The differential equation now reads
(see Appendix A.2 for details)
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where W, V, § are the volume-averaged wall fluxes in the
various Cartesian coordinate directions. For example, the
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average wall flux in the & direction is given by the integral

1
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While implementing the above correction is an important
step, there is another correction hidden in Equation (6). The
code will use a time integrator to solve the differential equation.
Regardless of the particular integrator, the time integration
reads

Ut = U (1)

WLk =

" 1

;f df[iUl;j,k]- (8)
g dt

This assumes a static grid. The assumption is hidden in the

notation: for a static grid, the volume averages of U are taken

over the same volume. To correct for this in the time-dependent
grid case, we need to change Equation (8) to
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Here, V;;«(?) is the volume of the (i, j, k) cell at time 1.

Thus, a comoving, coscaling, or generically time-dependent
grid requires two corrections. The first is to include cell-wall
movement by using the true flux (Equation (6)). The second is
to include the change in cell volume, scaling the conserved
quantities (Equation (9)).

Ujx (") = [U:ji (1)

3. Implementation

Athena++ solves Equation (1) over a static grid (Stone et al.
2008, 2020). A coscaling grid requires the integration of the
grid’s motion over time, in addition to the integration of the
physical variables. After this grid integration, we add
corrections to the physical variables in the form of wall fluxes
and volume scaling (Section 3.1; derived in Section 2). Finally,
all coordinate variables need to be updated throughout the full
mesh hierarchy, including derived quantities such as cell
volumes and areas, and reconstruction coefficients. This
requires changes to the task list implemented in Athena++
(Section 3.2).

3.1. Wall-flux and Volume-change Corrections

To include the corrections to the update equation
(Equation (6)), we need to approximate the wall-flux integral
(Equation (7)). Assuming the cell wall’s velocity and the
conservative quantity are constant on the cell wall, Equation (7)
reads

Wi gk = welxis 3, DU (i1, 1), (10)

providing a simple definition for the wall flux.

To add these fluxes, we introduce an “expansion” source
function. Here, we add the wall fluxes to the conservative
variables in the same manner used in the base Athena++ code
to add the hydrodynamic fluxes (except we need to consider the
difference in sign, see Equation (6)). Then, we multiply all
conservative variables by the volume expansion factor
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Figure 1. Changes to the task list in Athena++ for the coscaling-grid module.
The orange shaded boxes (with black borders) show the normal progression
through the task list during a given substep of a time integrator. The green
boxes (with no borders) and dashed arrows are the detours necessary for a
coscaling grid. For simplicity, we only show base Athena++ tasks affected by
the coscaling grid. For more detailed flow charts of Athena++- task lists, see
Stone et al. (2008, 2020).

Vi (@) (Vi (")~ (see Equation (9)). With this last step,
the conservative variables are fully updated. These steps are
shown as a part of Figure 1.

3.2. Task-list Changes

Athena+-+ uses a task list to control and optimize the
sequence of operations necessary to solve Equation (1) (Stone
et al. 2008, 2020). For any time integrator, the code completes
the task list for every time substep. For example, when Athena
++ runs with a fourth-order time integrator, the task list
completes four times during a time step, once for each substep.
Each loop through the list is slightly different, because Athena
+4 uses minimum-register time integrator methods (Ketch-
eson 2010). By incorporating the coscaling-grid integration
into this task list, the implementation works for any time
integrator available in Athena++.

The coscaling grid requires additional tasks during a substep.
The first is an evaluation of the user-prescribed velocity
function for every cell wall of the grid. The second task takes
those stored velocities and integrates the grid, over time, to
determine where each cell wall will be at the end of the substep.
The third edits the stored coordinates to reflect the change in
location of each cell wall. The other detour boxes in Figure 1
regarding wall-flux calculation and correcting the conservative
variables are implemented within other tasks in the task list.

The first two new tasks are executed before any hydro-
dynamic or magnetic field calculations, since the wall velocity
function only uses information from the previous time substep
(see Figure 1).

We update the coordinate grid after the conservative and
primitive variables have been fully updated, and before
boundary values are calculated for the next time substep. As
a result, all variables (grid and physical) are fully updated and
available for output or the next integration step.
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4. Tests

We assess the accuracy and stability of the coscaling-grid
implementation with the 1D Sod shock tube (Sod 1978; Stone
et al. 2008), and with the 2D cylindrical blast wave. For the
latter, we compare the accuracy and computational cost of our
implementation to the equivalent static-grid simulation. To
highlight the applicability of the coscaling grid to astrophysical
problems, we finish with the evolution of a blast wave from
free expansion to the Sedov—Taylor phase.

Each test uses a gas with a specific heat capacity ratio v = g

4.1. Sod Shock Test

The Sod shock tube is a popular test of a numerical code’s
accuracy and stability (Sod 1978; Stone et al. 2008) by
comparing the numerical solution to the corresponding
Riemann problem (e.g., Toro 2019). The initial conditions of
the test are a density and pressure discontinuity at the origin
with O velocity throughout the simulation. The test uses
Cartesian coordinates in one dimension.

The left side of the initial discontinuity has density p; =1
and pressure P;= 1.0, whereas the right side has density
pr»=10.125 and pressure P, = 0.1 (Sod 1978).

Figure 2 compares a coscaling-grid simulation (64e5) with a
static grid at the same number of grid points (64s). We also
show a higher-resolution static-grid simulation (2048s) as an
approximation of the analytic solution.

For the coscaling grid, the domain initially extends
over —0.1 <x< 0.1 and expands by a factor of 5, reaching
the static-grid domain size of —0.5 < x < 0.5 at = 0.25. Thus,
the final output of the simulations can be directly compared
(see Figure 3). The expanding grid keeps the cell size uniform.

In terms of code validation, the solution for the coscaling
grid is consistent with the analytic solution (Figure 2).
Specifically for x <0, the coscaling grid approximates the
analytic solution more closely than the static grid. Large
differences are expected at the discontinuities (see also
Figure 3), since the discontinuities cannot be resolved—slopes
just get steeper with increasing resolution. Generally, slopes are
slightly steeper for the coscaling grid, suggesting that tracking
the three waves with the coscaling grid improves the accuracy
of the solution. Figure 3 indicates the coscaling grid is more
accurate over the evolution of the test, with steeper disconti-
nuities and a more accurate shock location.

The expanding and static simulations used a piecewise linear
reconstruction method. The piecewise parabolic reconstruction
method (PPM) is known to cause oscillations in the velocity
(Lee 2011). PPM combined with the coscaling grid results in
higher oscillations than when using the static grid. Since the
coscaling grid requires more time steps and thus more
reconstructions, oscillations can reach higher amplitudes.

4.2. 1D Blast Wave Test

Our second test is the one-dimensional blast wave in
spherical coordinates. This allows us to check the volume
expansion correction in other coordinate systems. The initial
condition consists of an inner region with r < 1.0, which is
overpressured by a factor of 10* and overdense by a factor of
10°  with respect to the ambient medium (P, =0.1,
Pamp = 1.0).

As for the Sod shock tube, we compare three models, one at
high resolution (1000 grid points), and the fixed- and
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Figure 2. The primitive variables for the Sod shock tube at # = 0.25. The line
corresponds to a resolution of N = 2048 on a static grid, and the green circles
represent a static-grid model at N = 64 cells. The corresponding coscaling-grid
model at N = 64 is indicated by the brown plus markers. The latter starts out
with a domain [—0.1, 0.1] and expands to the domain shown by a factor of 5.

expanding-grid models at 100 grid points each. Figure 4
summarizes the results, showing the density profile and
normalized residuals for two time instances. While disconti-
nuities introduce large residuals, the shock position is more
accurately traced by the coscaling-grid model—for the fixed-
grid model, the shock position leads compared to the high-
resolution model.
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Figure 3. Time evolution of the Sod shock tube. The top row shows the density
profile for the three models 64e5, 64s, and 2048s, and the bottom row the
normalized residuals with respect to the 2048s model. Large errors at the
discontinuities arise because the discontinuities cannot be resolved physically.
For smooth flow regions, the coscaling-grid solution approximates the 2048s
simulation more closely.
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Figure 4. Density and normalized residual profiles at two times for the
spherical 1D blast wave at a resolution of 100 cells. Residuals are calculated
with respect to the static high-resolution simulation at 1000 grid points (blue
solid line). Discontinuities introduce large residuals. The expanding grid
initially matches the resolution of the high-resolution profile, leading to more
accurate shock locations.

Early in the expanding simulation, the peaks are significantly
more resolved than in the static-grid simulation. The sharpness
of discontinuities plays an important role in radiative losses.
Therefore, simulations with radiative losses will be more
accurate if they use a coscaling grid.

4.3. 2D Blast Wave Test

We test the multidimensional performance of the coscaling
grid via the 2D blast wave, both for cylindrical and Cartesian
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Figure 5. Density maps of four two-dimensional cylindrical blast wave models.
For reference, a red circle is plotted at » = 22.5 in all the maps. This is the
radial coordinate of the peak in density for the cylindrical simulations. Models
on cylindrical grids (left, n, = 512) are nearly indistinguishable. The strength
of the coscaling grid (bottom row) becomes clear when comparing Cartesian
grid models (right column, n, = n, = 512). Rayleigh-Taylor fingers triggered
by the discretization are nearly uniformly distributed for the coscaling grid.

coordinates. Cartesian coordinates introduce directionally
dependent numerical diffusion, since the resolution is effec-
tively lower along the diagonals by a factor of v/2.

Figure 5 compares four 2D blast wave models. Cylindrical
models on a grid with resolution (n,, ng) = (512, 64) are shown
on the left, Cartesian ones at linear resolution of 512 on the
right, while the top row shows static-grid models, and the
bottom row coscaling-grid ones. We track the shell to
determine the grid expansion rate required to keep the blast
wave within the simulation domain.

The cylindrical models are essentially indistinguishable, as
expected. Using cylindrical (instead of spherical) coordinates
allows us to more easily compare to the 2D Cartesian case.

Both Cartesian cases suffer from directionally dependent
numerical diffusion, yet the coscaling grid achieves a more
spherical solution. We expect Rayleigh-Taylor fingers to be
triggered at the grid scale. Since the expanding grid starts with
a smaller scale, the instabilities are seeded at a smaller scale,
leading to a more uniform distribution of Rayleigh—Taylor
fingers and a more circular appearance of the blast wave.

Figure 6 provides a more detailed view of the deviation from
sphericity. The vertical axis measures the difference between
the largest outer radius and smallest inner radius of the shell Ar
for the Cartesian grid, normalized by the same quantity for the
cylindrical grid. An effective shell thickness ratio of

_ Arn

Arcyl

=1 (11)

indicates a perfectly circular ring. The less circular the shell, the
larger Ar,y will become, and thus R > 1. Results for the
coscaling grid (solid lines) improve with higher resolution.
With time, deviations from circularity grow because the
discretization leads to Rayleigh-Taylor instabilities (see
Figure 5). The effective shell thickness ratios R for the static
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Figure 6. Deviation from circular shape (Equation (11)), against time, for the
blast wave on a Cartesian grid. The dashed lines are static-grid simulations and
the solid lines are expanding-grid simulations. At the same resolution the
coscaling-grid simulations produce shells which are more uniformly circular.

grid (dashed lines) are at least a factor of 2 larger than for the
coscaling grid and vary substantially with time right from the
start of the shell expansion.

4.4. Performance

To compare the performance of the stock version of Athena
++ with the coscaling-grid implementation (Figure 7), we ran
the blast wave test in three dimensions in Cartesian coordinates
at a resolution of 256> and 512%. We use basic hydrodynamics,
i.e., no magnetic fields or other additional physics, except for
the coscaling grid. The coscaling-grid implementation tracks
the stock version closely, running at 90% of the base speed for
small processor numbers, and without perceptible loss for large
processor numbers. This behavior extends to the 512°
resolution, and thus seems resolution independent, demonstrat-
ing that our modification to Athena++ is minimally invasive.
While the additional steps clearly slow the code down, the
speed decrease is offset with increased accuracy of the
coscaling implementation (Section 4.3).

4.5. Long-term Blast Wave Evolution

As a final demonstration of the code’s capabilities, we follow
the evolution of a point explosion from free expansion to the
Sedov-Taylor phase as in a supernova or kilonova remnant
(Ostriker & McKee 1988; Montes et al. 2016). During free
expansion, the velocity is constant and the radius scales as
ry o< t. When the ejecta mass reaches the mass of the swept-up
ambient gas, the blast wave enters the energy-conserving
Sedov-Taylor phase with ryox #/3. Once radiative losses
become dominant, the snowplow (momentum-conserving)
phase is reached. Here, we only consider the first two phases,
leaving the implementation of radiative losses for a later
contribution. The explosion is initialized with a total energy of
E = 10®, with kinetic energy Ey, = 0.99E. The ejecta density is
set to p, = 10* within a radius of r,(0)=1.2. The ambient
density and pressure are p,=10"> and P,=10"". These
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Figure 7. (a) Speed of the fixed grid (circles) and coscaling grid (triangles)
against processor number, as a strong scaling measure. (b) Efficiency of the
fixed and coscaling grids measured with respect to base efficiency of the fixed
grid using one processor. The coscaling grid tracks the stock version of Athena
++, running at ~90% of the base speed for small processor numbers, and
without perceptible loss for large numbers.

values result in a transition radius between free expansion and
Sedov—Taylor phase of

1/3
rep = rs(O)(&) — 120. (12)

a

We implemented the test for the expanding grid at 128 grid
points and for the fixed grid at an approximate equivalent of
8192 points (Figure 8). Results agree with the analytical
estimate for both implementations. The advantage of the
expanding grid is obvious—it can follow the evolution to
arbitrary time values. A more sophisticated implementation
would include radiative losses to allow the blast wave to enter
the snowplow phase.

5. Discussion

The coscaling-grid implementation provides a generalization
of the coexpanding-grid formalism of Ropke (2005), applicable
to expanding, contracting, or comoving frames. Its closest
relative is Lagrangian remapping (Lufkin & Hawley 1993),
where the fluid equations are solved in a Lagrangian frame to
reduce advection errors, but the solution is interpolated
(remapped) back onto an Eulerian grid. The underlying grid
in our method is not strictly Eulerian any more, requiring
additional fluxes due to cell-wall motion. Therefore, the effect
of the grid motion can be integrated at the same time order as
the fluid equations. The grid shape cannot change, which
renders the method less flexible than moving-mesh codes
(Springel 2010; Hopkins 2015). While dissipative properties
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Figure 8. (a) Blast wave radius against time for the fixed-grid (8192f) and the
expanding-grid (128e) model. Gray solid lines indicate the transition radius
(Equation (12)) and time. (b) Logarithmic slope of r(¢), indicating the transition
from the free expansion to the Sedov-Taylor phase (d(Inr)/d(Int) = 0.4).

can vary with time due to expansion or contraction of the
underlying grid, they stay constant across the grid, in difference
to adaptive mesh-refinement techniques (Fryxell et al. 2000;
Teyssier 2002; O’Shea et al. 2004; Cunningham et al. 2009;
Stone et al. 2020). The closest implementations to ours are JET
and DISCO, two moving-mesh codes which are restricted to
singular dimensions (Duffell & MacFadyen 2013;
Duffell 2016).

6. Summary

We present an implementation of a coscaling (expanding,
contracting, or comoving) grid for the magnetohydrodynamics
code Athena++ (Stone et al. 2020). The method can be used to
follow the evolution of a system over orders of magnitude in
scale, as long as the underlying assumption of an existing flow
symmetry persists. The scaling prescription ensures the
preservation of cell aspect ratios. The method’s main strength
lies in covering orders of magnitude in spatial scales for
isotropically expanding or contracting systems, or for comov-
ing systems, while keeping dissipative properties constant
across the grid. It provides less flexibility than moving-mesh
codes, but it can be combined with Athena++’s native
adaptive mesh refinement.

We thank the University of North Carolina at Chapel Hill’s
Information Technology Services for providing the computa-
tional resources.

We also thank Dr. Ellen Zweibel for her help in editing this
paper and for encouraging the completion of this project. This
work was aided by Dr. Zweibel’s NSF grant AST-2007323.
We thank the anonymous referee for a very constructive report,
and especially for pointing out an inconsistency in an earlier
version of our grid implementation.
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Appendix
Update Equation Derivation

We show the derivation for both time-independent and time-
dependent grids (including our coscaling example) to highlight
their differences, using a Cartesian grid as an example.

A.l. Fixed Eulerian Grid Method

For a static, time-independent grid, the integration of the left-
hand side (LHS) of Equation (1) over space gives

oU(X, 1) d N
=2 U . Al
J;/ dV[ ot ] dt j\; W&, n] (AD

Because the volume is independent of time, we can move the
time derivative outside of the volume integral (see
Equation (5)).

We then apply the same integration to the right-hand side
(RHS) of Equation (1). Considering a Cartesian coordinate
system with unit vectors %, y, Z, the matrix of fluxes can be
split into the directional quantities (F, G, H). This means the
RHS is

. f VIV - (FT% + G5 + HT%)). (A2)
1%

By splitting the above volume integral into its constituent
directions, the gradients in each direction can be removed. The
integral of the flux divergence in the £ direction is

oF
i dv[a_x] = [tk 0~ Faw ol a3

where x;, and x, are the upper and lower bounds, respectively,
of the volume V in the X direction.

Using notation from Stone et al. (2008) and Stone et al.
(2020), the LHS and RHS can be written in a computationally
usable form. The first step in using this notation is to consider
solving the equation on a computational grid or mesh, where
each direction (x, y, z) is indexed by an integer (i, j, k) and each
cell in the grid has a unique tuple of these integers. Each cell
has a volume which we define as V; ;. With these assumptions,
the volume average of the conservative values U at time 7 is

Uy = fv (U, <2, %2, D1dV. (A4)
i.j.k

(N
Written with this notation, the LHS (Equation (A1)) becomes
dU;

|\ . A5
.k dt (AS)

We also need to define the integral over the divergence of the
fluxes. To discretize Equation (A3), we can use the term

1
ij Az

[[dvdztF iy z0n a6

Eiijr=

where x;, 1 is the upper bound of the cell centered (with respect
to the & coordinate) on x;. The Ay; and Az are the width of the
cell in the y and Z directions respectively. Equation (A6) is the
value of the flux of each conservative variable at the given wall
of the cell. This notation can be used not only for F, but also
for G and H. Altogether, the RHS (Equation (A2)) can be
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written as
—[Ay; Aze (B ik — F-1j0 + Axi Az (Gt — Gij-1x)
+ Axi Ay (Hijis+ ) — Hijr— 1] (A7)

Combining the LHS and RHS, we get the update equation
(Equation (3)) for a discrete Cartesian grid. This is the final
update equation and it is used in Athena++ to evolve the
system (Stone et al. 2008, 2020). The entire derivation assumes
that the grid does not depend on time. The next section outlines
how the update equation changes when cell positions and sizes
depend on time.

A.2. Time-dependent Eulerian Grid Method

The most important change to the static-grid update equation
(Equation (3)) derivation in the coscaling-grid case comes from
the Reynolds transport theorem, Equation (4). Integrating
Equation (1) over space to make the LHS into Equation (A1) is
still valid in the moving-grid method. However, we cannot
simply move the time derivative outside of the volume integral.
Instead, the LHS will be

f dv[av(x’, t)]
1% ot

d
o oMU
= o o dViU, 1)] — fB dA(w - U (A8)

The above expression clearly indicates that there is an
additional flux due to grid motion w. This term can be directly
incorporated to the RHS expression. Moving the extra term in
Equation (AS8) to the RHS, Equation (A2), the RHS for a
Cartesian grid becomes

f[f dVIV' - (FT% + GT5 + H”%)]
14
_ f dA (¥ - ﬁ)U]. (A9)
B

This is the most general formulation of the so-called “true flux”
(Springel 2011) for a time-dependent grid. As seen in the fixed-
grid derivation, the volume integral of the fluxes becomes an
area average over each directional flux, F, G, and H. The RHS

will be
OF 0G OH
[ av|Z=+E 4 55
[fx./(z) [ ox 0y Oz ]
- Zﬁlzlf dA me], (A10)
Anm

where we have split the integration over the boundary B into a
sum of integrals over the six walls of the Cartesian volume
element. The velocity w,, = W,, - fi,,, is evaluated on the wall in
the direction of the normal vector to A,,.

Ignoring the y and z directions, the RHS is

—[ S J, dvdetFosp = Feiy
v z(t
— DG DU Gy ) = wel- UG DL (AL

The negative sign for the flux at the x;_1 wall results from the
normal vector 7 = —X at that wall. Taking note of this
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relationship between 7 and £ allows us to write the flux using
the x component of w at that wall, which is defined as w, (x;_ ;).

To formulate a new update equation, we need to define a
wall flux for the various directions. We use W, V, and S to
denote the wall flux in the x, y, and z directions respectively. As
a result, the numerical term for the moving wall flux is

1
Wil ifpg=——
+2’J,k ijAZk
X [fdydzlw iy s (DU (i3 1), 1), (A12)

Using the notation above, the RHS is
—[Ay; Azk (B ke — Foyje — Wirlj + Wim L)
+ Axi Az (Giji ik — Gij—tx — Vijrix + Vij-10)

2
+ AxiAy;Hj+ ) — Hijr—t — Sijrrt + Sijr—1]-
(A13)

Combining the LHS and RHS that we have derived above,
we get an update equation (Equation (6)) for a simulation with
a time-dependent grid. Considering the time integration
involved in solving the ordinary differential equation
(Equation (6)), we also find a necessary volume-change
correction (see Equation (9)).
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