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Abstract

We present the results of a suite of numerical simulations designed to explore the origin of the angular momenta of
protostellar cores. Using the hydrodynamic grid code Athena with a sink implementation, we follow the formation
of protostellar cores and protostars (sinks) from the subvirial collapse of molecular clouds on larger scales to
investigate the range and relative distribution of core properties. We find that the core angular momenta are
relatively unaffected by large-scale rotation of the parent cloud; instead, we infer that angular momenta are mainly
imparted by torques between neighboring mass concentrations and exhibit a log-normal distribution. Our current
simulation results are limited to size scales ∼0.05 pc (∼104 au), but serve as first steps toward the ultimate goal of
providing initial conditions for higher-resolution studies of core collapse to form protoplanetary disks.
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1. Introduction

Disk formation is a natural consequence of gravitational
collapse of protostellar cores even without complete angular
momentum conservation, given the large difference in sizes
between cores and stars. The disk mass surface density
distribution, of obvious importance for understanding planet
formation, results from the angular momentum distribution of
the infalling protostellar envelope, modified by transport
processes within the disk (Cassen & Moosman 1981). The
expected low turbulence in large regions of protoplanetary
disks (see the review by Turner et al. 2014), supported by
observational limits (Flaherty et al. 2017, 2018), suggests that
turbulent angular momentum transport is generally quite slow.
Transport by disk winds may dominate (Bai 2016), but winds
may well be trapped by the infalling envelope, rendering them
ineffective in redistributing mass until the infall phase ends.
Thus, the early structure of protostellar and protoplanetary
disks may be dominated by the angular momentum distribution
of the parent infalling envelope. Given the increasing evidence
for early planet formation (e.g., ALMA Partnership et al.
2015), developing a better understanding of envelope angular
momenta is essential.

The analytic rotating collapse model of Terebey et al. (1984;
hereafter TSC) has been used often to predict disk structures
and other properties assuming various levels of turbulent
viscosity (for example, Zhu et al. 2010; Bae et al. 2014, 2015;
Hartmann & Bae 2018). However, the assumption of initial
solid-body rotation in the TSC model is not necessarily
realistic; differing distributions of angular momenta would
result in differing initial disk mass distributions.

Due to the short dynamical timescales and spatial orders of
magnitude inherent in gravitational collapse, a top-down
approach that starts from cluster scales is necessary to develop
better parameters for model input that accurately reflect that of
a population of protostellar disks formed in a realistic
environment. By far the most extensive investigation of disk
formation with this approach is that of Bate (2018), who
analyzed the properties of circumstellar disks formed in a
radiation hydrodynamic simulation (Bate 2012). The disks
exhibited a wide range of properties, with typical radii ∼100au

and surface densities Σ∝R−1, in reasonable agreement with
observational constraints. However, many disks were not well-
resolved, and the amount of disk evolution due to artificial
viscosity was not clear.
In this paper we address a simpler, more basic, and more

self-contained problem: what sets the angular momenta of
protostellar cores? To this end, we present results from a series
of numerical experiments based on the picture of cluster
formation via subvirial (cold) collapse, as in Kuznetsova et al.
(2015). These simulations provide a distribution of initial
conditions for disk formation by core collapse and allow an
investigation of the importance of global cloud rotation on the
angular momenta of individual cores.
Using a sink implementation that keeps track of properties in

the near environments of sinks (e.g., the surrounding cloud core),
we find that the resulting angular momenta do not behave
according to the expectations of the TSC model, with no detected
smooth growth of angular momentum over time for the protostars
as a whole. This suggests that initial disk surface densities might
be flatter, i.e., a weaker function of radius than typical disk
models, with implications for planet formation. The angular
momentum of cores is insensitive to the global cloud rotation,
indicating that the angular momentum inputs to the cores are the
result of local gravitational torques. As in Bate (2018), we find
considerable time variability in the accretion of the angular
momenta and mass, which is the product of a lumpy episodic
nonisotropic accretion of material onto the protostellar cores.
These first results set the stage for further studies exploring the
role of magnetic fields and higher-resolution simulations to
provide more detailed collapse models as an essential input to
investigations of protoplanetary disk structure.

2. Method

2.1. Basic Assumptions and Sink Implementation

The methods used here were described in Kuznetsova et al.
(2018b), so we provide a short summary here. We use a
modified version of the Eulerian grid code Athena (Stone et al.
2008) to simulate the collapse of a molecular cloud by self-
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gravity. We solve the system of equations
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with an RK3 integrator (Gottlieb & Shu 1998), which advances
the fluid equations (Equations (1) and (2)) at third order in time.
We further adopt an isothermal equation of state such that

r=P cs
2 for simplicity, which is a reasonable approximation

for low-mass star-forming regions on the scales we study. The
Poisson equation (Equation (3)) is solved every RK3 substep,
using the FFT solver that comes with version 4.2 of Athena.

Using the same methods as our preceding companion paper
on the accretion of the cores (Kuznetsova et al. 2018b), we
adopt a sink-region geometry similar to those described in
Bleuler & Teyssier (2014) and Gong & Ostriker (2012), where
at every timestep an accretion reservoir is drawn centered on
the sink, which will hereinafter be referred to as the sink-patch.
The radius of the sink-patch is set by the parameter racc, which
describes the number of cells to be included in the patch radius,
in addition to the central cell, which houses the sink particle.
Sink accretion of radially infalling material occurs instanta-
neously across the patch and leftover angular momentum is
deposited in the patch cells; the diameter of the sink-patch,
2racc+1 cells, is the relevant resolution element to consider
for our study.

2.2. Initial Setups

All of the simulations are initialized in a 20 pc box with a
spherical top-hat density profile, where the ambient density is
ρ0=1.5× 10−23 g cm−3 and the 4 pc radius spherical cloud
has a density of ρc=1.5× 10−21 g cm−3, giving an initial
freefall time of tff=1.7 Myr for the cloud. The initial
conditions are seeded with a decaying Mach 8 supersonic
turbulent velocity spectrum P(k)∝ k−4 dk, which introduces
some base level of cloud angular momentum. On average,
across all the turbulent random seeds, the total initial angular
velocity from turbulence at the cloud scale is Ωk=0.1±
0.03 km s−1 pc−1, where the specific angular momentum at the
cloud scale about the central axis from the cloud scale eddies is
j=1.97× 1023±0.6 cm2 s−1. For greater physical insight, in
the following we specify Ω−1 values in megayears. We explore
a parameter space of additional angular momentum input with
several values of constant angular velocity added to the entire
cloud, which we refer to by the initial rotation period for the
entire cloud: W =- 6, 3, 1.5 Myrc

1 (compare to the initial
freefall time of cloud at 1.7 Myr), where the turbulence
only runs have average cloud scale rotation periods of
W ~- 10 Myrk

1 . We supplement the runs in Kuznetsova et al.
(2018b) with additional high-resolution runs, such that there is
data at three resolutions; Ncell=2563, 5123, 10243 and where
the cell size is then Δx=0.08, 0.04, 0.02 pc, respectively. In
this paper, we focus on data from the intermediate and highest
resolutions to compare resolution effects and discuss the
measurement of angular momentum at different scales. The
fiducial run used in this work, HR_s2, has 10243 grid cells
with Δx=0.02 pc, a patch radius of rp=(racc+ 1/2)Δx=
0.05 pc, and an isothermal temperature T=14 K. The list of

runs used in this work and some of their attributes can be found
in Table 1.

2.3. Sink-patch Data

Sink-patch data is output as the three-dimensional sink
velocity, sink position, and the conserved variables in the patch
cells (and an additional boundary cell). The angular momentum
of the patch is summed over the entirety of the patch cells
L=Σi mi vi× ri, where mi is the mass enclosed within the
cell, vi is the cell velocity relative to the sink, and ri is the radial
distance of the cell center from the sink. The specific angular
momentum is then the angular momentum divided by the total
mass enclosed within the patch radius. As mass is removed
from cells during sink accretion, angular momentum is
removed from the patch and is implicitly put into the sink.
The sink angular momentum is tracked during the calculation
and is always an insignificant fraction of the patch angular
momentum, so we do not consider it further.
To ensure that we discuss the angular momentum inheritance

and evolution of systems where the angular momentum will go
into the disk, we filter the data set to remove sinks that are not
likely to be single systems by virtue of three possible processes
detailed below; sink merging, unresolved fragmentation, or
rotational fragmentation.
Sink merging occurs when one sink enters another’s patch;

these sinks are then merged into one sink with a combined
mass. We identify sinks by unique ID numbers and remove all
instances of sinks post merger in the data set. The sink
implementation requires both a negative gradient in the
potential and an increasing density profile across the entire
patch, so fragmentation due to the presence of two perturbed
density peaks like that of the BB test (Boss & Bodenheimer
1979) is unlikely. However, in some cases, it is possible that
fragmentation could occur and we are simply not resolving
separate density peaks that are spaced closer than the size of
one grid cell Δx. Thus, we aim to remove sinks that could have
fragmented shortly after formation on the basis of their initial
angular momentum and mass. That is, sinks are removed if all

Table 1
A Tabulated List of Runs and Their Initial Parameters Used for This Study

Run Seed

W-
c

1

(Myr)
W-

k
1

(Myr) tend (Myr) Nsink á ñ -( )n pcs
3

Ncell=5123

IR_s0 0 L 15 2.35 98 0.018
IR_r1_s0 0 6 15 2.35 66 0.012
IR_r2_s0 0 3 15 2.35 42 0.009
IR_r3_s0 0 1.5 15 2.35 19 0.002

Ncell=10243

HR_s2 2 L 10 2.1 115 0.028
HR_s0 0 L 15 1.9 110 0.024
HR_s1 1 L 8 2.4 70 0.011
HR_r1_s0 0 6 15 1.9 122 0.028
HR_r1_s1 1 6 8 2.5 88 0.014
HR_r2_s0 0 3 15 1.9 134 0.032
HR_r2_s1 1 3 8 2.5 54 0.009
HR_r3_s0 0 1.5 15 1.9 102 0.024
HR_r3_s1 1 1.5 8 2.5 10 0.001

Note.All runs have racc=2 and T=14 K.
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of their initial angular momentum and mass when put into
circular, equal-mass binaries results in separations that would
be unresolved in our simulations. Lastly, we consider the
conditions for rotational fragmentation of collapsing cores from
Sterzik et al. (2003), which dictate that if the initial ratio of
rotational energy to gravitational energy β0�0.02 for a
centrally concentrated core, the system is liable to rotationally
fragment into a binary.

3. Results

The initially subvirial cloud undergoes global gravitational
collapse, growing sheet-like and then filamentary over time.
Gaseous overdensities seeded by the decaying turbulence
rapidly grow until they reach the threshold density and form
sinks, preferentially embedded in the filament. The fiducial run
is evolved to 1.3tff (Figure 1 shows the simulation column
densities and sinks at four time snapshots), during which time it
forms 115 sinks. At 1 tff, the median sink mass and median
enclosed patch mass are 4.5 Me and 10.2 Me, respectively.

3.1. Angular Momenta Distributions

Figure 2 shows the values of mass and angular momenta
enclosed in the patch for the fiducial run at a time of 2.2 Myr
and highlights the populations of potential contaminants from
each category (e.g., likely unresolved multiple systems). We
find that the specific angular momenta at all times are
consistent with a log-normal distribution. At the end of the
fiducial run, the median value of the specific angular
momentum is 3.2× 1021 cm2 s−1, or ∼1.0× 10−2 km s−1 pc
for the fiducial run; this is in reasonable agreement with the
results of Goodman et al. (1993) at scales of ∼0.05–0.1 pc.

Overall, the median specific angular momentum varies very
little over time, while individual sink-patch specific angular
momenta can be highly variable, as shown in Figure 3. These
patches can drastically increase and decrease their total angular
momenta over small accretion episodes; however, the long term
trend is that patch specific angular momenta do not grow
appreciably over time. During accretion episodes, patches seem
just as likely to lose angular momentum as they are to gain it.

In addition, we construct the spin parameter, a ratio of the
specific angular momentum in the sink-patch to the maximum
possible angular momentum the core can have, λs=
j/(p(GMR)1/2) as a measure of the angular momentum budget
in use for a patch, where M=Ms+Mp is the total mass
enclosed within the patch and R=rp. For specificity, we adopt
p=2/5, the rotation coefficient for a uniform density sphere.
The behavior of the median spin parameter closely follows that

of the total angular momentum and is also log-normally
distributed.
The median values for specific angular momentum in

Figure 3 are not consistent between runs. In Figure 4, we plot
the quantities as a function of the bulk stellar density á ñns at one
freefall time for each simulation—both intermediate-resolution
runs where metrics are measured at rp=0.1 pc and high
resolution at rp=0.05 pc. The bulk stellar density is calculated
by computing the density of stars over the minimum spherical
volume that contains every star in the simulation.
Among the high-resolution runs, the median specific angular

momenta at r=0.05 pc are between (1.2–3.2)× 1021 cm2 s−1

and between (4–5.5)× 1021 cm2 s−1 for intermediate resolutions
measured at rp=0.1 pc (Figure 4(a)). At similar bulk stellar
densities, there is a factor of ∼2–2.5 offset between the specific
angular momenta of the intermediate and high-resolution runs.
Given the two-fold increase in resolution, a factor of 2 difference
in specific angular momentum is expected from basic scaling
arguments. Using the spin parameter reduces this effect, shown in
Figure 4(b) where the gap between resolutions narrows. In either
case, it is evident that both specific angular momenta and spin
parameter directly scale with á ñns . In terms of angular momentum
budget, higher stellar densities lead to ∼35% of angular
momentum budget usage, while lower stellar densities, where
stars form in more isolated environments, have stars that use
∼20%–25% of the maximum.
Different bulk stellar densities can be a result of the random

seed for turbulent input or the initial additional angular
momentum input. The turbulent seeds contribute to different
initial filament geometries; initially centrally concentrated
filament geometries tend to produce a higher stellar surface
density as opposed to simulations that produce a spoke of
subfilaments that form a more diffuse network of stars.
Initial angular momentum input in the form of an initial

constant cloud angular velocity will spread filaments creating
more diffuse areas of star formation (Figure 5). This will have
less of an effect on random seeds that already produce
distributed star-forming filaments. For the intermediate-
resolution runs shown, increasing angular rotation means that
fewer sink particles are formed at larger mean separations,
producing less populated, more diffuse clusters. The median
masses of the sinks and patches do not vary significantly for
increased angular speeds. At the highest resolutions, rotation
has a less pronounced effect on the numbers of stars formed
(see Table 1), but the stars are still farther apart than for
noninitially rotating cases.

Figure 1. Evolution of the cloud in the high-resolution (Ncell=10243) fiducial run, shown here as the column density in the inner 12 pc of the simulation domain at
four different snapshots in time t=0.6, 1.2, 1.7, 2.1 Myr.
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3.2. Spin Alignment

The initial global rotation of the cloud actually leads to a
modest decreases in average protostellar core angular momen-
tum compared to its total budget on account of decreasing the
stellar density of the star-forming environment; the conse-
quences for the direction of the angular momentum vector are
less clear. Throughout the accretion process, the orientation of
the angular momentum axes of individual patches are highly
variable. As such, we look at orientations of the entire patch
ensemble as a collection of inclinations to determine if the
direction of initial angular momentum input could get
imprinted on the cluster. In Figure 6(a) we show the cumulative
probability distribution functions (CPDF) for icos of nine
selected high-resolution runs near the end of their simulation
times, where i is the inclination of the patch angular momentum
axis relative to the axis of the initial angular momentum input
for rotation frequencies of W =-

c
1 6, 3, and 1.5 Myr and a few

nonrotating runs for comparison. The nonrotating clouds have
modest initial angular momentum from the injection of
turbulent energy at the start, which would correspond to an
eddy turnover time of ∼10Myr at cloud scales. Most of the
runs, even those with modest amounts of initial global angular
momentum input, are fairly consistent with an isotropic
distribution of inclinations, uniform in icos . Using the K-S

statistic, we cannot reject the null hypothesis at a 95%
confidence level for all runs in the sample. Only cases with
the largest input of global cloud rotation are marginally
consistent at a 90% confidence level, but they are also the runs
that produce the fewest sinks.
We fit the CPDF to a model that assumes a conical

distribution of vectors about a line at an angle α from the
assumed line of sight (which we take to be the axis of initial
angular momentum input from the rotating runs) with a conical
spread of λ, similar to form in Jackson & Jeffries (2010). Thus,
if spin axes are randomly oriented, α=0, λ=90°. Using the
python package emcee (Foreman-Mackey et al. 2013), we fit
the average CPDF over the entire run time of simulations to
models of icos . The models are generated according to the
methods in Jackson & Jeffries (2010), where the final model is
of the form a l f= - --( ( ( ))i Rcos sin sin cos 1 1 cos cos1

+ a l- -( ( ))Rcos 1 1 cos , where R and f are drawn from
random distributions within [0, 1] and [0, 2π), respectively.
In Figure 6(b), we show the results of the fits for the λ parameter

for both the high and intermediate resolutions runs from which it is
evident that for all but the most rapidly rotating clouds, the spread
in distribution, λ, is consistent with 90◦ and favors no mutual
alignment among the cores. The fastest rotating cloud’s speed is
near break-up, where 1.5Myr−1∼0.65 km s−1 pc−1, which is

Figure 2. Top row: stacked histograms showing the masses (left) and specific angular momenta (right) of all of the sink-patch systems in the simulation (violet), with
the likely multiples highlighted: sinks that merged as “mergers” in red, sinks that would have orbital radii within one central cell as “unresolved” in orange, and sinks
that could rotationally fragment as “rotational” in yellow. Bottom row: histograms showing the distributions of sink masses (left) and patch specific angular momenta
(right) within the patches in the simulation after the likely multiples have been removed. The sinks shown are for the fiducial run at a time of 2.2 Myr into the
simulation.
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considerably larger than typical values ∼0.05–0.2 km s−1 pc−1 for
Milky Way giant molecular clouds (Imara & Blitz 2011). While
the icos distributions remain nearly uniform for most clouds, the

amount of retrograde orbits decreases with added rotation, where
retrograde in this case refers to a core’s rotation axis being opposite
that of the initial rotation axis of the global cloud. This is consistent

Figure 3. Specific angular momenta of subsets of patches for each of the high-resolution runs from 1.4 to 1.9 Myr into the simulation, covering the formation of the
first sinks to 1.1 tff are shown. The colored tracks are individual sinks in the run and the bold black line is the median value of the specific angular momentum at each
time. The color bar denotes how far the mean value for each individual sink track deviates from the median of all sinks in dex. These colors identify individual sinks,
making it easier to see that there is little time evolution in j.

Figure 4. For four intermediate-resolution (Ncell=5123) and nine high-resolution (Ncell=10243) runs, shown here are median quantities averaged over the
simulation time, weighted by the number of sinks at each time for (a) specific angular momenta and (b) spin parameter λs vs. the bulk stellar density (at tff) for each
simulation. Vertical error bars denote the standard deviation of the median value over time. Markers of the same color denote runs that have the same initial rotation
input but different turbulent seeds; for the initial rotation inputs of W = W- - , 6, 3, 1.5 Myrk

1 1 , the marker colors are yellow, peach, magenta, and violet, respectively.
Both quantities scale with bulk stellar density, although there appears to be less correlation at lower stellar densities. The intermediate- and high-resolution runs are
measured at different scales, rp=0.1 pc and 0.05 pc, respectively.
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with a slight favoring of alignment with the global rotation axis,
but would not be obvious from observations of just the
inclinations.

4. Discussion

In the following we use our patches as proxies for protostellar
cloud cores. While our patches are defined by fixed grid sizes
rather than some density criterion, these sizes are comparable to
those of cores in low-mass star-forming regions, and we showed
in Kuznetsova et al. (2018a) that patch masses are reasonable
approximations for the self-gravitating mass surrounding sinks.

The median values of the specific angular momenta are
consistent with those derived from measurements of velocity
gradients in protostellar core observations at similar size
scales, where at radii 0.05–0.1 pc the specific angular momentum

from Goodman et al. (1993) would be on the order of
0.002–0.015 km s−1 pc or (0.6–4.6)× 1021 cm2 s−1, compared to
j∼ (3.2–5)×1021 cm2 s−1 at the patch edge in our fiducial and
intermediate-resolution run. These comparisons yield a good
agreement, with varying uncertainties in the observations likely
due to projection effects (Zhang et al. 2018).
With reference to the distribution of angular momentum

directions, there are numerous ways to infer the spin axis
orientation of stars, e.g., the orientation of outflows/jets
(Stephens et al. 2017) or measuring both the period P and
line of sight v isin of magnetically active late-type stars
(Jackson & Jeffries 2010). Jackson & Jeffries (2010) posit that
observations of mutual alignment of inclinations could yield
information about the initial rotation of the star-forming region.
Yet, our results in Figure 6 show that, unless the initial rotation
is incredibly high, we would not expect to see obvious trends in

Figure 5. Column density projections of the runs with differing initial global rotation input zoomed in on the central 12 pc of the simulation box. Each row shows a
run at 5123 resolution with a different amount of initial global cloud rotation, Ωc, where the first row has no initial additional bulk rotation, shown at four different
times; 0.6, 1.2, 1.7, and 2.1 Myr. The column densities are normalized to the same value, with sink positions overplotted as gray dots.
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the alignment of specific angular momentum axes. These
results are fairly consistent with findings from Corsaro et al.
(2017) and with the mostly random distribution of inclinations
found in many star clusters and star-forming regions (Ménard
& Duchêne 2004; Jackson & Jeffries 2010).

Using the spin parameter, we find that core angular momenta
in our simulations are on average 25%–40% of the maximum
possible, and thus are dynamically important. With the core
masses, radii, and specific angular momenta from Figures 1 and
5 in Offner et al. (2008) and performing the same procedure to
compute the spin parameter for their cores, we find that the
median value of the spin parameter at all scales for the undriven
(as is the case in our study) turbulent case is 0.28, consistent
with the low end of our simulations. The driven turbulent case
creates cores that have far less of their angular momentum
budget at small scales, with a median spin parameter of 0.07
across all scales. At our intermediate patch scale (∼0.1 pc), the
values of the spin parameter and angular momenta of both the
undriven and driven cases in Offner et al. (2008) are both
consistent with our distributions. However, at higher resolution
for patch sizes of 0.05 pc, the driven turbulence case has a
median λs∼ 0.1, diverging from our results, the effects of
driven turbulence start becoming significant at core scales
rp104 au.

4.1. Local Generation of Angular Momentum

We suggest that the best explanation of where cores get their
angular momentum that explains the results of the parameter
study is one in which gravitational interactions between gas
overdensities, including dense cores designated by the sink
+patch construction, impart the initial angular momentum to
the core. Our argument in favor of local generation of angular
momentum rests on two observations that make inheritance of
initial angular momentum unlikely: one, that the directions of
core angular momenta are not correlated with any specific
direction, including that of the initial global angular momentum
of the cloud (Figure 6); and two, that the specific angular
momenta increase with increasing density of sinks (and thus
closer separations; Figure 4), as one might qualitatively expect

for local torquing. There is more than enough force in
gravitational interactions for small-scale overdensities to create
torques; and if the overall spatial density of sinks decreases and
density fluctuations were smeared out, one could expect lower
values of angular momentum as gravitational interactions must
act over a greater distance.
The results of varying the initial cloud rotation (Figure 5)

show that the effect of varying the initial global cloud angular
velocity Ωc is the total number and spatial density of the gas
and sinks, where the global cloud rotation tends to shear out a
portion of the gaseous overdensities, producing more diffuse,
less embedded clusters. The angular momentum content of the
sinks depends on the star-forming environment rather than
the initial angular momentum content of the cloud. Increasing
the global angular momentum content of the cloud does not
pass down to the sinks; in fact, the average angular momentum
content decreases with increased initial cloud rotation. In
Figure 4, for example, the intermediate-resolution runs with
Ncell=5123 are arranged in the order of their initial cloud
angular momentum, with the lowest á ñns corresponding to the
highest initial rotation speed.
As a caveat, similar amounts of rotation input will affect the

stellar densities of clusters differently depending on the
resolution and geometries generated by the random seed for
the turbulence. At higher resolution runs produce more sinks as
the amount of resolved overdensities will increase in an
isothermal simulation such as ours. However, increased initial
global rotation will still produce more diffuse clusters and
filaments as it slows the collapse of the cloud. The local
filamentary environment seems to play an important role in the
properties of protostar populations, particularly when it comes
to the starting ingredients of protostellar disks.
Our construction of the spin parameter is based on the metric

used for characterizing the angular momentum content of cold
dark matter halos in cosmological simulations, where the spin
parameter is the ratio of the angular momentum to the
maximum amount possible at the virial radius of the halo.
On the side in favor of local angular momentum generation,
we make an analogy with dark matter simulations (e.g.,

Figure 6. Comparison of runs with varying amounts of initial global angular momentum. (a) The cumulative probability distribution of icos for nine selected high-
resolution runs compared to the expected CPDF (black dashed line) for a completely random isotropic distribution of inclinations show that most rotating clouds still
appear very isotropic. The lines are color-coded according to the initial amount of angular momentum input, where the orange lines correspond to those clouds that
only have the base amount of turbulent input designated W-

k
1. (b) The resultant fit of the spread of mutual inclinations for the different rotation inputs (color-coded to

match the left panel) plotted against the initial angular speed including contributions from the turbulence at cloud scales, Ωk, error bars show expected level of
variation from different turbulent seeds. Fitting the average CPDF across all time for the spread in mutual inclination, λ, shows that all but the fastest rotating clouds
are consistent with a cone angle of 90°, such that most are isotropically oriented with no mutual inclination. In summary, significant alignment of patch inclinations
only occurs for the case with the fastest global initial rotation.
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Bullock et al. 2001) that argues that a combination of tidal
torques and mergers produce the halo spin parameter distribu-
tions, which are log normal just as ours are.

The (initial) injection of turbulence at small scales could be
thought to be responsible for imparting the initial angular
momentum to the cores. However, the nature of the turbulent
power-law power spectrum, such as the P(k)∝ k−4 dk used here,
means that there will inherently be less energy and angular
momentum at smaller scales. A conservative order of magnitude
calculation of the angular momentum of an eddy on the patch scale
∼0.05–0.1 pc, assuming that the eddy frequencyΩk∝ k−1/2, where
the largest scale fluctuation frequency matches that of an eddy with
a speed of Mach 8, W ~- 10 Myrk

1 , results in an angular
momentum = W ~ - -j R2 5 10 10 cm s2 20 21 2 1, which is
roughly an order of magnitude below the minimum angular
momentum seen in the fiducial run, thereby not enough to generate
the typical values of the core angular momentum in the simulation.
In addition, runs across the parameter space all have the same
turbulent energy initially injected; thus, the angular momentum
across the runs of varying global cloud rotation speed should, at the
very least, remain fairly constant if angular momentum were
directly inherited from the turbulent eddies.

In contrast, Burkert & Bodenheimer (2000) and Chen &
Ostriker (2018) argue that the core angular momenta are

inherited from turbulence. In the former case, the absence of
self-gravity (A. Burkert 2019, personal communication) means
that the imposed turbulent velocity field is the only possible
source of angular momentum. In the latter case, the small scale
(1 pc) of the simulation requires the imposition of prescribed
inflows and turbulent motions (see Chen & Ostriker 2015)
which in our case arise naturally from gravitational collapse
from larger scales, seeded by overdensities created by the
rapidly decaying initial turbulence. Our simulations may also
exhibit stronger gravitational driving because Chen & Ostriker
(2015, 2018) evaluate core properties at the onset of collapse of
the most evolved core, whereas we can follow the evolution
through sink formation and accretion.

4.2. Implications for Disk Formation

Angular momentum is a requirement for disk formation and
many models of disk formation and evolution will assume an
accretion of angular momentum by the protostar from the
surrounding cloud like in Terebey et al. (1984), where rotating
collapse grows a disk by depositing material at the centrifugal
radius, rc=j2/GM. For simplicity, these models assume a
constant angular velocity cloud from which angular momentum
is inherited as the accretion radius of the protostar grows and
material falls in from farther away. The angular momentum

Figure 7. Net mass flux into the patch in three orthogonal directions (dashed lines) and the total mass flux into the patch (violet line). The magnitude of the mass flux
plotted is normalized such that the integrated amount under the curve matches the patch mass at the end of the simulation in order to account for material that does not
become bound to the sink and leaves the patch. The arrows annotate specific times of high inward mass flux at 1.2, 1.7, and 2.1 Myr that are shown as column
snapshots in Figure 8. Note that material at each high flux event primarily comes in from different directions.

Figure 8. Column densities summed over 0.5 pc of the same 2 pc × 2 pc region taken at the times corresponding to the high-mass flux events of the sink-patch system
annotated in Figure 7: 1.2, 1.7, and 2.1 Myr. The sink-patch system is shown as a white marker with an arrow indicating its motion in the plane of the image, the
background streamlines show the flow of material within the region. During the three frames, the sink’s accretion events are at first dominated by flow into the
filament, then flow along the filament as the sink becomes embedded within, and finally flow directed toward the sink as the sink becomes large enough to deplete
some of the filament gas. The surrounding environment is heterogeneous—lumpy—and accretion is dominated by these irregularities.
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then depends directly upon the angular velocity of the cloud.
Using the TSC model as an example framework, these
assumptions will lead the specific angular momentum to grow
like j∝ t2, or the spin parameter λs∝ t3/2. However, seen in
Figure 3, the mean of the sink specific angular momenta does
not significantly change with time. The lack of change in sink
angular momentum content suggests that mass infall to disks
will weight outer regions more heavily than in the TSC model.
Previous studies show that infall to larger disk radii may also
help trigger gravitational instabilities (e.g., Zhu et al. 2012).

The accretion of angular momentum in our simulations is not
a smooth monotonic process. This already challenges the
standard ideas of what the initial conditions for disk formation
and evolution should look like. We conduct a case study by
looking in detail at the dynamics of the gas entering and
leaving one particular sink-patch system. In Figure 7, we show
the mass flux entering the patch through the individual faces
of the patch and compare it to the total inward mass flux across
the patch. At times, there is no net mass flux into the patch at all
and the accretion has an episodic quality, where several
different epochs of mass flux inward can be identified in
Figure 7, annotated with arrows marking the timestamps of the
snapshots plotted in Figure 8.

In this example, it is possible to connect the interactions of
the sink-patch system with its environment to specific accretion
epochs. In the first epoch, at 1.2 Myr into the simulation, the
sink accretes from a flow of gas falling into a filament;
however, by 1.7 Myr, the sink and filament have come together
and the sink is embedded while gas flows along the filament,
onto the sink. The filament itself is not a smooth object, but
quite lumpy. At 2.1 Myr, the sink has quickly accreted a large
clump from the filament and is accreting the next nearby
overdensity. This example demonstrates how a dynamic
clump-filled environment in which gravity dominates the
dynamics naturally lends itself to episodic core accretion, in
which infall onto the core is not isotropic, but dominated by the
direction of flows in the environment.

In our case, nonisotropic infall can explain why the specific
angular momentum of sinks does not evolve over time. In
Figure 9, we plot the relative changes in the magnitude and
direction of the specific angular momentum, as well as the
relative changes in the total mass enclosed in the patch for

sinks between outputs taken every 0.02Myr as probability
density functions. Looking at the changes in angular momen-
tum for the cores, it is easy to see why the total angular
momentum of the cores does not show smooth growth over
time—cores are about just as likely to gain angular momentum
as they are to lose it. This type of behavior is a natural
consequence of episodic filamentary, nonisotropic accretion we
show in Figure 7, most commonly when material is accreted
from many different directions such that the mass of the patch
grows, the direction of the angular momentum vector for the
sink changes, but the total sink angular momentum will
fluctuate about a value.
The simple picture in which smooth spherical infall of

rotating material builds up a disk may require revision. A more
time-dependent, filamentary-type of infall may have implica-
tions for making disks more susceptible to gravitational
instability from episodes of mass-loading.

5. Summary

Our simulations of protostellar core formation in a globally
collapsing molecular cloud show that the angular momenta of
individual cores are not strongly affected by global cloud
rotation. Instead, the angular momenta appear to be generated
by local torques from other cores and density concentrations.
Unlike often-used models for protostellar collapse, the external
medium that can be accreted is generally not in solid-body
rotation around the central sink, resulting in nearly constant
specific angular momenta as the protostellar core (sink-patch in
our calculation) grows. As seen in other simulations such as
those of Bate (2018), we find considerable time variability in
the accretion of the angular momenta and mass, which is the
product of a lumpy episodic nonisotropic accretion of material
onto the protostellar cores.
The results presented in this paper constitute the first stage of

our program, which next will consider the effects of magnetic
fields, with the ultimate goal of developing more physically
realistic angular momentum distributions that can be used as
inputs to models of protostellar and protoplanetary disk
formation and evolution.

This work was supported by NASA grant NNX16AB46G and
by the University of Michigan, and used computational resources

Figure 9. From left to right: probability density functions of relative changes in patch specific angular momentum, mass, and direction of angular momentum between
data outputs for the intermediate-resolution run shown in Figures 7 and 8, at a cadence of 0.02 Myr between outputs. Left: the magnitude of the relative change in
angular momentum (black solid line) is a skewed Gaussian centered at 10% of the previous angular momentum. The pink dashed line represents increases in the
angular momentum while the violet dashed line represents total decreases in the angular momentum. Center: the magnitude of the change in mass peaks at ∼0.02%,
but most changes are accretion events rather than material flowing out of the patch. Right: change in total angular momentum direction is centered at 0, as changes in
direction require large relative changes in specific angular momentum.
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