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ecdysteroids are present in the 
blood of wild passerine birds
Sándor Hornok1*, Attila csorba2, Dávid Kováts3,4, tibor Csörgő3,5 & Attila Hunyadi  2*

ecdysteroids (arthropod molting hormones) play an important role in the development and sexual 
maturation of arthropods, and they have been shown to have anabolic and “energizing” effect in higher 
vertebrates. the aim of this study was to assess ecdysteroid diversity, levels according to bird species 
and months, as well as to observe the molting status of hard ticks (Acari: ixodidae) infesting the birds. 
Therefore, blood samples and ticks were collected from 245 birds (244 songbirds and a quail). Mass 
spectrometric analyses showed that 15 ecdysteroids were regularly present in the blood samples. 
Molting hormones biologically most active in insects (including 20-hydroxyecdysone [20E], 2deoxy-
20E, ajugasterone C and dacryhainansterone) reached different levels of concentration according to 
bird species and season. Similarly to ecdysteroids, the seasonal presence of affected, apolytic ticks 
peaked in July and August. in conclusion, this study demonstrates the presence of a broad range and 
high concentrations of ecdysteroids in the blood stream of wild-living passerine birds. These biologically 
active, anabolic compounds might possibly contribute to the known high metabolic rate of songbirds.

Steroids are biologically active organic molecules widely present in multicellular eukaryotes. These compounds 
play an important role in the regulation of reproduction, development and responses to environmental stimuli of 
plants, fungi and animals. Concerning the latter, while vertebrates synthesize different classes of steroids (e.g. sex-
ual hormones, corticosteroids), arthropods are known to produce a single type of these molecules, the so-called 
ecdysteroids or molting hormones1.

Interestingly, the structure of steroid hormone receptors is highly conserved among metazoans2. Although 
ecdysteroids do not necessarily bind to homologous receptors in different phyla of the Animal Kingdom, they 
may have a variety of effects even in distantly related taxa. These compounds play an important role in molting 
and development of pre-adult stages, as well as in the sexual maturation of adult arthropods3, but they were also 
experimentally shown to have anabolic effect in mammals4 and galliform birds5. Moreover, ecdysteroids are pres-
ent in plants as phytoecdysteroids, to deter plant-eating insects and phytoparasitic nematodes6.

The archetypal ecdysteroid both in arthropods and in plants is 20-hydroxyecdysone (20E), but a broad range 
of structural analogues are also known to exist4. Ecdysteroids naturally occur in mammalian tissues as a conse-
quence of dietary intake of ecdysteroid-containing plants or insects4. Recently, a similar phenomenon has been 
reported among birds. Based on a limited number of samples, it was demonstrated that certain naturally acquired 
ecdysteroids may reach high levels in the blood of insectivorous passerine birds7. In this context, passerine birds 
appeared to be particularly suitable subjects to study, because caterpillars predominate in their diet8,9, and cat-
erpillars are known for their relatively high ecdysteroid concentrations10. The results also indicated that these 
exogenous molting hormones may affect bird ticks by inducing on-host apolysis (which does not take place 
physiologically among three-host ticks) and thereby possibly reducing the period of tick blood feeding and thus 
the chances of tick-borne pathogen transmission7.

The aim of this study was to broaden the scope of these preliminary observations and to examine their rele-
vance in a broader context: i.e., to evaluate ecdysteroid diversity, peak levels and potential effects on bird-infesting 
ticks (a) in a larger set of bird samples, and (b) with a more extended and more sensitive mass spectrometric 
analysis.
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Results
Blood ecdysteroid diversity according to bird taxa. Among the twenty-five compounds tested for, 
fifteen ecdysteroids (1–15) were shown to be present in 244 individuals of 20 songbird (Aves: Passeriformes) 
species (Fig. 1). In addition, two ecdysteroids, dacryhainansterone (8) and 2-deoxypoststerone (11) were detected 
in a quail (Aves: Galliformes). Among the molting hormones biologically most active in insects, i.e. “cardinal 
ecdysteroids” such as 20E (1), 2deoxy-20E (5), ajugasterone C (6) and dacryhainansterone (8), all four have been 
detected over the whole evaluation period (March to October) in the majority of bird species (Fig. 1). On the 
other hand, some bird species differed from others in the seasonality of cardinal ecdysteroids: 2-deoxy-20E (5) 
and ajugasterone C (6) were absent in samples of Turdus merula during most of the spring and summer months, 
while these compounds were present in samples of T. philomelos and Prunella modularis only at the beginning 
of the sampling period (Fig. 1). The presence of certain ecdysteroids appeared to be superfamily-dependent, e.g. 
rubrosterone (14) and shidasterone (15) were demonstrated among Muscicapaoidea and Passeroidea, but not 
in Sylvioidea. At the same time, ecdysone (9), 2-deoxypoststerone (11) and polypodine B (12) were present in 
Muscicapaoidea and Sylvioidea, unlike in Passeroidea (Fig. 1). As to the results obtained for compounds 4 and 
18, it is worth mentioning that the ideal HPLC solvent system was an acid-containing one, which therefore may 
have catalyzed the elimination of 2,3-acetonide groups. Accordingly, while 20E 2,3;20,22-diacetonide (18) was 
not detected in any of the samples, this may be the result of its decomposition to 20E 20,22-acetonide (4) during 
the analysis. The chemical structures of compounds 1–15 are presented in Fig. 2.

cardinal blood ecdysteroid concentrations according to months. Seasonality of cardinal ecdyster-
oids was analyzed in the six bird species providing the majority (n = 185) of samples. In Erithacus rubecula, the 
highest concentrations of all four cardinal ecdysteroids was measured in the blood of one individual sampled in 
August (Fig. 3). Similarly, all four cardinal ecdysteroids peaked in August in Acrocephalus scirpaceus (although 
20E had another peak in April), Locustella luscinioides and Turdus merula (although dacryhainansterone had 
another peak in April) (Fig. 3). However, in Prunella modularis, the four cardinal ecdysteroids peaked in the 
spring, March to April (Fig. 3). Hormone levels peaked in July and August for Sylvia atricapilla, with significantly 
higher levels compared to subsequent and/or previous months in the case of 20E and dacryhainansterone (20E: 
April, May and August vs July, F = 8.158, df = 3, P = 0.0003; April vs July, t = 4.793, SE = 661.16, P < 0.001; May 
vs July, t = −3.892, SE = 802.36, P = 0.002; August vs July, t = 4.400, SE = 690.56, P = 0.0004; dacryhainansterone: 
April and May vs August, F = 4.788, df = 4, P = 0.003; April vs August, t = 4.055, SE = 219.0, P = 0.002; May vs 
August, t = −3.572, SE = 292.0, P = 0.008) (Fig. 3).

Figure 1. Presence of ecdysteroids in the blood according to month and bird species. In the column headings 
ecdysteroids are numbered in parentheses as in the text. Data of 243 birds are included, because the species of 
one bird was not recorded. Color code of left column: white (Muscicapaoidea: Muscicapidae, Turdidae), light 
yellow (Sylvioidea: Acrocephalidae, Locustellidae, Sylviidae, Paridae), dark yellow (Passeroidea: Prunellidae, 
Fringillidae), light orange (Troglodytidae), dark orange (Laniidae), red (Galliformes). Abbreviations of birds 
species: ACR ARU - Acrocephalus arundinaceus; ACR PAL - Acrocephalus palustris; ACR SCH - Acrocephalus 
schoenobaenus; ACR SCI - Acrocephalus scirpaceus; CAR CHL - Carduelis chloris; COC COC - Coccothraustes 
coccothraustes; COT COT - Coturnix coturnix; ERI RUB - Erithacus rubecula; FRI COE - Fringilla coelebs; LAN 
COL - Lanius collurio; LOC LUS - Locustella luscinioides; LUS LUS - Luscinia luscinia; LUS MEG - Luscinia 
megarhynchos; LUS SVE - Luscinia svecica; PAR MAJ - Parus major; PRU MOD - Prunella modularis; SYL ATR - 
Sylvia atricapilla; SYL COM - Sylvia communis; TRO TRO - Troglodytes troglodytes; TUR MER - Turdus merula; 
TUR PHI - Turdus philomelos. Abbreviations of months: A-March, B-April, C-May, D-June, E-July, F-August, 
G-September, H-October.
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cardinal blood ecdysteroid concentrations according to tick apolysis. Ticks were found on 115 
birds, belonging to 17 species (Table S1). Compared to spring time (when only four birds had apolytic ticks vs 
33 birds had no apolytic ticks), significantly (P < 0.0001) higher number of birds had apolytic than non-apolytic 
ticks both in the summer (42 vs 20) and in the autumn (12 vs four). Taken together, the rate of apolysis had three 
peaks among these ticks: in July, August and September (Fig. 4a). Concentrations of cardinal ecdysteroids in these 
birds had a similar tendency, i.e. peaked in August (and there was another peak of 20E in July: Fig. 4b). In the case 
of individual birds, no significant correlation was found between cardinal ecdysteroid concentrations in their 
blood and the ratio of their apolytic ticks. However, when the percentage of birds with apolytic ticks was consid-
ered according to days of the year, there was a nearly significant correlation with ajugasterone C (6) (R = 0.180, 
P = 0.055) and dacryhainansterone (8) concentration (R = 0.183, P = 0.05).

Discussion
In this study, the frequent and natural occurrence of low to high concentrations of a broad range of ecdysteroids 
was demonstrated in passerine birds, and one galliform bird, for the first time. The peak levels of the four cardinal 
hormones were nearly unanimously observed around August. Seasonal differences of peak concentrations of 
ecdysteroids according to bird species might be associated with their feeding preferences or differences in habitat. 
For instance, in the nesting period the preferred food items of passerine birds are caterpillars8,9, which have peak 
abundance around early summer in Hungary (depending on their species11), i.e. preceding peak ecdysteroid 
levels relevant to most bird species. In another study, peak abundance of caterpillars was observed between the 
117th and 188th days of the year, depending on year and biotope type12. This broad range includes the first peak of 
blood ecdysteroids and apolytic ticks (day 187: Fig. 4, Table S1), meaning correspondence with the data presented 
here. On the other hand, dipterans (e.g. Muscidae) have overwintering larvae already active from February13. The 
latter may partly explain early peaking of ecdysteroids in P. modularis, which in the spring time predominantly 
feeds on dipterans14. In addition, several song bird species investigated here are known to feed on plants (fruits, 
grains), particularly towards the autumn/winter, when insects become less available15. In this way, plant-derived 
ecdysteroids may have also contributed to the high compound levels observed here, as also evident from the facts 
that neither ajugasterone C nor dacryhainansterone are known to naturally occur in arthropods, and the latter 
is currently only recognized as a phytoecdysteroid6. On the other hand, one could hypothesize that these phy-
toecdysteroids might also reach insectivorous birds indirectly, i.e. through the plant-caterpillar-bird food chain.

The pharmacokinetics of 20E (1) depend on the mode of administration. For example, the half-time of elim-
ination of this substance in lambs were 0.2, 0.4, and 2 h when administered via oral, intravenous, and intramus-
cular routes, respectively16. Such data have not hitherto been available for passerine birds, but supposing the 
lowest half-time for oral uptake similarly to mammals, the high concentrations detected in this study suggest (a) 
continuous access to ecdysteroids from insects, and/or (b) their slower metabolism by birds. Under experimental 

Figure 2. Chemical structures of the ecdysteroids present in the blood samples of passerine birds. 
20-hydroxyecdysone (20E; 1), 20E 2-acetate (2), 20E 3-acetate (3), 20E 20,22-acetonide (4), 2-deoxy-20E (5), 
ajugasterone C (6), calonysterone (7), dacryhainansterone (8), ecdysone (9), 9,11-didehydropoststerone (10), 
2-deoxypoststerone (11), polypodine B (12), poststerone (13), rubrosterone (14), shidasterone (15).
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conditions the blood levels of 20E were proportional to the amounts given orally in galliform birds5, suggesting 
a slow metabolism or elimination of this compound. The high concentrations of the four cardinal ecdysteroids 
observed here also support this.

20E has low toxicity in mammals (the LD50 exceeds 9 g/kg after oral administration17). At the same time, 
ecdysteroids have a variety of beneficial physiological effects in mammals, including anabolic, hepatoprotective, 
immune modulatory, as well as hypoglycemic action4. Notably, 20E stimulates certain major metabolic pathways 
such as protein synthesis, and lipid, carbohydrate metabolism18. One of the most important properties of ecdys-
teroids in mammals is their anabolic effect (similar to anabolic steroids, but without the androgenic effect) and 

Figure 3. Mean hormone levels (vertical axis: ng/mL) calculated for the cardinal ecdysteroids in the case of six 
bird species providing the majority of samples. Days of the year as sampling times (horizontal axis) are detailed 
in Supplementary File 4, according to bird species and months. Purple star indicates significantly higher 
concentration compared to values marked with yellow star. For abbreviations of bird species see Fig. 1.
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that they enhance physical performance19,20. In particular, the anabolic effect of ecdysteroids as natural substances 
on muscles can exceed that of the well-known anabolic substances, and ecdysone is known to enhance physical 
performance (acting as a “natural dope“21).

The latter is especially relevant to birds, taking into account their high metabolic rate and energy need for fly-
ing. Similarly to mammals but to a lesser extent, in birds the anabolic activity of orally administered ecdysteroids 
is documented: these substances improve growth rate and disease resistance in galliform birds5,22,23. Therefore, 
the potential of ecdysteroids to increase energy levels and to enhance physical performance can also be postulated 
in avian hosts.

Among avian orders, members of Passeriformes are known for their highest energy levels and intense met-
abolic rates24,25, in association with their activities, habitats (even in high altitudes), cold hardiness (winter sur-
vival) or, alternatively, seasonal migrations24,25. Migration and winter acclimatization are intimately linked with 
the metabolic properties of the highly aerobic skeletal muscle contained within the flight apparatus of passer-
ines24. In this way the abundance of ecdysteroids in their blood, as shown here, might be highly beneficial, taking 
into account the anabolic action of these hormones (i.e., stimulating muscle build-up and physical performance).

Concerning ectoparasites, ecdysteroids have a similar role in ticks as in other arthropod groups, i.e. they 
trigger and control molting26. In the case of three-host ticks (including those collected during this study), sharp 
rise of endogenous ecdysteroid levels can be observed only after detachment from the host, with contempo-
raneous induction of apolysis (cuticle detachment, the initial phase of molting)26. Therefore, under such cir-
cumstances, apolysis takes place exclusively in the environment. On the contrary, when ticks are provided with 
ecdysteroid-containing blood (i.e. as an exogenous source of molting hormones), it may accelerate their develop-
ment and may induce apolysis in a dose-dependent way27.

However, dose-dependency of this phenomenon could not have been demonstrated here, because there was 
no consistent correlation between ecdysteroid concentrations in a particular individual bird and the apolytic state 
of its ticks (especially between days 217–248: Fig. 4). This can be partly attributed to the unknown feeding status 
of these ticks (i.e., for how long they have been exposed to blood-borne ecdysteroids prior to their collection). 
Apart from the dose, on-host induced apolysis of a tick may also depend on the type of ingested ecdysteroid and 
on the tick species itself. For instance, Ornithodoros moubata is able to inactivate (via conjugation with fatty acids) 
ingested ecdysone and 20E, but not 22,25-dideoxyecdysone28; whereas in O. porcinus feeding on 20E-containing 
blood accelerated molting27. Importantly, to the best of our knowledge, no information is available on the ecdys-
teroid metabolism of the two tick species (Ixodes ricinus, Haemaphysalis concinna: abundance data not shown) 
involved here.

Nevertheless, the present data reflected an overall tendency that apolytic ticks, as well as peak ecdysteroid 
titers are seasonally associated with summer to early autumn period. This confirms our previous results7, but 
on a much larger sample size. It also has to be taken into account that in our previous study less than half (eight 
of 18 = 44%) of birds had detectable ecdysteroid titres, and only two of them (11.1%) were shown to contain 

Figure 4. (a) Percentage of ticks with apolysis (vertical axis) according to days of the year when sampling was 
performed (horizontal axis). The percentage was calculated by dividing the number of tick(s) showing apolysis 
with the number of all ticks collected from the same bird individual, and the result multiplied by one hundred. 
These data are detailed in Supplementary Table S1, according to bird species and months. (b) The corresponding 
concentrations (vertical axis: ng/mL) of the cardinal ecdysteroids calculated for the same days.
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ajugasterone C7. This may be partly explained by the limited sample size and by the lower sensitivity of the detec-
tion method used previously.

In conclusion, this is the first study to demonstrate the presence of a broad range of ecdysteroids in the blood 
stream of wild living passerine birds, with considerable variation of blood concentrations according to bird spe-
cies and season, sometimes reaching very high levels. These biologically active, anabolic compounds might pos-
sibly contribute to the known high metabolic rate of songbirds.

Methods
ethical approval. All international, national, and institutional guidelines established for the care of wild 
birds were followed. The experimental protocol (blood sampling) was approved by the committee of the Middle 
-Danube -Valley Inspectorate for Environmental Protection, Nature Conservation and Water Management 
(under registration number KTF: 27251-1/2014).

Sample collection and preparation. Sample collection was performed in 2014 (March to October) at 
Ócsa Bird Ringing Station (47° 17′ 54.3″ N, 19° 13′ 52.1″ E). Birds were captured by standard Ecotone mist-nets 
(Gdynia, Poland), 12 m in length, 2.5 m in height and with 16 × 16 mm mesh. From 245 individuals, blood sam-
ples were collected into EDTA-containing microtubes from the brachial vein using a fine (28G) needle and 0.5 mL 
syringe (Kendall Monoject: Tyco Healthcare Group Lp., Mansfield, MA, USA). These samples were kept frozen 
at −20 °C. The whole body of each captured bird was also scrutinized for the presence of ticks. All ticks were 
removed with fine tweezers, and put into 70% ethanol in separate vials according to their hosts. The species of 
ticks were identified using standard morphological keys. The state of cuticle detachment (apolysis) among ticks 
was assessed using a stereo microscope (SMZ-2 T, Nikon Instruments, Japan, illuminated with model 5000–1, 
Intralux, Urdorf-Zürich, Switzerland).

Sample preparation was performed as we published before7. Briefly, one hundred or 250 μL of physiological 
saline solution was added to the frozen blood samples, and, after carefully homogenizing, each was transferred 
to Eppendorf tubes with a Hamilton syringe. The volume increment as compared to that of the added volume 
was considered as the original volume of blood. Following this, the same amount of methanol was added, the 
solution was homogenized by shaking and left at room temperature for at least half an hour. The precipitate was 
subsequently centrifuged at 10,000 rpm for 10 min at 8 °C, and the clear supernatant was utilized for LC-MS/MS 
studies.

LC-MS/MS analysis. The quantitative analysis of the biological samples was performed on Agilent 1100 
HPLC system (Santa Clara, USA) coupled with Thermo Scientific Q Exactive Plus orbitrap mass spectrometer 
(Waltham, MA USA). The HPLC consisted of binary pump, thermostated autosampler and thermostated column 
compartment. The column used was Kinetex XB-C18 (particle size 2.6 µm, pore size 100 Å, length/diameter in 
mm: 100/2.1) from Phenomenex (Gen-Lab Kft., Budapest, Hungary). The gradient elution was starting from 
15% eluent B increased to 35% in 20 minutes at 0.5 mL/min flow rate where eluent A and B was MS grade water 
and acetonitrile, respectively, both containing 0.1% formic acid (VWR International Kft., Debrecen, Hungary). 
The gradient was followed with 10 minutes wash with 90% eluent B and then the column was equilibrated with 
15% eluent B for 10 minutes. The mass spectrometer operated in positive MS mode with HESI source (spray volt-
age: 3500 V, capillary temperature: 300 °C, sheath gas/auxiliary gas/spare gas: 55/15/5 in arbitrary units, sheath 
gas temperature: 400 °C). The compounds were identified by their exact mass and unique retention time. LOD 
and LOQ criteria were defined as the signal to noise ratio of 3 and 10, respectively. A description of the method 
development process and a detailed summary of the identification parameters can be found in the Supporting 
Information, S1 Text, and ions chosen for the data acquisition for each compound are listed in Table S2.

calibration. Standard ecdysteroids 20-hydroxyecdysone (20E; 1), 20E 2- and 3-acetate (2 and 3, respec-
tively), 20E 20,22-acetonide (4), 2-deoxy-20E (5), ajugasterone C (6), calonysterone (7), dacryhainansterone 
(8), ecdysone (9), 9,11-didehydropoststerone (10), 2-deoxypoststerone (11), polypodine B (12), poststerone 
(13), rubrosterone (14), shidasterone (15), 20E 22-acetate (16), 5α-20E (17), 20E 2,3;20,22-diacetonide (18), 
5β-hydroxypoststerone (19), 11α-hydroxypoststerone (20), the 17β-acyl analog of calonysterone (21), ajugalac-
tone (22), cyasterone (23), herkesterone (24), and 3-epi-20E (25) were obtained from our previous phytochemical 
studies29–32. Compounds 1 and 4–25 possessed a purity of >95%. Compounds 2 and 3 were present as a mixture, 
and, since ecdysteroid 2- and 3-acetates are able to interconvert in solution33,34, calibration for these two com-
pounds was performed with the same standard by considering the calculated peak area ratio of 0.23642: 0.76358 
(SD = 0.010586) for compounds 2 and 3, respectively. This ratio was found stable during the course of our study. 
Elution order of these two compounds could be unambiguously established based on our previous related work31.

Standard stock solutions of the compounds were prepared in methanol at different concentration levels 
depending on the availability. The working standard solution was obtained by mixing the stock solutions and 
further 100-fold dilution in methanol gave the highest calibration level. 7 calibration levels were serial diluted 
with methanol in a 1:3 pattern. All prepared solutions were stored at 4 °C before use. The biological samples con-
tained low levels of the ecdysteroids, hence the calibration was finally fitted to the lowest 5 levels three replicates 
at each levels. Concentrations of the stock solution and the calibration levels are presented in the Supporting 
Information, Table S3, and an example chromatogram of the calibration is shown in Fig. S1. All calibration curves 
were fitted linearly with an R2 > 0.995, and a detailed summary of each individual calibration can be found in the 
Supporting Information, Table S4. In the case of compound 11, nine samples contained higher concentrations 
than that of calibration level L5, and fell out of the linear range. These are marked as “ALOQ” (above limit of 
quantification) in Table S6.
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Statistical analyses. The presence or absence of apolytic ticks on birds was compared according to seasons 
with Fisher’s exact test. Based on their experimentally shown biological activity in arthropods, 20E (1), 2-deoxy-
20E (5), ajugasterone C (6) and dacryhainansterone (8) (referred to here as cardinal ecdysteroids) were selected 
as the primary targets of statistical comparison, also taking into account their presence in the majority of bird 
individuals throughout the evaluation period. These four cardinal ecdysteroids have high efficacy in triggering 
molting, as demonstrated by their –log(ED50[M]) values of 6.18–9.28 in vitro in the Drosophila BII bioassay35. 
For statistical comparison of mean of each variable, linear model (Lm) and for post-hoc pairwise comparison 
Tukey-test were used. The variability was analyzed with Levene’s test. All the calculations were done using the 
statistical software R 3.1.1.36. The level of significance was set to 0.05.

Data availability
All data used in the study are included in the manuscript and in the Supplementary Files.
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