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Abstract

Within the relativistic quasipotential approach to quantum field 
theory, a relativistic inverse problem is considered for the superpo­
sition of a non-local separable quasipotential and a local one that 
simulates the interaction between two relativistic spinless particles 
of unequal masses. Besides, the local part of total interaction is 
supposed to be known and that it does not admit bound states. 
Then a non-local separable part of total interaction can be recon­
structed on the basis of the additional phase-shift and bound-state 
energies.

The inverse problem in principle was solved within non-relativistic the­
ory by Gelfand and Levitan [1], Marchenko [2], and Krein [3]. In the 
majority of studies, however, the problem of reconstructing interaction is 
formulated on the basis of the non-relativistic Schrodinger equation [4-7]. 
The most complete survey of this theory was given in the monographs 
of Chadan and Sabatier [8] and Zakhariev and Suzko [9]. Therefore, the 
problem of reconstructing interaction for essentially relativistic systems, 
in particular, within the relativistic quasipotential approach [10], is yet 
remained important.

In the present studies, we consider the problem of reconstructing a non­
local separable part of total quasipotential that simulates the interaction 
between two relativistic spinless particles of unequal masses (mi /  m2)
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by means of the additional phase-shift and bound-state energies. The 
given consideration holds within the relativistic quasipotential approach 
to quantum field theory proposed in [11]. Besides, the local part W(r) of 
total interaction is supposed to be known and that it does not admit bound­
states. The given approach is based on the expression that was found by 
the present author for the additional phase-shift бі'(х') and which has the 
form (we use the system of units where h = c — 1)

tan5z
v  (х') =  - J  sinh 1 х 'Л (х ') i+4 f  j Л (х )

/ “X--- Г----------------- Г— 7J  cosh x — cosh x
0

(1)

9  I -  |2A ( / )  =  - ^ ^ ( c o t h / ) Ы / ™  , d  =  ±1- (2)
7Г I I

Here, P means the principal value, Qi(z) is a Legendre function of the 
second kind, and F™ (х') is the Jost function of the local quasipotential 
W(r) connecting with its the phase-shift 6™(х') by the expression

^ ( X ')  =  | ^ ( / ) | e x p  [ - < ( / ) ]  •

Note, that the quantity x' is the rapidity and it is defined via the 
relation

Eg/ = m'2 + q'2 = m 'coshx', m' =

In order to find the quasipotential Vi(r) on the basis of the additional 
phase-shift 5^ (х'), it is necessary to solve the integral equation (1) con­
cerning of the function A i^ } .  After that, the function Й(х') is determined 
from Eq. (2) using the integral Hilbert transformation. The quasipotential 
VJ(r) is then reconstructed by performing the relativistic Hankel transfor­
mation

00

W )  = У  dpi(coshx)Vi(x)(pi(r,x'), (3)

i

dp; (coshx)/d(coshx) =  (2/7r)sinh- 1  x |Q i(cothx)/F™ (x)|2 , (4)

where the function <pi (r, x) satisfying the boundary condition

-----(ТТў+і— = 1.
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is the regular solution of the finite-difference quasipotential equation with 
the local quasipotential W(r), and dp/(coshy)/d(coshx) is its the spectral 
density. Here, T(z) is a gamma function, and

(—r ) ^  =  ?АГ(гг + А)/Г(гг).

Note, that the integral transformation in (3) is the generalization on the 
relativistic integral Hankel transformation introduced in [12], and reduces 
to it when W(r) =  0.

We assume that the additional phase-shift (х') in  expression (1) is a 
function continuous in the sense of Holder with a positive index and that, 
for у' —> oo, it behaves as

/ > 0 ,  7 > 1. (5)

These constraints are necessary and sufficient for the quasipotential to 
satisfy the condition

rVj(r) € Li(0,oo), (6)

which ensures the uniqueness of the inverse-problem solution.
At first, we consider the inverse problem at £/ = +1. In this case, the 

additional phase-shift (х') at x' —* +°° must be a nagetive quantity of 
small magnitude. The energies values then

Efk =  coshx/fc > 1, к =  0 ,1 ,. . . ,  vi -  1, (7)

corresponding of the ’’spurious” bound-states [4], must satisfy the condi­
tions

бГШ = як, к =  0 ,1 ,. . . ,  vi -  1. (8)

In this case, the Levinson theorem has the form

(9)

5Г(0)-<5Г(оо) =  ^ ( 0 )  =  0.

The integral equation (1) can be reduced to the form

=  1 +  1

1

DO

t  — X — i
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where we introduced the following notation:

=  A; (arccoshz)5i" 1(z) [1 + г(тг/2)р; (.т)(х2 -  1)- 1 / 2 ] , (11)
9i(x ) =  -(2/?r)(z2 -  ^ ^ t a n A ^ z ) ,

A;
v  (z) = §Y (arc cosh x), x = coshy',
hi(x) = (7r/2)g((z)(z2 — l ) ' 1/2 [1 — f(7r/2)g/(z)(z2 — l ) - 1 /2] X =

=  — sin A;
v  (x) exp [—i^ Y  (z)] .

Let us consider the function
oo

(1 2 )7Г J t — Z
1

It is obvious that the function Hi(z) is analytic in the complex plane of the 
variable z with the cut from 1 to +oo along the real axis and the relation

lim H;(z) = 1 (13)
|z|—oo

holds in all directions, if the function ipi(x) is continuous in the sense of 
Holder and if the integral in Eq. (12) converges. Hence, a solution to the 
integral equation (10) can be represented as

'фі(х') =  H;(z+ ) — lim HAx + i/rf), 1 < z < oo. (14) -̂*+0

By substituting the solution in (14) into the expression for the discontinuity 
suffered by the function Hi(z) upon traversing the cut,

Hi(x+ ) -  = —2isin A f (z) exp [zA;
v (z)] ipi(x), (15)

we arrive at the homogeneous Riemann-Hilbert equation for the function 
Hi{zY

H/(z+ ) exp ^ iA ^ z )]  — H;(z_) =  0, 1 < z < oo. (16)

A particular solution satisfying Eq.(16) and the condition in (13) has the 
form

Hi(z) =  exp[w/(z)], (17)

where
^ z )  = - -  J d t ^ .  (18)

7Г J t -  Z
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We also have the relation

lim w/(z) =  0,
|z|—*oo

which holds in all directions, as follows from the assumptions on the be­
haviour of the additional phase-shift and from the conditions in (5). Be­
sides, its behaviour is given by

- -Д П 1 )1 п |1 - г | + Г Ш , (19)
7Г

Here, the function is finite for z —> 1, while (1) = (0) = 7TPZ in
according with the Levinson theorem in(9). Therefore, the function Hi(z) 
has a zero of order щ at the point z = 1. This means that, according to 
(14), (17) and (18), the particular solution to the nonhomogeneous integral 
equation (10) has the form

^(rr) =  exp [a/(z) -  гД^(ж)] , (20)

where ОО

(2D
1

Note, that the function given by (20) is regular at x = 1 (it has a zero 
of order vi at this point), is continuous in the sense of Holder with the same 
index as the additional phase-shift, and is bounded for x —♦ +oo. All this 
is concides with the a priori assumptions on its properties. Finally, this 
function is a particular solution to Eq.(10) since, according to the Cauchy 
theorem, we have

~ oo

lim 1 ! iz нм, = ! + 1 , н і Ы  =  * w .
2тгг J z  — x  — iri тг / t — x  — го 

r+ i

Here, Г+  is the closed contour consisting of a circle CR of radius R  and 
center at the point z — 0, two banks of the cut from 1 to R  that it goes 
in opposite directions along these banks, and a circle C~ having a radius 
T) and a center at the point z = 1. The contribution of the integral along 
the circle C~ tends to zero for rj —♦ +0 since the function H^z) has a zero 
of order i/i at the point z =  1.
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A general solution to the homogeneous equation

t — x — io
1

(22)

we will look for in the form
m A

&o(x) = H ^ x ^  = exp[wz(x+ )] (23)

where the function

t — z
1

(24)

satisfying the homogeneous Riemann-Hilbert equation in (16), is analitic 
in the complex plane of the variable z with the cut from 1 to +00 along 
the real axis, in additional to the relation

lim H l0(z) =  0 (25)
|г|— 00

holds in all directions. Substituting (23) into (16) and requiring that the
function in (24) be finite at z = 1, we obtain m = Hence, we have

и  4
= Hi0 (x+) = exp [az(x) -  i ^ Y (ж)] (26)

t = i

It is obvious that, as in the case of a particular solution, the function in
(26) satisfies Eq. (22) and possesses all the required properties.

Thus, a general solution to the integral equation (10) has the form 

iM^) = ^ ( x )  + ^i0 (x) = exp [az(x) -  i^Y(®)]
v ‘ 4

1 +  V  7-----V T  • (2 7 )

At last, by using the notation in (11) and transforming the sum as a 
product, we can recast the solution in (27) into the form

2 i
M x ')  = - - sinh/ sin^ ( х ')  exp [az(cosh/)] П  f1 +  ^ / ( c o s h /  -  1)],

fc=0
(28)
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where

a ; (cosh /) =  - - P  7Г
s in h y ^ y )  

cosh x  — cosh x' (29)

In order to determine the constants ak in (28), we note that, in accordance 
with the definition in (2), the function Ai(x!) is of fixed sign at all values 
of x!> and so far as =  +1, that it must be positive. At the same time, 
the additional phase-shift satisfies the conditions in (8) at the ’’spurious” 
bound-states energies in (7). Hence, the function Л (х ') retains a plus sign, 
provided that

ak = 1 -  cosh Xfk, k =  0 ,1 ,... , P; -  1.

Instead of (28), we will then have

2Ai(x') = — s in h /  sin^ ( х ')  exp [o/coshx')] П  1 
% t o  L

sinh(xA /2 )\ 2 
sinh(x'/2) J

(30)
Thus, the solution in (30) is completely determined by the additional 

phase-shift so far as Xfk is also determined by its the behaviour. More­
over, it follows from expressions (29) and (30) that the function Ai(x') is 
continuous in the sense of Holder and that, for /  —+ +00, it behaves as

c o s h / l / l  7 , 7 > 1,

provided that the additional phase-shift satisfies condition (5). This in my 
turn implies that the quasipotential Vi(r) satisfies condition (6).

The case where Ei = — 1 and where there are vi the ’’ spurious” bound­
states at energies in (7) satisfying the conditions (8) (k =  1 ,2 ,... ,  ui), and 
one true bound-state whose energy lie in the range

0 < E t =  coshyt < 1, =  0 < «( < TT/2, (31)

is considered in the same way. Besides, by the Levinson theorem, we have 

5г
г ( 0 ) - ^ ( о о )  =  ^ ( 0 )  =  7г(^ +  1).

In accordance with expression (19), the function H;(z) therefore has a zero 
of order iyi +  1) at z =  1. Further following in the same way as for the
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case of Ei = +1 and considering that the function A ^x ')  must now retain 
a minus sign at all values of x', so far as Ei = — 1, we obtain

2
Ai (х') =  —  sinh x' sin M  exp [az (cosh x')] x  7Г

1 +
sm(/tf/2) \ 2 A  x / sinh(x/fc/2)\ 2 

sinh(x '/2)/ ] И  V sinh(x'/2) J (32)

Thus, the function Ai (х') is completely determined by the additional phase­
shift and true bound-state energy too, and its sign is contrary to the sign 
of the additional phase-shift for х ' —* +°°.

In order to reconstruct the quasipotential Vi(r) by means of the trans­
formation in (3), we can introduce the function

H(sinh(x72)) =
sinh(x'/2) + fsin(Kt /2)
sinh(x'/2) — fsin(Kt /2)
|<2г( с о Л х ') /^ ( х ') |2 [ ^ ( - \sinh(x72))]2 , (33)

where
| ^ ( - ) (sinh(x72))| -  |Й ( / ) I , ReVz

( - ) (sinh(x72)) =  ReV^x'), (34) 

argV)( sinh(x'/2)) =  -argVJ( ) (sinh(x72)), argVJ(-x') = argH(x'). 

The function H(smh(x72)) is analitic in the region 0 < Imx' < тг/2, it is 
continuous for 0 < Imx' < ?/2  and satisfies the condition

H(sinh(x72)) =  O(sinh2 (x7 2 )), |x'l oo, 0 < Imx' < ?r/2, (35) 

provided that the condition in (6) is carried out. Besides, the function 
V;(sinh(x72)) vanishes nowhere for 0 < Imx' < ?r/2. Hence, the function 
In Vz(sinh(x'/2)) is analitic in the region 0 < Imx' < 7г/2 and it behaves as 
lnsinh2 (x'/2) for |x'| —» oo because of the estimate in (35). Therefore, we 
can apply the integral Hilbert transformation to the real and the imaginary 
parts of the function In V/(sinh(x'/2)). For the real values of x', we then 
obtain

OO
Im In Vi(sinh(x'/2)) = — i p  J

— OO

d(sinh(x/2))
Rein V;(sinh(x/2)) 

sinh(x/2) -  sinh(x'/2)

(36)
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2 sinh(y'/2) cosh(x/2) ln[7T£tA; (x)/2] 
cosh x — cosh x'

0
Combining the expressions (33) and (36), we now obtain the formula

V / ^ s i n h / ^ )  =  V ^ W ) / 2  x

. /  sin(«t /2)
x exp — г arctan . , . ,

\sinh(x72)

isinh(x72)p  p  d cosh(y/2) ln[7T£jAj(x)/2] 
7Г Jo cosh x ~ c o s h x!

At last,from expressions (34) and (37), it follows that

(37)

(^ (c o th /)
Ft

w M ViM = \ХТГ£(А(Х')/2

exp < , (  sin(«t /2)- !Sgnx

smh(x'/2) p  Г00 cosh(x/2) 1п[тг£гА(х)/2] 
7Г JQ cosh X-  cosh x' (38)

which is valid for the real values of x!-
Thus, a solution to the inverse problem exists and is completely de­

termined as the function Ai(x!) is found by the additional phase-shift and 
true bound-state energy for I > 0.

To summarize, we note that the method proposed here to reconstruct 
a non-local separable part of total quasipotential simulating the interac­
tion between two relativistic spinless particles of unequal masses actually 
reduces to a one-body problem. This is thanks to the possibility of rep­
resenting, within the relativistic quasipotential approach to quantum field 
theory, the total c.m. energy of two relativistic particles of unequal masses 
as an expression proportional to the energy of an effective relativistic par­
ticle of mass m'.

Acknowledgments

I am grateful to Yu.S. Vernov, V.V. Andreev, V.H. Kapshai, I.L. Solov- 
tsov, and Ya. Shnir for a permanent interest in this study and for enlight­
ening discussions on the results presented here.

148



References
[1] I.M.Gel’fand and B.M.Levitan, Dokl.Akad.Nauk SSSR 77, 557 (1951); 

Izv.Akad.Nauk SSSR, Ser.Mat. 15, 309 (1951).

[2] V.A.Marchenko, Dokl.Akad.Nauk SSSR 104, 695 (1955).

[3] M.G. Krein, Dokl.Akad.Nauk SSSR 76, 21 (1951).

[4] K.Chadan, Nuovo Cimento X L V II A, 510 (1967).

[5] M.Bolsterli and J.MacKenzie, Physics 2, 141 (1965).

[6] F.Tabakin, Phys.Rev. 177, 1443 (1969).

[7] R.L.Mills and J.F.Reading, J.M ath.Phys. 10, 321 (1969).

[8] K.Chadan and P.C.Sabatier. Inverse Problems in Quantum Scattering 
Theory (Springer-Verlag, New York, 1977; Mir, Moscow 1980).

[9] B.N.Zakhariev and A.A.Suzko, Direct and Inverse Problems: Po­
tentials in Quantum Scattering (Energoatomizdat, Moscow, 1985; 
Springer-Verlag, Berlin, 1990).

[10] A.A.Logunov and A.N.Tavkhelidze, Nuovo Cimento 29, 380 (1963).

[11] V.G.Kadyshevsky, Nucl. Phys. В 6, 125 (1968).

[12] Yu.D.Chernichenko, Yad.Fiz. 63, 2068 (2000).

149


