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1.  INTRODUCTION 

Societies depend on marine ecosystems as a source 
of both market goods and non-market services, and 
the magnitude and diversity of the demands on these 
systems have increased as the human population and 
associated economies continue to expand (Holland 
et  al. 2010, Tam et al. 2017). Concomitant with this 
growth, rising anthropogenic pressures have altered 
the structure and function of living marine resource 
communities inhabiting these systems, often jeop-
ardizing sustained delivery of desired economic out-

puts (Link et al. 2020). For example, land use prac-
tices have increased turbidity, contaminants, and the 
extent of hypoxia in many adjacent marine ecosys-
tems, disrupting systemic habitat utilization patterns 
and predator−prey dynamics (Craig 2012, Buchheis-
ter et al. 2013, Ortega et al. 2020). Climate change 
has altered the spatiotemporal distributions of mar-
ine species at broader scales as taxa shift poleward 
and to deeper waters in response to warming, which 
has likely impacted population vital rates, phenolo-
gies, and interactions (Nye et al. 2009, Doney et al. 
2012, Langan et al. 2021). Meanwhile, harvest activ-
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ABSTRACT: Recognition of the need for a more holistic, ecosystem approach to the assessment 
and management of living marine resources has renewed interest in quantitative community eco -
logy and fueled efforts to develop ecosystem metrics to gain insight into system status. This inves-
tigation utilized 12 years (2008 to 2019) of fisheries-independent bottom trawl survey data to 
quantify and synthesize the spatiotemporal patterns of species assemblages inhabiting the near-
shore Mid-Atlantic Bight (MAB). Assemblages were delineated by ecomorphotype (EMT), and all 
species collected by the survey were allocated among 9 EMTs: demersal fishes; pelagic fishes; 
flatfishes; skates; rays; dogfishes; other sharks; cephalopods; and benthic arthropods. Annual time 
series and seasonal spatial distributions of relative aggregate biomass were quantified for each 
EMT using delta-generalized additive models. Dynamic factor analysis (DFA) revealed that the 
information content of the 9 annual time series was effectively summarized by 3 common trends, 
and DFA model fits to each EMT time series represented a new suite of ecosystem indicators for 
this system. Mean sea surface temperature during winter in the MAB was included in the selected 
DFA model, suggesting that winter environmental conditions influence the structure of this sys-
tem at an annual scale. Principal component analysis uncovered a north-to-south gradient in the 
seasonal spatial distributions of these EMTs and identified a distinct area of elevated biomass for 
several assemblages along the south shore of Long Island, NY. Taken together, these results char-
acterize the community structure of the nearshore MAB and yield requisite information to support 
ongoing ecosystem-scale assessment and management activities for this region.  
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ities have had perhaps the most direct and demon-
strable effects on ecological communities through 
overfishing and sequential exploitation of target 
stocks (Essington et al. 2006), bycatch of non-target 
species (Kennelly 1995), fisheries-induced evolution 
(Walsh et al. 2006), and habitat alteration due to fish-
ing practices (Collie et al. 1997). In response, govern-
ments have implemented fisheries management 
frameworks to reduce harvest and promote sustain-
able utilization of these resources. 

Efforts to curb overfishing and rebuild overfished 
stocks in the USA have achieved measurable suc-
cesses since the passage of the Fishery Conservation 
and Management Act in 1976, and have relied pri-
marily on single-species approaches to assess the 
status of living marine resources and develop regula-
tions for the associated fisheries (Methot et al. 2014, 
National Marine Fisheries Service 2022). A notable 
shortcoming of this reductionist approach, however, 
is that while stock productivity is molded by an inte-
grated series of drivers that broadly represent bio-
physical forcing, trophodynamics, and exploitation, 
single-species assessment and management have 
typically only considered the influence of exploita-
tion (Link 2010, Gaichas et al. 2012). As harvest is 
constrained, natural environmental processes, tro -
phic interactions, and non-fishing human impacts 
that include the aforementioned examples play a 
greater role in shaping population dynamics (Tyrrell 
et al. 2011, Fogarty 2014). Further, the breadth of 
current assessment and management activities pri-
marily encompasses species targeted by fisheries, 
such that the structure, function, and dynamics of the 
broader ecological community remain unresolved 
even in many well-managed systems. The recog-
nized need for a more holistic, integrated approach 
to the stewardship of fisheries resources has fueled a 
renewed interest in quantitative community ecology 
designed to support development of Integrated Eco-
system Assessments (IEA) and operationalization of 
Ecosystem Approaches to Fishery Management 
(EAFM) for Large Marine Ecosystems (LMEs) under 
US jurisdiction (Levin et al. 2014, Link et al. 2020, 
Muffley et al. 2021). 

The Mid-Atlantic Bight (MAB) is the southernmost 
Ecological Production Unit (EPU) in the Northeast 
USA LME, and includes the continental shelf and 
estuarine ecosystems bounded by Cape Cod, MA, 
and Cape Hatteras, NC (Lucey & Fogarty 2013). 
Given the broad and increasing intra-annual temper-
ature ranges that occur in this region (Forsyth et al. 
2015) and rather complex hydrography defined pri-
marily by the Gulf Stream, remnants of the Labrador 

Current, and freshwater inputs to the estuaries, this 
EPU is a dynamic and productive system that sup-
ports a diverse ecological community and numerous 
fisheries. There is a wealth of data on living marine 
re sources inhabiting the MAB, given the array of 
fisheries-independent monitoring surveys that have 
been sampling the shelf and estuaries of this system 
for decades (Howell & Auster 2012, Politis et al. 2014, 
Latour et al. 2017, Langan et al. 2021). Early efforts to 
quantify community dynamics in the offshore waters 
(i.e. >27 m isobath) of the shelf revealed distinct spe-
cies assemblages that exhibited notable seasonal and 
spatial dynamics (Gabriel 1992), and these assem-
blages have been shifting primarily northeastward 
since the 1960s (Lucey & Nye 2010, Kleisner et al. 
2016). Many faunal groups inhabiting the shelf have 
also experienced appreciable changes in relative 
abundance through time (Methratta & Link 2006, 
Northeast Fisheries Science Center [NEFSC] 2022), 
while assemblages in Narragansett Bay (Collie et al. 
2008, Langan et al. 2021), Long Island Sound (Howell 
& Auster 2012), and Chesapeake Bay (Jung & Houde 
2003, Buchheister et al. 2013) have exhibited distinct 
spatiotemporal patterns shaped by natural and 
anthropogenic drivers. Taken together, these data on 
shelf and estuarine communities have formed the 
basis for the development of ecological metrics, par-
ticularly time-series indicators, that yield insight into 
the status of system structure and productivity, which 
in turn facilitate development of IEAs for the region 
(Muffley et al. 2021). 

While the ecological communities of the estuarine 
and outer shelf regions of the MAB EPU have been 
the focus of intense research efforts, the structure 
and dynamics of species assemblages in the coastal 
ocean (i.e. <27 m isobath) have yet to be explored in 
a holistic, synthetic manner, given the lack of di -
rected and consistent sampling throughout this zone 
prior to 2008. The inner shelf represents a valuable 
foraging, spawning, and nursery area for an array of 
species, and serves as a transitional ecosystem be -
tween offshore and estuarine environments (Malek 
et al. 2014). The physical oceanography of this region 
is dynamic, influenced by estuarine outflows, sea-
sonal upwelling events, and rapid temperature 
changes characteristic of shallow water environ-
ments, and this system experiences additional direct 
and indirect anthropogenic disturbances comparable 
with those observed in estuaries, due to the proxim-
ity to land (Farr et al. 2021). Given the unique nature 
of this coastal ocean, documented spatial variability 
of community-based, ecosystem indicators within the 
MAB EPU (Heim et al. 2021), and the recent estab-
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lishment of a fisheries-independent trawl survey in 
this nearshore zone, an evaluation of the community 
dynamics in this ecosystem could yield valuable 
information needed to support ecosystem assessment 
efforts for the MAB. 

As such, this investigation used 12 years of trawl 
survey data collected from the nearshore MAB to (1) 
quantify relative annual, seasonal, and spatial trends 
in aggregate biomass for several multispecies 
groups; (2) answer relevant ecological questions on 
the degree of coherence among the annual time 
series, trends in productivity of these assemblages, 
and the influence of biophysical forcing and exploita-
tion in shaping these trends; and (3) assess patterns 
in ecosystem usage through synthesis of the seasonal 
spatial distributions of these groups. This approach 
provides insight into the dynamics of the ecological 

community in the coastal ocean of this EPU, yields 
several ecological indicators that reflect temporal 
patterns of system status, and generates baseline 
spatiotemporal information against which to evalu-
ate future system states. 

2.  MATERIALS AND METHODS 

2.1.  Field sampling 

Data for this investigation were collected by the 
Northeast Area Monitoring and Assessment Program 
(NEAMAP) Nearshore Bottom Trawl Survey from 
2008 to 2019. NEAMAP is a fisheries-independent 
monitoring program designed to sample the late ju -
venile and adult stages of the living marine resources 
inhabiting the MAB coastal ocean (Fig. 1) through 
annual spring (April to May) and fall (September to 
November) cruises (Atlantic States Marine Fisheries 
Commission 2009). The sampling frame encom-
passes 12 097 km2 and is bounded by the 6.1 and 
18.3 m depth contours between Montauk, NY and 
Cape Hatteras; although sampling in the vicinity of 
Delaware Bay extends to 27.4 m to maintain spatial 
continuity. Survey activities in Block Island Sound 
and Rhode Island Sound occur from 18.3 to 36.6 m 
depth. Sites are selected from a grid of 772 ha sam-
pling cells using a stratified-random design, where 
stratification is delineated by latitudinal or longi -
tudinal regions and depth (6.1−12.2, 12.2−18.3, 
18.3−27.4, and 27.4−36.6 m), and effort is allocated in 
proportion to the surface area of each stratum. 
NEAMAP sampled at 150 sites during each cruise, 
except during spring 2017 when only 63 sites were 
sampled. 

A 3-bridle, 4-seam bottom trawl with a 48 m (cir-
cumference) fishing circle and 2.54 cm knotless lined 
codend is towed during daylight hours at 1.5 m s−1 for 
20 min at each sampling location. NEAMAP uses a 
net mensuration system to collect trawl geometry 
data and ensure consistent gear performance on 
each tow. Vessel position is also recorded throughout 
trawl hauls and used to calculate tow distance, which 
is coupled with wingspread data to estimate the area 
swept by the trawl at a site (range: 0.012 to 
0.033 km2). While a suite of additional variables is 
recorded synoptically with each haul, the most rele-
vant for this investigation were sample time of day 
and water depth (to the nearest 0.05 m). Catch data 
are collected on each species captured at a site, and 
include aggregate weight (to the nearest 2 g) and 
count, as well as length data (to the nearest 0.5 cm) 
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Fig. 1. Sampling frame of the Northeast Area Monitoring and 
Assessment Program (NEAMAP) Nearshore Bottom Trawl 
Survey. (Black lines) Boundaries of the 17 regional strata 
(numbered 1 to 17, north to south); (blue line) coastal position 
line developed for this investigation, including select loca-
tions along the coast for reference. CH: Cape Hatteras, North 
Carolina; OI: Oregon Inlet, North Carolina; CB: Chesapeake 
Bay; CI: Chincoteague, Virginia; DB: Delaware Bay; BN: 
Barnegat Inlet, New Jersey; NY: New York Harbor; MI: 
Moriches Inlet, New York; MK: Montauk, New York; BI: Block 
Island, Rhode Island; MV: Martha’s Vineyard, Massachusetts
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for all or a subsample of individuals. NEAMAP ani-
mal handling protocols were approved by the 
William & Mary Institutional Animal Care and Use 
Committee (IACUC-2020-02-24-14108-jxgart). 

2.2.  Species assemblages 

Species assemblages can be defined using an array 
of approaches, but often have been structured based 
on taxonomy, habitat associations, life history, mor -
pho logy, or trophic mode. Here, species were grouped 
based on coarse similarities in taxonomy, mor pho logy, 
and habitat usage, and thus generally represent eco-
morphotypes (EMT; sensu Compagno 1990). In desig-
nating these EMTs, consideration was given to main-
taining alignment with the primary modes of fishing 
in this ecosystem and consistency with assemblage 
definitions used in previous studies of the Northeast 
USA LME. All taxa sampled by NEAMAP were allo-
cated among 9 EMT assemblages that included 3 
bony fish, 4 elasmobranch, and 2 invertebrate groups 
(Table S1 in the Supplement at www.int-res.com/
articles/suppl/m704p015_supp.pdf), and each species 
was assigned to an assemblage based on information 
in the literature (Murdy et al. 1997, Collette & Klein-
MacPhee 2002). This qualitative approach was used 
to delineate EMTs in lieu of quantitative methods, 
such as cluster analysis or multivariate ordination, 
based on concerns that using NEAMAP catch data to 
both partition these assemblages and subsequently 
quantify the spatiotemporal patterns of these groups 
would represent a circular analysis. 

All bony fishes collected by the survey were parti-
tioned among the demersal fish, pelagic fish, and flat-
fish categories. These EMTs separated fishes that pri-
marily inhabit the water column from those typically 
associated with the seafloor, divided the latter taxa 
based on general body form, and broadly aligned 
with the fishery categories in the MAB (Gaichas et al. 
2014). Further, the assemblage designations for these 
bony fishes mirrored groupings used in prior studies 
that focused on quantifying the community structure 
of and developing ecosystem indicators for the off-
shore waters of the Northeast USA LME (Link & 
Brodziak 2002, Methratta & Link 2006). 

Elasmobranch species were grouped into the 
skate, ray, dogfish, and other shark EMTs. Note that 
while skates and rays share morphological similari-
ties in that component species of both groups are 
dorso ventrally compressed, several skate taxa are 
harvested by directed commercial fisheries while 
rays are usually encountered as bycatch in this eco-

system (NEFSC 2020). The decision to evaluate 
skates and rays as separate EMTs was based on these 
fishery differences, and because temporal patterns of 
the skate assemblage had been previously assessed 
for Georges Bank, an adjacent EPU north of the MAB 
(Fogarty & Murawski 1998). Similar reasoning sup-
ported the decision to separate the dogfish and other 
shark EMTs. Dogfish included smaller-bodied sharks 
and, as with skates, the historical dynamics of this 
assemblage have been evaluated for Georges Bank 
(Fogarty & Murawski 1998). The species composing 
this EMT are also subjected to directed fisheries 
(NEFSC 2006, Southeast Data, Assessment, and 
Review [SEDAR] 2015). In contrast, the other shark 
category encompassed medium-to-larger bodied 
ani mals that are either targeted by smaller-scale di -
rected harvest, encountered as bycatch, or for which 
possession is prohibited (Mandelman et al. 2008). 
Finally, the invertebrate taxa collected by NEAMAP 
were allocated among 2 EMTs that separated soft-
bodied cephalopods from benthic arthropods (Link & 
Brodziak 2002). 

2.3.  Spatiotemporal modeling of ecomorphotype 
relative aggregate biomass 

Annual trends and seasonal spatial distributions of 
relative aggregate biomass were quantified for each 
EMT assemblage by employing model-based ap -
proaches commonly used to standardize fisheries-
independent survey catch-per-unit-effort (CPUE) 
data (Maunder & Punt 2004). Site-specific CPUE for 
an assemblage was given by: 

                                                                               (1) 

where Bi,k is the biomass (kg) of the i th species of the 
EMT collected at sampling site k, S represents the 
number of taxa included in that assemblage, and ak is 
the area swept by the trawl. 

Generalized additive models (GAMs) were used to 
relate CPUE data for each group to a suite of covari-
ates recorded synoptically at the NEAMAP sampling 
sites. The GAM framework represents a flexible uni-
variate approach that allows a response variable to 
be modeled as a function of both parametric (similar 
to generalized linear models) and non-parametric 
components, where the latter incorporate smoothing 
functions for continuous covariates and thus permit a 
nonlinear relationship between the response and 
predictor variable that is informed by the available 
data (Wood 2017). Covariates considered in these 

CPUEk =  i=1

S� Bi,k

ak
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GAMs included: year (categorical), season (categori-
cal), depth (m, continuous), solar zenith (angle, con-
tinuous), and a season−coastal position interaction 
(km, continuous) that accounted for the seasonally 
varying spatial distributions of each EMT. The 
coastal position variable was created given the need 
for a spatial metric, and because latitude and longi-
tude are highly colinear within the NEAMAP survey 
area (Fig. 1). The first step in creating this variable 
was to generate a near-continuous contour that mir-
rored the MAB coastal shoreline. Given that the 
inshore boundary of the NEAMAP sampling frame is 
comprised of sampling cells that follow this shore-
line, the landward 3 positions of each of these in -
shore cells (i.e. south-, central-, and northwest for 
cells south of New York Harbor, and northwest, -cen-
tral, and -east otherwise) were selected from the full 
survey sampling grid. Linear regression models were 
then fitted to consecutive pairs of these points, 1000 
location predictions were generated between each 
pair, and predictions were concatenated to yield a 
near-continuous contour of approximately 1.4 m res-
olution at the inshore margin of the sampling frame 
that paralleled the coastal shoreline (Fig. 1). This ap -
proach was akin to applying a LOESS smoothing 
spline to these inshore positions using a very small 
span width such that a curve (i.e. straight line) is fit-
ted between each pair of points, resulting in a con-
tour that tracks the shoreline (Zuur et al. 2007). Next, 
all sites sampled by NEAMAP were assigned to the 
nearest location on this contour. Finally, the distances 
along the contour from Cape Hatteras (the 0 km ref-
erence) to these assigned locations were calculated 
and used to represent the coastal positions (dis-
tances) of the sampling sites (sensu Nye et al. 2009). 
All distance calculations were performed using the 
‘geosphere’ package in R (v3.6.3, R Core Team 2020). 

Some trawl hauls resulted in no catch for a given 
assemblage, and thus most of the EMT datasets con-
tained several CPUE observations equal to zero. Ini-
tial attempts to fit GAM models for each group using 
the Tweedie distribution, which has positive mass 
at zero, were unsuccessful based on an evaluation 
of diagnostic plots, which was likely due to an insuf-
ficient number of zero observations in the EMT 
datasets (Shono 2008). A delta-GAM framework was 
therefore used to model CPUE of these assemblages 
(Lo et al. 1992). Delta-GAMs are hurdle models suit-
able for continuous response data that include zero 
values and contain 2 components: a binomial model 
fitted to presence/absence data to estimate the prob-
ability of encountering the assemblage and a condi-
tional component fitted to CPUE data for the subset 

of sites where the EMT was encountered. Delta-
GAM models were expressed as: 

                                                                                    
(2)

 

                                                                                         
where  represents the probability of encountering 
the EMT, E(y) is the expected value of the response 
vector CPUE for the subset of sites where the assem-
blage was captured, X is the fixed-effects model 
matrix containing observations of the categorical co -
variates,  is the vector of fixed-effects coefficients, sj 
is the smoothing function for continuous covariate j, 
and g is the monotonic link function. Representatives 
of the demersal fishes and skate EMT assemblages 
were collected at approximately 99% of NEAMAP 
sites and thus were modeled using the conditional 
component of Eq. (2) only, where a small quantity 
(0.2 kg for demersal fishes, 10 kg for skate) was ad -
ded to all catches given that the domains of the avail-
able response distributions were defined on the pos-
itive real line. 

The delta-GAM models were fitted for each EMT 
using generalized additive models for location, scale, 
and shape (GAMLSS) regressions (Rigby & Stasino -
poulos 2005). GAMLSS extends traditional GAM 
models by incorporating distributions of the response 
variable beyond the exponential family. For each 
EMT, the most supported distribution of the CPUE 
data in the conditional component of the model (or 
overall model for demersal fishes and skates) was 
identified by fitting a model with all candidate co-
variates (i.e. full model) using each available contin-
uous distribution defined on the positive real line and 
evaluating competing forms using Akaike’s informa-
tion criterion (AIC; Akaike 1973, Burnham & Ander-
son 2002). Once the most supported conditional dis-
tribution was identified, 4 forms of both the binomial 
and conditional models were fitted (Table 1), and the 
most supported parameterization within each com-
ponent was identified by AIC and evaluation of 
model diagnostic plots. Note that analyses of residu-
als yielded no evidence of appreciable spatial (cor-
relogram) or temporal (partial autocorrelation func-
tion) autocorrelation in these EMT datasets (Zuur et 
al. 2009). 

While the covariates included in the delta-GAM 
models for each assemblage were allowed to vary 
 be tween the binomial and conditional components, 
given that the processes that influence probability of 
encounter and conditional relative abundance may 
differ (Lo et al. 1992, Rubec et al. 2016), the year co -
variate and the season-coastal position interaction 

�

�
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were included in all candidate models, since an objec-
tive of this investigation was to evaluate annual 
trends in and the seasonal spatial distributions of rela-
tive biomass for each EMT. Predictions of annual and 
seasonal−spatial probability of encounter and condi-
tional CPUE were generated using marginal means 
(Searle et al. 1980), and these component values were 
multiplied to yield both an annual index of relative 
abundance and to estimate the seasonal spatial distri-
bution for each EMT. For the latter metric, CPUE was 
predicted at 1000 points spaced evenly over the do-
main of the coastal position contour (~1 km resolution) 
for each season. Coefficients of variation (CVs) for 
these annual and seasonal spatial predictions were 
quantified from 1000 nonparametric bootstrapped 
samples (Efron & Tibshirani 1993). Resampling was 
conducted with replacement and stratified by year to 
characterize uncertainty in annual CPUE indices and 
by season and survey region for seasonal spatial rela-
tive abundance. 

2.4.  Coherence among and drivers of  
annual trends 

Dynamic factor analysis (DFA) is a multivariate, di-
mension reduction technique designed to extract 
common trends (i.e. latent variables) from a suite of 
relatively short, nonstationary time series, evaluate 
coherence among the time series by illuminating re-
lationships with these trends, and quantify the influ-

ence of measured covariates on the collection of time 
series (Zuur et al. 2003). Because the DFA frame work 
is structured to incorporate time series information, 
survey catch data and hypothesized covariates must 
be summarized on some time interval (often annual) 
prior to analysis (Nye et al. 2010, Peterson et al. 2017). 
Thus, DFA was used in this investigation to syn -
thesize the commonalities among the time series of 
annual CPUE predictions generated for the 9 EMTs 
from the delta-GAMs, and to evaluate the influence 
of biophysical forcing and exploitation covariates on 
these time series. The DFA model was given by: 

                                                                              (3) 

where yt is the vector (9 × 1) of the standardized (z-
scored) CPUE predictions for the 9 EMTs in year t,  
the vector (r × 1) of r common trends (r < 9) modeled 
as stochastic random walks,  the matrix (9 × r) of 
EMT-specific loadings, xt the vector (q × 1) of q 
covariates, D the matrix (9 × q) of covariate effects, 
and R and Q the variance-covariance matrices asso-
ciated with the observation error vector t (9 × 1) and 
process error vector t (r × 1), respectively, both of 
which were assumed to follow a multivariate normal  
(MVN) distribution with mean zero. Q was set to the 
identity matrix so that the model parameterizations 
were identifiable (Zuur et al. 2003). 

Twelve annualized covariates representing phy si -
cal forcing, biological processes, and fishery re mo -
vals were evaluated within the DFA models. Specifi-
cally, the hypothesized physical drivers of the MAB 
ecological community included the principal compo-
nents-based winter (December to March) North At-
lantic Oscillation (NAO) index of atmospheric pres-
sure differences between Iceland and the Azores 
(Hurrell et al. 2003), the Atlantic Multidecadal Oscil-
lation which quantifies decadal-scale variability in 
sea surface temperature, and the Gulf Stream Index 
which measures the position of the north wall of this 
boundary current and has been shown to impact 
physical processes on the shelf (Joyce et al. 2019). 
The volume of the MAB Cold Pool was included as 
this feature can affect recruitment (Miller et al. 2016), 
while the influence of mean sea surface temperature 
in the MAB at both annual (SSTA) and seasonal 
scales (winter: January to March [SSTWI]; spring: 
April to June [SSTSP]; summer: July to September 
[SSTSU]; fall: October to December [SSTFA]) was 
also evaluated (Reynolds et al. 2007). The primary 
production anomaly ratio measures annual fluctua-
tions in primary productivity (NEFSC 2022), while the 
small:large copepod ratio characterizes the size struc-

yt = ��t +Dxt + �t  where �t  ~ MVN(0,R)

�t = �t�1 + ��t  where �t  ~ MVN(0,Q)

�

�

�
�
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Model                                   Covariates 
 
M1          Year, Season, Season × Coastal Position, Depth,  
                                            Solar Zenith 

M2          Year, Season, Season × Coastal Position, Depth 

M3                        Year, Season, Season × Coastal Position,  
                                            Solar Zenith 

M4                Year, Season, Season × Coastal Position 

M5              Year, Coastal Position, Depth, Solar Zenith 

M6                         Year, Coastal Position, Depth 

M7                    Year, Coastal Position, Solar Zenith 

M8                               Year, Coastal Position

Table 1. Generalized additive model parameterizations eval-
uated for the analysis of presence/absence and conditional 
catch-per-unit-effort data on 9 ecomorphotypes collected by 
the Northeast Area Monitoring and Assessment Program 
(NEAMAP) from 2008 to 2019. Model selection for the dem-
ersal fish, pelagic fish, flatfish, skate, dogfish, cepha lo pod, 
and benthic arthropod groups used parameterizations M1 to 
M4, and those for the ray and other shark categories used  

M5 to M8
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ture and quality of the zooplankton community (Per-
retti et al. 2017), and these 2 metrics were used to ex-
plore bottom-up biological controls on the MAB as-
semblages. Finally, total commercial landings served 
as a measure of fishing pressure and was used to 
evaluate top-down controls (NEFSC 2022). Given 
that each of these processes could impact faunal re-
cruitment and availability to the survey, and that 
NEAMAP primarily samples the late juvenile and 
adult stages of species in the MAB, all physical and 
biological covariates were lagged 0, 1, and 2 yr, and 
exploitation was lagged 0 and 1 yr. These predictor 
variables were z-scored prior to inclusion in the DFA 
models. 

In the DFA framework, the R matrix specifies the 
variance and covariance structure among time series 
(Zuur et al. 2003). The mean of the annual CV esti-
mates generated from the bootstrapped delta-GAMs 
was calculated for each EMT and incorporated as the 
diagonal elements of the R matrix to propagate time 
series uncertainty (Peterson et al. 2021). Models in -
cluding 1, 2, and 3 common trends were fitted and in -
cluded either no covariate, a single covariate, or a 
lagged covariate. This approach yielded 114 candi-
date DFA models. Model selection occurred by eval-
uating AIC corrected for small sample size (AICc) to 
identify empirically supported forms, where those 
with ΔAICc < 10 were considered further (Latour et 
al. 2017). The FitRatio, which is the ratio of the sum-
of-squared residuals and sum-of-squared observa-
tions ( ) for the DFA model fits to the EMT 
time series, was evaluated for each aggregate group 
as well as across these EMTs (i.e. Mean Fit) for the 
remaining models and coupled with a visual evalua-
tion of residuals to identify the ‘final’ model. Statisti-
cal significance of factor loadings and covariate coef-
ficients was assessed for this model using 95% 
confidence intervals (CIs), and the fits of this DFA 
model to each EMT time series represented a suite of 
ecosystem indicators for the nearshore MAB (e.g. 
Nye et al. 2010, Latour et al. 2017). 

2.5.  Synthesis of seasonal spatial distributions 

Principal component analysis (PCA) was applied to 
the predicted seasonal spatial distributions of CPUE 
generated for the 9 EMTs from the delta-GAM mod-
els to synthesize spatiotemporal patterns of these 
assemblages. PCA is an ordination technique rou-
tinely used to achieve dimension reduction and sig-
nal isolation for complex multivariate datasets. It re -
lies on singular value decomposition to quantify 

principal components (PCs) as linear combinations of 
the original variables, such that a subset of these PCs 
capture an appreciable proportion of the variability 
in the dataset (Zuur et al. 2007). While the applica-
tion of PCA to observed (i.e. ‘raw’) species abun-
dance information is usually not recommended given 
the typical dominance of zero observations and vio -
lation of multivariate normality in these datasets 
(Clarke et al. 2014), model-derived, ecological com-
munity data are much less prone to these issues. As 
such, the use of PCA for exploring patterns in ecolog-
ical metrics generated using various analytical ap -
proaches is appropriate and has proven valuable 
when assessing system status in the Northeast USA 
LME (Link et al. 2002). 

In this investigation, the input dataset for the PCA 
was a 1000 × 16 site-by-assemblage matrix, where 
the 16 columns represented a given EMT-season 
combination (spring data on rays and other sharks ex -
cluded, see Section 3.1. for details), and rows were 
predictions of CPUE at each of the 1000 locations 
along the coastal contour. The relationships among 
factor loadings (representing EMT-season combina-
tions) and scores (representing locations along the 
contour) were visualized using a correlation biplot 
(Zuur et al. 2007). Uncertainty in the factor loading 
vectors for each EMT-season combination, which re -
presented gradients in relative aggregate biomass for 
each assemblage, were characterized using a non -
parametric approach that incorporated bootstrapped 
predictions from the GAMs (Mehlman et al. 1995). All 
statistical analyses were performed using the R soft-
ware program (v3.6.3, R Core Team 2020). Packages 
‘gamlss’ (Rigby & Stasinopoulos 2005), ‘MARSS’ 
(Holmes et al. 2018), and ‘stats’ were ac ces sed to fit 
the delta-GAMs, DFAs, and PCA, respectively. 

3.  RESULTS 

3.1.  Ecomorphotype catch summaries 

NEAMAP completed 24 survey cruises and col-
lected data at 3532 sites from 2008 to 2019. A total of 
178 species was encountered, and the aggregate 
catch was comprised of 13 436 602 individuals weigh-
ing 851.7 t. The demersal fishes category included 82 
species and was encountered at 99.5% of the sites 
sampled. This EMT encompassed the largest number 
of taxa and had the highest frequency of occurrence 
among all groups, which was not unexpected given 
the bottom-tending, mobile nature of the sampling 
gear. Although previous studies of marine communi-

� �̂t
2 / �yt

2

21



Mar Ecol Prog Ser 704: 15–33, 2023

ties based on bottom trawl survey data have ex -
cluded information on pelagic fishes due to catcha-
bility concerns (e.g. Buchheister et al. 2013), the 
high-rise nature of the NEAMAP trawl and sampling 
of relatively shallow depths combined to yield appre-
ciable, consistent catches of this assemblage. A total 
of 37 pelagic fish species was collected across 96.4% 
of NEAMAP trawls. Although only 4 species of skate 
were sampled, this group was quite ubiquitous as the 
frequency of encounter was 98.8% and second only 
to demersal fishes. 

Flatfishes were collected at 86.1% of sites and in -
cluded 11 species. The 5 taxa that composed the 
cephalo pod EMT were captured at a frequency 
(88.8%) similar to that of the flatfishes. Benthic 
arthro pods were a relatively diverse EMT comprised 
of 17 taxa and encountered in 73.9% of hauls, while 
dogfishes included only 2 species that were caught at 
68.3% of sites. Encounter frequencies of rays (9 spe-
cies) and other sharks (11 species) were relatively 
low, as these EMTs were collected in 28.2% and 
14.8% of trawl hauls, respectively. Both of these 
EMTs were rarely encountered during NEAMAP 
spring surveys, and thus the early season catch data 
on these assemblages were excluded from subse-
quent modeling efforts. Rays were captured in 46.8% 
of tows that occurred in the fall, while other sharks 
were sampled at 23.8% of these sites, and the fall 
species compositions for each of these EMTs mir-
rored those observed at the annual scale. 

3.2.  Spatiotemporal modeling of ecomorphotype 
relative aggregate biomass 

GAM models were successfully fitted for each of 
the 9 EMTs, as no convergence or estimation prob-
lems occurred for any of the candidate parameteriza-
tions. The generalized beta type-2 (GB2) was the 
most supported distribution for modeling non-zero 
CPUE data associated with demersal fishes, pelagic 
fishes, benthic arthropods, and skates, while the Box-
Cox t (BCTo) distribution was chosen for the flatfish, 
cephalopod, dogfish, and ray EMTs (Table S2). The 
non-zero CPUE data for other sharks was assumed to 
follow the generalized inverse Gaussian (GIG) distri-
bution. The most supported parameterizations for 
each assemblage were considered reliable for esti-
mating the annual trends and seasonal spatial distri-
butions of these EMTs based on a thorough evalua-
tion of the associated model diagnostics, which 
in  cluded worm plots (detrended quantile-quantile 
plots), histograms of residuals, and relationships be -

tween residuals and fitted values as well as between 
residuals and the covariates. 

Model M1, the full model (Table 1), was the most 
supported parameterization for both the binomial 
and conditional models for the flatfish, benthic 
arthropod, and dogfish assemblages, as well as for 
the binomial component of pelagic fishes and the 
conditional model for cephalopods (Table S3). This 
formulation also yielded the lowest AIC values for 
both the demersal fish and skate EMTs. In each of 
these cases, depth and solar zenith explained appre-
ciable variation in the encounter or non-zero CPUE 
of these EMTs. The selected parameterization for the 
binomial component of the cephalopod model and 
conditional component of the pelagic fishes model 
included the depth covariate, but not solar zenith (i.e. 
M2). Given that the datasets for the ray and other 
shark EMTs were restricted to the fall cruises, model 
M6 received the most empirical support for both com-
ponents of the ray model and for the binomial com-
ponent for other sharks, while M8 was chosen for the 
conditional model of the latter group. 

CVs (not shown) associated with predicted annual 
CPUE estimates were less than 0.33, indicative of 
good precision, for all of the EMTs except pelagic 
fishes, rays, and other sharks. For these latter 3 
groups, maximum an nual CVs were 0.40, 0.41, and 
0.51, respectively. The CVs of the spatial predictions 
during spring ranged from 0.09 to 0.63 and were 
between 0.08 and 0.91 for most EMTs in fall. The 
CVs associated with the other sharks CPUE during 
fall were as high as 9.63 in the northern extent of the 
survey range, likely due to the sporadic catches of 
relatively few large animals that occur in this region 
during fall. 

3.3.  Coherence among and drivers of  
annual trends 

The DFA model receiving the most empirical sup-
port and thus used for inference included 3 common 
trends and SSTWI (i.e. MAB mean sea surface tem-
perature during winter; Fig. 2) as a co variate. Al -
though a competing model with 3 common trends 
and NAO had a ΔAICc value of 0.4 and a slightly 
lower Mean Fit (Table S4), FitRatios of DFA model 
fits for 7 out of 9 EMTs were larger than those from 
the selected model, and thus this model was not con-
sidered further. The first common trend indicated a 
notable shift in CPUE from slightly above average 
prior to 2014 to a period of lower values through 
2017 (Fig. 3a). Relative ag gregate biomass then 
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increased throughout the remainder of the time 
series. The factor loading of demersal fishes on this 
common trend was statistically significant and posi-
tive, while those of the cephalopod, ray, and other 
shark assemblages were significant and negative, 
revealing contrasting responses of relative aggre-
gate biomass over the 2008−2019 period between 
the demersal fishes and these latter 3 groups 
(Fig. 3b). The SSTWI covariate had a significant, 
positive effect on the CPUE of the demersal fishes, 
and the influence on the ray group was also positive 
but not significant (ray 95% lower confidence limit 
[LCL]: −0.06; Table S5). The DFA model fit to demer-
sal fishes showed a gradual de cline early in the time 
series, a peak in 2012 that was followed by a sharp 
decrease from 2013 to 2014, and then a gradual 
increase through 2019 with a secondary peak during 
2016 (Fig. 3c). Fits to both the cephalopod and other 
shark EMTs exhibited increasing trends in relative 
abundance between 2008 and 2019 and, in contrast 
with demersal fishes, the CPUE of both assemblages 
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spiked in 2014. The relative ag gregate biomass of 
these 2 groups was also high in 2017. The abundance 
of the ray group varied through out the time series 
with little discernable trend. These model fits repre-
sent a new suite of ecosystem indicators for these 
EMTs in the nearshore MAB ecosystem. Fits to the 
demersal fish, cephalopod, and other shark EMTs 
were good, as FitRatios ranged from 0.12 to 0.21, 
while that of the rays was relatively poor at 0.66 and 
likely responsible for the equivocal trend. 

The second common trend reflected below-
average CPUE values during 2008 and 2009, a some-
what parabolic trend between 2009 and 2015 where 
relative aggregate biomass increased sharply and 
then declined gradually, and a subsequent stable 
period through 2019 (Fig. 4a). The 3 EMTs with sig-
nificant factor loadings on this common trend again 
displayed conflicting patterns in their time series of 
CPUE. The factor loading of pelagic fishes was posi-
tive, and those of the benthic arthropods and dog-
fishes were negative (Fig. 4b). The DFA model fit for 
pelagic fishes exhibited a cuneate trend from 2009 to 
2015, and the highest CPUE for this assemblage oc -
curred during 2012 (Fig. 4c). Similar to the demersal 
fishes, pelagics were abundant during 2016 and this 
group was significantly and positively influenced by 

SSTWI. Unlike the demersal fishes, however, the 
abundance of this EMT mostly declined after 2012. 
Model fits indicated that the highest CPUE values for 
dogfishes occurred during the early and late periods 
of the time series, with below-average values during 
most of the intervening years. The relative aggregate 
biomass of benthic arthropods peaked in 2009, and in 
contrast with pelagic fishes, exhibited consistently 
low CPUE between 2010 and 2013. A secondary 
peak occurred in 2014 and was followed by a steady 
decline. The FitRatios of the ecosystem indicators for 
these 3 EMTs ranged from 0.07 to 0.41, indicative of 
good model fits. 

The third common trend showed a slight increase 
at the beginning of the time series, followed by a con-
sistent decline thereafter (Fig. 5a), and both the flat-
fish and skate EMTs were significantly and positively 
coherent with this trend (Fig. 5b). Although the DFA 
model fits for these groups displayed notable de -
clines through time, the exact patterns exhibited by 
these assemblages varied (Fig. 5c). The rate of de -
crease for the flatfish ecosystem indicator was rela-
tively gradual and somewhat consistent after 2009. 
Conversely, while the skate indicator also trended 
lower after 2009, CPUE showed peaks in both 2012 
and 2016, likely due to the influence of the SSTWI 
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covariate on this group, which was positive but not 
significant (skate 95% LCL: −0.01; Table S5). DFA 
model fits for both of these EMTs were good, as the 
FitRatios associated with the flatfishes and skates 
were 0.07 and 0.11, respectively. 

3.4.  Synthesis of seasonal spatial distributions 

The PCA applied to the seasonal spatial predic-
tions of CPUE for the 9 EMTs revealed appreciable 
differences in the locations of the nearshore MAB as -
sociated with the largest relative aggregate bio-
masses of these groups as well as seasonal contrasts 
within most assemblages. The first principal compo-
nent (PC1) accounted for 37.6% of the variation in 
the seasonal spatial distributions of these EMTs, and 
effectively divided the northern and southern areas 
of this ecosystem at approximately Delaware Bay 
(Fig. 6). PC2, which delineated a gradient that sepa-
rated the boundaries of this EPU from its central 
region, captured 28.7% of the variance in the sea-
sonal distributions of the groups. During fall, the 
CPUE of demersal fishes, rays, and other sharks in -
creased toward the southern zone of the nearshore 
MAB and generally peaked in the vicinity of Oregon 

Inlet, NC. Relative aggregate biomass of demersal 
fishes was highest near the northern and southern 
boundaries of this ecosystem in spring as indicated 
by the central position of, and relatively large uncer-
tainty associated with, the factor loading of this 
group on PC1, along with the strong negative load-
ing on PC2. 

Spatial patterns of relative abundance for pelagic 
fishes during fall mirrored those of the demersal cat-
egory in spring, and while spring catches of the 
pelagic assemblage were also elevated in the north-
ern and southern extents of this EPU, relative abun-
dance of this EMT tended to be greater in RIS (i.e. 
between Block Island, RI, and Martha’s Vineyard, 
MA). The CPUE of benthic arthropods peaked dur-
ing both seasons in the vicinity of Delaware Bay, and 
the dogfish group was also most abundant in this 
area during spring. Cephalopod relative aggregate 
biomass was greatest between central Long Island 
and about Delaware Bay in spring, while the abun-
dance of dogfishes was highest in this area during 
fall, indicating that these EMTs exhibit alternating 
seasonal use of this area. The south shore of Long 
Island, and particularly the region between Moriches 
Inlet, NY and Montauk, represented a hotspot of ele-
vated biomass for skates, flatfishes, and cephalo -
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pods. The gradient of CPUE for skates peaked in this 
area during both seasons, while this zone was associ-
ated with the largest abundances of flatfishes in 
spring and cephalopods during the fall season. The 
relative aggregate biomass of flatfishes was highest 
west of Moriches Inlet in the fall. 

4.  DISCUSSION 

This investigation quantified and synthesized tem-
poral and spatial patterns of the ecological community 
inhabiting the nearshore MAB, a system that serves 
as a vital spawning, nursery, foraging, and re fuge 
habitat for an array of economically and ecologically 
important living marine resources (Wuenschel et al. 
2013, Malek et al. 2014). The annual time series and 
seasonal spatial distributions of relative aggregate 
biomass quantified for the 9 EMTs using delta-GAM 

modeling provided insights into spatio -
temporal trends in the productivity and 
partitioning of bio mass among these 
groups (Buchheister et al. 2013). These 
patterns both illuminated the community 
structure of the EMTs and complimented 
prior ecological investigations that fo-
cused on the offshore and estuarine en-
vironments of this EPU. Identifying the 
commonalities among and drivers of the 
annual trends using DFA offered a key 
framework for summarizing the often-
overwhelming number of time series 
available for consideration when evalu-
ating ecosystem status. This approach 
effectively reconciled seemingly dis-
parate temporal trends among multiple 
species assemblages while yielding a 
new suite of ecosystem indicators for this 
system. The synthesis of EMT seasonal 
spatial distributions using PCA repre-
sented a novel, albeit somewhat coarse, 
system-level approach to quantifying 
community spatial gradients that could 
be used by decision makers charged 
with mitigating risks to important marine 
habitats and balancing trade-offs among 
multiple use sectors in marine spatial 
planning activities. 

Evaluating the spatiotemporal patterns 
of species assemblages in an ecosystem 
first requires the implementation of a 
classification scheme to group taxa based 
on similarities across traits of interest. 

The ap proach used to define these assemblages rep-
resents a vitally important decision, as it both influ-
ences the perceived structure of the ecosystem and 
shapes inference on system processes (Frost et al. 
1992). To our knowledge, none of the myriad ap -
proaches commonly used to delineate assemblages 
has been identified as superior to the others (Link & 
Brodziak 2002) and thus, much like the EAFM 
process itself (Link 2010), selecting an appropriate 
grouping framework involves the consideration of 
trade-offs. However, because these assemblages 
often serve as the basis for developing ecosystem 
metrics, including time series indicators that underpin 
ecosystem assessments, it is critical that the approach 
used to define these groups maintains coherence with 
as much of the established guidance for indicator de-
velopment as possible (e.g. Dale & Beyeler 2001, Rice 
& Rochet 2005). The common themes of this guidance 
are that the measures be: (T1) based in ecological the-
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ory; (T2) relatively inexpensive to produce; (T3) gen-
erated consistently over time; (T4) responsive to abi-
otic, biotic, and anthropogenic drivers; and (T5) easily 
understood by the scientific community, fishery man-
agers, and stakeholders, among others. 

All species collected by NEAMAP from 2008 to 
2019 were assigned to 1 of 9 EMTs, which effectively 
mirrored assemblage definitions used previously to 
evaluate community status in the broader Northeast 
USA LME, although the groupings in these prior stud-
ies were not described as EMTs (Fogarty & Murawski 
1998, Link & Brodziak 2002, Methratta & Link 2006). 
This EMT framework follows many of the themes as-
sociated with the development of informative and re-
liable ecosystem metrics. First, this classification sys-
tem allowed for the incorporation of all taxa sampled 
by NEAMAP which, although the contributions of 
some species to the aggregate biomass of their as-
signed EMT was relatively small, was critical to 
 support a holistic evaluation of the spatiotemporal 
patterns of the entire ecological community as repre-
sented by the survey trawl (T1 listed above; Meth ratta 
& Link 2006). Assigning taxa to the 9 EMTs was based 
on information available in the literature and thus was 
low-cost (T2), and unlike with other modes of classifi-
cation, species EMT assignments likely are robust to 
systemic changes (e.g. demersal fishes remain demer-
sal) which should promote longer-term consistency in 
the species composition of the resulting metrics (T3). 
These EMTs also generally align with the fisheries 
operating in the MAB ecosystem (Gaichas et al. 2014), 
and therefore are likely to be responsive to fisheries 
management measures (T4) and intuitive to fishery 
managers, stakeholders, and the public (T5). Note 
that further subdividing these 9 EMTs to gain greater 
alignment of assemblages with MAB fisheries (e.g. di-
vide demersal fishes into warm- and cold-adapted 
species), perhaps by applying DFA at the species-
level to identify these groupings, represents a poten-
tially fruitful area of future research. Finally, and per-
haps most importantly, this relatively simple EMT 
classification approach can be implemented for any 
ecosystem with at least a modest data collection pro-
gram. As the value of EAFM gains greater apprecia-
tion and efforts to quantify ecosystem dynamics be-
come more widespread, developing standard metrics 
(and first, assemblage delineations) based on rela-
tively simple criteria and minimal data requirements 
will help to facilitate cross-system comparisons meant 
to illuminate common themes in ecosystem structure 
and function (Link & Marshak 2019). 

As noted above, the choice of an assemblage frame-
work to serve as the basis for quantifying ecological 

communities and developing ecosystem indicators in-
volves trade-offs. Given similarities in habitat usage 
within each assemblage, spatiotemporal abundance 
patterns of EMTs are expected to be responsive to en-
vironmental cues and harvest pressures. Note, how-
ever, that these groupings likely would mask any 
trends in the ecological community driven primarily 
by changing trophic interactions, since most of the 
EMTs contain a myriad of both predators and prey as 
well as potential competitors (Garrison & Link 2000, 
Link & Auster 2013). The classification framework 
currently underpinning aggregate biomass indicator 
development for the offshore waters of the MAB shelf 
relies on the trophic guild concept as the basis for as-
semblage definition (Garrison & Link 2000, NEFSC 
2022), which offers the ad vantage of being more 
likely to detect trends driven by changes in these spe-
cies interactions. Drawbacks of the trophic guild ap-
proach include increased costs to generate the diet 
data required to delineate these groups and, at times, 
misalignment of these assemblages with established 
fisheries and associated management. The question 
as to which of these as semblage frameworks is prefer-
able for quantifying ecological communities in support 
of EAFM is not new (Link & Brodziak 2002). Because 
these 2 ap proaches focus on different aspects of an 
ecosystem, we contend that both should be considered 
in the development and maintenance of EAFM, with 
re search directed toward synthesis of the metrics gen-
erated from each. 

The annual trends and seasonal spatial distribu-
tions of relative aggregate biomass were quantified 
for the 9 EMTs using delta-GAMs. Given the preva-
lence of nonlinear relationships between community 
measures and hypothesized synoptic localized driv-
ers, recognition of the value of GAMs in standardiz-
ing and quantifying ecosystem metrics is increasing 
(Buchheister et al. 2013, Large et al. 2015). The avail-
ability of a broad array of candidate distributions 
in GAMLSS represented a key advancement over 
frame works that limit choices to the exponential fam-
ily of distributions (Rigby & Stasinopoulos 2005), as 
the ability to model CPUE data using the GB2, BCTo, 
and GIG distributions yielded marked improvements 
in model diagnostics, and presumably greater accu-
racy and precision in predicted measures of central 
tendency. This framework also permits the modeling 
of scale (variance) and shape (skewness and kurto-
sis) as a function of covariates which, although not 
necessary in this study based on model diagnostics, 
could prove useful in other applications and thus 
 represents a valuable area of future research in the 
development of ecosystem indicators. 
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Evaluating trends in and patterns of relative aggre-
gate biomass for species assemblages has received 
criticism following the revelation that these metrics 
are prone to bias and can be hypersensitive when 
catchability of the component species is not constant 
(Kleiber & Maunder 2008). The catch data underpin-
ning this study were derived from a fisheries-inde-
pendent monitoring program that has maintained 
consistency in both the fishing system and sampling 
protocols since its inception, such that the assump-
tion of constant species-specific catchability over 
space and time was reasonable, and thus any bias or 
hypersensitivity in these metrics was likely minimal. 
Indeed, preliminary analyses showed that the spatio -
temporal patterns in the aggregate biomass indica-
tors were consistent with those of many component 
species within these EMTs, and the value of such 
metrics for quantifying ecosystem structure and 
function has been well documented (Link et al. 2002, 
Methratta & Link 2006, Buchheister et al. 2013, 
Latour & Gartland 2020), meaning that the afore-
mentioned concerns were outweighed by the need to 
gain insight into the spatiotemporal patterns of the 
community assemblage in this system. Likewise, the 
restricted sampling frame and short time series of 
available data represented potential constraints on 
the applicability of this investigation. While generat-
ing information on ecosystem status at the LME (or at 
least EPU) level had been assumed to be an appro-
priate scale to support IEAs, delineating system met-
rics such as assemblage indicators at multiple spatial 
scales congruent with the hierarchal structure of the 
ecosystem (e.g. estuary vs. coastal ocean vs. offshore 
shelf) may be more relevant to these IEA efforts 
(Heim et al. 2021). Following guidance to avoid infer-
ence based on statistically significant annual trends 
in time series of less than 30 yr (Hardison et al. 2019), 
this study instead employed an approach designed 
for use with short, nonstationary time series typically 
associated with relatively new fisheries-independent 
monitoring programs. 

The time series of relative aggregate biomass for 
the EMTs inhabiting the nearshore MAB were char-
acterized by 3 common trends, which effectively rep-
resented latent, unmeasured variables that influ-
enced the relative abundances of these assemblages 
(Zuur et al. 2003). The first common trend was char-
acterized by an abrupt shift from positive to negative 
values during the 2013 to 2014 timeframe, which 
likely reflected a severe, system-level disturbance 
that impacted nearly half of the assemblages. Be -
cause SSTWI was included in the model that re -
ceived the most empirical support, the effect of this 

co variate was removed from all of the common 
trends, and as such the source of this perturbation re -
mains unresolved. An ideal DFA model would 
include multiple identifiable covariates that explain 
nearly all of the variation in the time series of inter-
est, yielding a single common trend with no promi-
nent features (Zuur et al. 2003). Attempts to include 
more than one covariate in a DFA model resulted in 
convergence issues that likely were due to the rela-
tively short time series of available data, and thus 
represented a limitation of this analysis. The second 
common trend was approximately parabolic during 
the first half of the time series, while the third re -
flected a steady decline. Each of these latent vari-
ables was associated with multiple EMTs, meaning 
that the annual indices of these 9 assemblages pri-
marily reflected 3 relatively simple trends. 

To be clear, the DFA model fits to the EMT time 
series, and not these common trends, constituted the 
new suite of ecosystem indicators generated for the 
nearshore MAB from this investigation. Neverthe-
less, DFA common trends could prove valuable to 
assessments of ecosystem status in support of EAFM, 
as they group ecosystem indicators by identifying 
coherence (or conflict) among these metrics and pro-
vide synthetic information on the underlying pat-
terns in the groups of indicators. Efforts to assess sys-
tem status and implement EAFM are becoming 
overwhelmed by the myriad of indicators that must 
be considered (Bundy et al. 2019). The ability to syn-
thesize the information content of multiple indicators 
based on a smaller number of latent measures (com-
mon trends) therefore represents a critical step to -
wards promoting efficient ecosystem assessment and 
management activities, and one that likely will be -
come more important as the number of indicators 
available for consideration continues to increase. 
Further, although this investigation was unable to 
identify the 3 latent covariates driving the annual 
trends in EMT relative aggregate biomass, informa-
tion provided by the common trends could be used in 
a qualitative manner during ecosystem assessments 
to identify events such as perturbations (e.g. first 
common trend) or other concerning patterns (e.g. 
third common trend) that should be prioritized for 
further exploration. Process-oriented studies de -
signed to unmask the covariates underlying these 
common trends represent a very important future 
direction for investigations focused on understand-
ing community dynamics in the MAB. 

The factor loadings of the EMTs associated with 
these 3 common trends provided insight on the re -
sponses of assemblage time series to system-level 
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forcing (Zuur et al. 2003, Nye et al. 2010). Notably, 
the 7 groups associated with the first and second 
common trends showed conflicting patterns in rela-
tive abundance during the study period. Trends in 
relative aggregate biomass for the cephalopod, ray, 
and other shark EMTs generally opposed that of the 
demersal fish category, while the pelagic fish trend 
contrasted with those of the benthic arthropod and 
dogfish groups. A central tenet of ecosystem-based 
management is that trade-offs must be evaluated to 
sustain an optimized delivery of desirable market 
goods and nonmarket services from these systems 
(Link 2010). Quantifying these conflicting responses 
among EMTs in the nearshore MAB illuminated 
some of the potential trade-offs, and as such high-
lighted the value of DFA as a synthetic tool for suites 
of ecosystem indicators, even when these indicator 
time series are relatively short. The annual patterns 
of the flatfish and skate assemblages were not in con-
flict, but instead both mirrored the third common 
trend, and the general decline in the relative abun-
dance of these 2 EMTs may have reflected actual 
trends in the abundances of the component species 
(Perretti & Thorson 2019, NEFSC 2020), changing 
availability to the NEAMAP survey as these taxa 
respond to climate change (Nye et al. 2009, Morley et 
al. 2018), or a combination of these hypotheses. The 
statistically significant influence of SSTWI on the 
demersal and pelagic fish EMTs, and near signifi-
cance for skates and rays, was somewhat unexpected 
given that NEAMAP samples these assemblages 
during spring and fall. While it is plausible that 
warmer winter temperatures trigger earlier migra-
tions into the nearshore MAB that in turn yield in -
creased catches during spring, trends in aggregate 
biomass were generated annually for most EMTs and 
were limited to the fall for rays, indicating that winter 
temperatures may drive observed community pat-
terns at an annual scale in this coastal zone. 

As noted previously, the DFA model fits to the time 
series of EMT relative aggregate biomass represent a 
new suite of ecosystem indicators for the nearshore 
MAB meant to support the continued development 
and implementation of EAFM for this EPU. An array 
of indicators has been quantified for this ecosystem 
and are updated annually in Mid-Atlantic State of 
the Ecosystem (SOE) reports (NEFSC 2022). Follow-
ing the IEA framework for EAFM, the indicators in 
this report are used to inform risk assessments, 
where the highest risk elements are explored further 
through the development of conceptual models, and 
the performance of measures designed to mitigate 
these risks is tested via management strategy evalu-

ation (Gaichas et al. 2016, Muffley et al. 2021). While 
the time series of many of the current ecosystem indi-
cators span decades, several measures are reported 
on time scales that are equal to or shorter than those 
of the EMT indicators developed in this study, and 
have been included in risk assessments. As such, it is 
anticipated that these EMT ecosystem indicators 
could be incorporated into the SOE reports, where 
they would then be used during the annual risk as-
sessment process specifically to evaluate ecosystem 
status relative to the objective of maintaining system 
biomass (NEFSC 2022). A ‘high risk’ designation 
could result in the development of conceptual mo -
dels and testing of management strategies to mini-
mize the identified risk. Continued monitoring of 
these indicators would provide feedback on the effi-
cacy of implemented management measures, and 
thus aid in advancing EAFM in the MAB. Given that 
risk assessments are currently based on somewhat 
qualitative evaluations of indicator trends, develop-
ing target (i.e. desired state) and threshold (i.e. state 
to be avoided) reference points for these metrics, in-
cluding those generated from this investigation, is an 
important area of future research (Large et al. 2015). 

Much of the research associated with the develop-
ment of ecosystem metrics for species assemblages 
has focused on evaluating inter-annual trends in 
these measures, whereas quantifying the seasonal 
patterns and spatial variability of these groups has 
received less attention (Buchheister et al. 2013). A 
clear north-to-south gradient was evident in the sea-
sonal community structure of the nearshore MAB, 
with the nuance that assemblage compositions at the 
ecosystem boundaries were generally more similar 
relative to the central regions. Interestingly, the rela-
tive aggregate biomass of most EMTs appeared to 
cluster near the entrances to estuaries (i.e. Oregon 
Inlet for Pamlico Sound, NC; the mouth of Delaware 
Bay, and Moriches Inlet associated with the Moriches 
Bay estuary). A host of species inhabiting the MAB 
utilize estuaries during the warmer months (Murdy 
et al. 1997, Able & Fahay 2010), such that these re -
sults may reflect the composite distributions of EMT 
component species as they undertook seasonal 
migrations to (spring) or from (fall) these systems. 
Alternatively, estuarine outflows may create areas of 
elevated habitat suitability in the coastal ocean, and 
the implementation of multispecies ecological niche 
modeling to explore the distributions uncovered here 
from a mechanistic perspective represents a promis-
ing area of future research (Roberts et al. 2022). It is 
worth noting, however, that none of the factor load-
ings of the EMT seasonal-spatial distributions were 
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associated with Chesapeake Bay, one of the largest 
estuaries in the USA. These findings are consistent 
with documented, appreciable declines in the rela-
tive usage of this system by several seasonally resi-
dent taxa in recent years (Schonfeld et al. 2022). 

The synthesis of the seasonal spatial distributions 
of the EMTs was based on fisheries-independent 
 bottom trawl data, which necessitated a somewhat 
coarse treatment of these distributions given that 
each trawl haul likely sampled over a range of 
unique bottom types and other environmental condi-
tions (Sullivan et al. 2006). Nevertheless, this infor-
mation on the general distributions of these assem-
blages could be used to inform the development of 
more-refined future investigations of multispecies or 
assemblage essential fish habitat either by directing 
the focus of these studies toward areas associated 
with large relative abundances of several EMTs or 
those where alternating seasonal use of a region 
 oc curs. Further, given the expected continuing im -
pacts of climate change and increased uses of the 
MAB ecosystem for non-fishing human activities 
(Meth ratta 2020), these seasonal spatial distributions 
could be valuable to future climate vulnerability as -
sess ments and in the context of marine spatial plan-
ning activities, both of which contribute to advancing 
EAFM (Malek et al. 2014, Farr et al. 2021). For exam-
ple, the region along the south shore of Long Island, 
NY, and specifically along the eastern half of the 
island, appeared to represent a distinct subunit of the 
nearshore MAB ecosystem that supported elevated 
biomass of 3 EMTs across both spring and fall. This 
aggregation of multiple assemblages, coupled with 
the declining trends in the ecosystem indicator time 
series of 2 of these 3 EMTs, suggests that this zone 
could be especially sensitive to the impacts of climate 
change, and should receive particular consideration 
by decision makers tasked with managing current 
and planned use sectors in this area. 

Fishery managers in the MAB have expressed the 
desire to move toward EAFM at a rate that is com-
mensurate with the available science (Muffley et al. 
2021). Overall, this investigation provided a classifi-
cation scheme for generating ecological metrics of 
species assemblages that required minimal auxiliary 
information, built on previous efforts, and was de -
signed to promote consistency and comparisons 
among ecosystems. Synthesizing the spatiotemporal 
patterns in the relative aggregate biomass of the re -
sulting assemblages yielded, to our knowledge, the 
first integrated evaluation of the structure of the 
nearshore MAB ecological community, and thus 
much-needed baseline information against which to 

evaluate future system states. Further, when coupled 
with comparable ecosystem information derived 
from the offshore waters and estuaries of this EPU, 
these results generate a holistic characterization of 
this ecosystem that likely will prove instrumental to 
advancing EAFM in the MAB. 
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