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Abstract
Modern manufacturing has to cope with dynamic and changing circumstances. Market fluctuations, the effects caused by
unpredictable material shortages, highly variable product demand, and worker availability all require system robustness,
flexibility, and resilience. To adapt to these new requirements, manufacturers should consider investigating, investing in,
and implementing system autonomy. Autonomy is being adopted in multiple industrial contexts, but divergences arise when
formalizing the concept of autonomous systems. To develop an implementation of autonomous manufacturing systems, it
is essential to specify what autonomy means, how autonomous manufacturing systems are different from other autonomous
systems, and how autonomous manufacturing systems are identified and achieved through the main features and enabling
technologies. With a comprehensive literature review, this paper provides a definition of autonomy in the manufacturing
context, infers the features of autonomy from different engineering domains, and presents a five-level model of autonomy
— associated with maturity levels for the features — to ensure the complete identification and evaluation of autonomous
manufacturing systems. The paper also presents the evaluation of a real autonomous system that serves as a use-case and a
validation of the model.
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1 Introduction

Modern manufacturing requires systems able to rapidly
react to changes in production to meet the demands of the
market. Short product life cycles, combined with decreasing
batch sizes and increasing product variants, are challenging
traditional production systems [1, 2]. Current conventional
methods cannot handle the required changes, unpredictable
events, and disturbances in a productive, cost-effective
manner [3]. To help manage these dynamic challenges, the
industrial concept of Industry 4.0 has emerged [4].

The improved decision-making enabled by Industry 4.0
typically lies with the operators, and production experts
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managing the system based on increased access to data and
information about the system. Autonomy can be broadly
defined as the ability and independence of a system to make
decisions by itself [3]: in the context of a manufacturing
system, autonomy is the ability of humans, robots, or
software to achieve their goals without any external support
[5]. This definition is often confused with the concept
of automated systems that are designed to independently
perform tasks and process local information without human
intervention, but do not take complex decisions and are not
able to respond to new situations [6].

Autonomy implementation in manufacturing is hindered
by the lack of universal consistency in the detailed
definition, its features, and how they are qualified.
This work aims to uniquely define autonomy in the
manufacturing context as a framework for both industry and
research, with these steps.

1. Presenting and analyzing previous work related to
autonomy definitions in different engineering and
industrial contexts.
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2. Defining common features of autonomy from analysis
of different systems.

3. Applying a Capability Maturity Model to the features
to identify the level of maturity.

4. Harmonizing these features into a five-stage model of
autonomous manufacturing.

5. Applying this five-stage model to a real use case.

Maturity models have been extensively used and applied
to many knowledge areas. The pioneers were models
developed in the software field. They introduce Capability
Maturity Models (CMMs) [7], that then evolved into the
Capability Maturity Model Integration (CMMI). These
models can be used to describe a variety of phenomena
such as organization, product life cycles, and change
management. They are also applied to the manufacturing
field [8]. In this work, we utilize the concept to create a
connection between maturity of the identified features and
possibility of autonomy in the system.

The rest of the paper is organized as follows: Section 2
analyzes background works related to autonomous systems
in other engineering fields; Section 3 presents the developed
model for classification and evaluation of autonomous
systems; Section 4 introduces a real autonomous system
as validation of the model; and finally, Section 5 discusses
conclusions and further works.

2 Background

The word “Autonomy” is found in many engineering
domains. Automated devices execute actions by a set of rules
to produce an outcome, with minimum human intervention
[9]. Autonomous individuals (commonly human workers)
exhibit higher intelligence and flexible behavior, making
them required for these situations that is why autonomy is
one step beyond automation [10]. The key discriminator is
the ability of an autonomous entity to face unanticipated
situations and adapt its course of action to meet the challenges
[11]. The closer an entity approaches full autonomy, the
smaller the role of any external agent will be. In the specific
case of humans, this could be a two-edged sword: as the
system grows more independent and reliable, the less aware
and prepared the operator would be to take over control,
which is a critical barrier to autonomy [12]. The word
“autonomy” in manufacturing has several meanings.

• The capability of individual entities to act and collab-
orate for achieving a specific goal without external
influence [13].

• The capability of a system to control the execution of
its plans and strategies [1].

• The capability of a system to recover without modifying
scheduling [5].

• The ability of an entity to structure its own action
and environment independently and without unwanted
influence from outside [14].

• The ability of a system to make its own decisions and
to act on its own, and to do both without direct human
intervention [15].

Recent technological developments (e.g., autonomous
cars, unmanned aerial vehicles, and artificial intelligence)
raised critical concerns about the extent to which autonomy
should be developed, and the same concern applies to the
participation of autonomous entities in production systems
[10]. Defining the upper limits of autonomy in intelligent
systems is a complex task, where the challenge is to develop
an autonomous system in which a human operator would
still be able to regain control in exceptional situations [16].
This is a key reason why a high-level definition of autonomy
in manufacturing is necessary. Without detail on the sub-
components that create autonomy, autonomy can neither be
effectively implemented component-by-component nor can
it be controlled to maintain quality and safety.

2.1 Autonomy in other engineering domains

Understanding the challenges in the domains where auton-
omy is at the forefront of technological development is
critical to understanding autonomy in manufacturing, com-
bined with the enabling technologies and methodologies.
The available literature — including grey literature — that
is presented in this section will be used to build a definition
of autonomy for manufacturing.

Unmanned vehicles — Unmanned vehicles are a significant
application area for autonomy [17]. Fully self-driving cars
are gaining interest, and purchasing cars with high degrees
of autonomy is now possible [18]. The potential impact of
autonomous cars on public safety is an emotive subject, and
there are large volumes of research in the area [19]. SAE
International’s model of autonomy levels [20] is one of the
most widely cited and important enablers of discussion of
self-driving cars, showing the importance of such a model.

In addition to ground vehicles, autonomous aerial
vehicles are being used for a wide range of applications
including inspection [21], search and rescue [22], goods
delivery [23], and military applications [24].

Autonomous robots — Robotics is a broad area covering
industrial, consumer (such as automated vacuum cleaners),
disaster response, and humanoid devices. Robots are highly
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flexible, and autonomy allows them to respond to a variety
of problems. A common approach for autonomous robotic
control is multi-agent systems [25]: each agent has a
belief-desire-intention (BDI) software architecture and is
responsible for its goals as a “desire” and coordinates with
other agents to achieve it [26]. As many robots are battery-
powered, autonomous robotic research includes energy use
optimization [27].

Autonomous maintenance — Forcomplex and variable
maintenance tasks in non-optimal environments, autonomy
may be required to enable the devices to respond to
new situations. Fully autonomous robots can perform
maintenance tasks without help and can detect cracks
along pipe infrastructures [28]. Aircraft oil delivery tube
crack detection also uses autonomous robots for routine
inspection of fatigue cracking [29]. Robotic appliances also
have applications in other high-power, high-consumption
applications [30, 31].

Autonomous manufacturing — Industry 4.0 has increased
the adoption of connectivity and data sharing on the shop floor,
which lays the groundwork for autonomy [32]. The rise of
modular, flexible, and reconfigurable manufacturing sys-
tems has led to further developments in intelligent solutions
for distributed autonomy such as holonic manufacturing
[33], and the autonomous adaption of manufacturing sys-
tems to unexpected changes [34]. Autonomy in the process
industry helps sustaining the effectiveness of continuous
process [35] despite variation and uncertainty in the sup-
ply chain [36]. However, the degree of autonomy applied in
most manufacturing enterprises is low; a lack of a common
understanding of what autonomy means and how it would
affect manufacturing processes is a hurdle that needs to be
overcome.

Autonomous quality — Quality systems have been an early
success story of autonomy and the application of AI in
manufacturing [37], with machine vision [38], tool wear
[39], and ability to adapt to changing situations. Machine
vision integrated with quality control has a significant
impact in traditional go/no go quality checking scenarios
[40]. Modern quality systems are increasingly utilizing
autonomous infrastructures to maintain strict Statistical
Process and Quality Control (SPQC) — the more advanced
the level of autonomy, the more predictive quality control
in the production process can be performed. The earlier the
quality control is performed, the fewer parts will need to
be scrapped or fixed, improving productivity and process
stability [41, 42].

2.2 Enablingmethodologies and technologies

Autonomy is a concept enabled by multiple technologies in con-
junction. In the same way that machine learning was defined
in the 1950s [43], but only recently gained mainstream
attention due to the improvement in the computing tech-
nologies that enable it, autonomy is a mature concept,
intrinsically tied to the enabling technologies hereby described.

The human role in autonomous systems — Human intel-
ligence and its contribution remain pivotal to autonomous
systems because of safety, security, and bias issues: keeping
humans informed, enabling consent, and offering scope for
intervention gives effectiveness to the system and respects
ethics [13].

A high level of autonomy should not imply the exclusion
of humans, but allows for seamless integration. This leads
to higher levels of collaboration to achieve the common key
performance indicators [44, 45].

Table 1 Summary of the main existing models that inspired the present work

Model Field Levels Notes

SAE International J3016 [20] Autonomous vehicles 6 levels Standard driving automation model

Schegner et al. [60] Process industry — Definition of autonomy focused
on plant operators

Gamer et al. [6] Process industry 6 levels Taxonomy of autonomous key features

RB MAL [59] Manufacturing systems 6 levels I. Degree of automation

RB MAL [59] Manufacturing systems 6 levels II. Degree of control intelligence

Thomson et al. [63] Manufacturing systems 3 levels System development, ecosystem configu-
ration, business model design

Bauer et al. [61] Manufacturing systems 5 levels Manufacturing systems features
connection with maturity

Styr et al. [62] Manufacturing systems 4 levels More detailed description of the
levels of autonomy
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Self-X capabilities — Self-X abilities define the expected
autonomous behavior and generally comprise four major
characteristics: self-configuration, -healing, -optimization,
and -protection, known as self-CHOP capabilities.

1. Self-configuration: the ability of a system to reconfig-
ure [46, 47], to adapt automatically to environmental
changes [48], and to automatically install, configure,
and integrate new software components [49].

2. Self-healing: the ability to automatically detect and
diagnose faults, react to disruptions, and repair where
possible with the objective of maximizing availability,
maintainability, and reliability [46, 48, 49].

3. Self-optimization: the ability to measure current per-
formance against the known optimum in reactive and
proactive ways [46, 49], and maximize resource alloca-
tion and utilization [48].

4. Self-protection: the ability to establish trust [48], detect,
identify, and protect against disruptions, damage, or
attacks [46]. The system uses early-warning sensing
systems to anticipate and prevent system-wide failures
[50].

Internet of things — The objective of autonomous control
is to keep the productivity of the system high, even when
responding to dynamic situations. Machine autonomy is
typically based on decision-making informed by raw data
that is turned into valuable information [51]. The collection
of the data is supported by the Internet of Things (IoT)
concept [52], and the related concept of the Industrial
Internet of Things (IIoT).

Artificial intelligence and machine learning — A key
technology for high performance in manufacturing systems
is artificial intelligence (AI) [53–55]. AI has been applied
for many years, but more modern applications based on
machine learning (ML) enable intelligence to be applied to
highly complex situations, finding patterns in data without
the need for a pre-specified model.

Distributed intelligence — Improved system intelligence
and the use of IoT lends itself to integrating more
computing power into systems. This concept of “edge
computing” allows data to be processed closer to the source,
which is essential when data volumes are large [56]. The
implementation of distributed intelligence in smart systems
is also enabled by the use of Multi-Agent Systems (MAS)
[25, 57]. Each “intelligent agent” represents the capabilities
and goals of manufacturing processing units [58], and the
agents collectively work towards achieving overall system
goals.

2.3 Existingmodels and their levels of autonomy

Manufacturing is not the only domain for which autonomy
is a key research area, and existing models of autonomy
have been created to understand how autonomy can be
achieved and where gaps needs to be filled.

Therefore, we collected and summarize in Table 1 the
main models that developed from similar industries, such as
automotive [59], and the derived process industry models
[6, 60]; also, we listed the models from the manufacturing
world that inspired the present work, the main being Bauer
et al. [61], who developed a five maturity levels model of
manufacturing system features, with an extension from Styr
et al. [62], who argued for a more detailed description of the
autonomy levels.

From the list of references emerges the need for a
thorough work of collection, characterization, and classi-
fication of an expanded set of main features constituting
an autonomous manufacturing system. Moreover, this work
aims to provide a detailed description of the levels of
maturity that the features can reach, and to describe five sep-
arated levels of autonomy in a model that will be validated
with a use-case example. With this model, a lead evaluator
can assess the maturity in autonomy of the single features
in a manufacturing system and visualize where the biggest
effort should be put to improve it.

3Model of autonomous systems features

In Section 2, we presented the main research trends under
investigation, and several engineering applications with
autonomy, to give an overview of the predominant, essential
features to define and implement autonomy. We summa-
rized those features in Table 2, listing the characteristics that
were extracted from the evaluation of the literature from
Section 2, based on what gives manufacturing systems intel-
ligence, and autonomy capabilities. Some of the features are
re-named and combined to better comply with the existing
research literature on manufacturing autonomy. Every fea-
ture is assigned to its specific category, and functionalities
are added to each of them, for clarity reasons.

The existing literature on autonomy highlights the
desired outcome: independent intelligence. However, there
is a lack of standards and frameworks to define whole-
system autonomy, and defining a correct implementation is
a difficult problem to address.

By expanding the “degree of automation” concept [59],
we present a five-level model of autonomy to describe
and characterize system-wide autonomy and enable the
evaluation of an entire manufacturing system.
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Table 2 Categories, features, and functionalities for the model

Category Feature Functionality

I. Data, information, and knowledge Data Data structure

Data processing

Data integration

Knowledge management Knowledge management

Interoperability Hardware, software, and knowledge

II. Process Synchronization Material/logistics

Physical (Production Machines)

Optimization Optimization function Productive and Unproductive contribution

Reliability Failure recovery

III. Interactions Context-aware Physical, virtual, and user environment

With humans Operation

Programming

Control

Safety Integration level

IV. Infrastructure Connectivity Types of network

Application levels

Industry control Control Technology development

Application levels

Cybersecurity Hardware, software, and knowledge

V. Self-X Self-configuration Monitoring, learning, patterning

Self-healing Diagnosis, stabilization, repair

Self-optimization Reflection, regulation, structuring

Self-protection Monitoring, control

VI. Measurement performance Accuracy Precision

Repeatability

Sensitivity

Stability Transferability

Certainty Calibration

• Autonomous Level 1 (AL1): Factory without autonomy.
Manufacturing systems with the lowest autonomy

level. The systems rely on operator actions and decisions,
and general systems are not connected together or have
any centralized control other than the operator.

• Autonomous Level 2 (AL2): Basic automated factory.
The inclusion of centralized control in connected

systems allows for improved levels of automation and
some context-aware features. Human operators are still
needed to intervene for many tasks.

• Autonomous Level 3 (AL3): Adaptable factory.
Introduces self-adaptable behaviors and predictive

features to meet unpredictable events. Human operators
receive suggestions for optimized activities, but the
main system tasks are still under human control, either
directly or via a centralized control system. Collected
data is continuously monitored and automatically
shared between all connected systems.

• Autonomous Level 4 (AL4): Semi-autonomous factory.

The system defines its own course of action based
on high levels of context-awareness, within established
boundaries. Human operators work cooperatively with
the system. Even if the system is able to analyze its
environment for “business as usual” execution, system
goals and the response to major disturbances are still
monitored by humans.

• Autonomous Level 5 (AL5): Fully autonomous factory.
The system is fully self-adaptable to uncertain

or unforeseen inputs, enabled by advanced self-
learning capabilities. The system is able to choose
the best option to meet common goals for connected
manufacturing systems without human intervention,
even in the face of new and unforeseen challenges.

The combined Autonomous Level of a system starts with
the maturity levels of the constituent features, defined in the
following subsections [61]. The use of the model allows
the identification and evaluation of the manufacturing
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system’s autonomy capabilities based on the features’ level
of technological maturity, as well as identifying where
a low maturity level is holding back the overall system
autonomy.

The grading system in this section is based on the
evaluation of the characteristics giving manufacturing

systems intelligence and autonomy. Those were drawn from
an analysis of literature and practical examples, as presented
in Section 2, and were analyzed by the pool of authors to
formulate a gradation system that would apply to the general
system. In the following subsections, we present the grading
for each individual category.

Fig. 1 Maturity levels of category I. Data, information, and knowledge
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3.1 Data, information, and knowledge

This category groups the data, knowledge management, and
interoperability features with their respective functionali-
ties.

3.1.1 Data

The data feature can be divided into three enabling
functionalities: data structures, data processing (each with
three maturity levels), and data integration (with five
maturity levels) (see Fig. 1). Data structures develop
in maturity as they progress from unstructured to fully
structured models, and data processing matures as it
transitions from raw data collection to data analysis that
allows for real-time knowledge processing [64]. For data
integration to reach a higher level of maturity, it has to go
through the following process [65].

1. Integration is non-existing, data about manufacturing
is not stored, and manufacturing equipment is not
integrated with the IT systems.

2. Traditional information pyramid is implemented,
machines are integrated and managed by a Manufactur-
ing Execution System (MES).

3. Relevant manufacturing data is integrated with other data.
4. Implementation of Service-Orientated Architectures

allows for data provisioning. To improve the efficiency
of communication, an enterprise service bus connects
data between enterprise and shop floor systems.

5. Real-time analytics extracts information from data,
bringing the need for integration between all systems,
devices, and data across the entire product life cycle;
data insights are employed to optimize the factory and
all manufacturing processes.

3.1.2 Knowledgemanagement

Knowledge is the aggregation of information, which in
turn is the processed aggregation of data, and the insights
offer value to the manufacturing system. Knowledge
management is the ability to store, manage, and deploy
acquired knowledge effectively. Lowest levels of autonomy
do not require knowledge management, but as the level
increases, knowledge management becomes crucial, and
it is achieved with knowledge design and historical data
analysis. As it progresses to the most advanced maturity, it
shifts from manual knowledge extraction and utilization to
automatic identification and exploitation.

1. No knowledge management is utilized.
2. Low-level knowledge representation of assets and run-

ning processes that help identify the current system
context.

3. Explicit knowledge design is required to be context-
aware and self-adaptable to disturbances, though human
operator feedback is still essential.

4. Knowledge management combines of manual knowl-
edge design and analysis of historical data; the system
self-improves with every iteration.

5. No manual knowledge design is required by humans.
The system is able to analyze the raw data of its
underlying processes to discover insights.

3.1.3 Interoperability

Communication between the system’s components is a
key enabler to achieving a high level of autonomy,
interoperability is considered as one of its prerequisites.
Information sharing is necessary between all business levels
and therefore is not only limited to software or hardware
infrastructure but to the process and information itself,
supported by standards and validation methods.

At lower levels of maturity (see Fig. 1), interoperability
is limited to compatibility at the infrastructure level. As the
maturity level increases, standardization in production and
business-related processes and information management is
required, followed by protocols and methods to guarantee
knowledge interoperability. At top levels of maturity,
methods for certification and validation of interoperability
would be required, combined with interoperability of non-
technical high-level goals and business priorities [66, 67].

3.2 Process

Process refers to the manufacturing processes that create
value in the system. This category encapsulates the
features and functionalities of process synchronization,
optimization, and reliability (see Fig. 2).

3.2.1 Synchronization

The synchronization aspect in production system autonomy
is categorized into two types; material and logistical
synchronization and physical synchronization [68]. The
former is managing part and material movement to ensure
stations are not left idle, and the latter is concerned with
line-wide synchronization of processes, e.g., establishing
a takt time. At the lowest maturity levels, no logistic
synchronization between each station is employed, and parts
and materials follow a manual philosophy. At level three,
physical synchronization is realized: parts are produced at
a synchronous rate at each cell and regularly transported to
prevent unnecessary queuing or starvation. At level four, the
system could maintain this behavior independently but still
requires human assistance to start, stop, or change certain
aspects of behavior. At level five, this becomes completely
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Fig. 2 Maturity levels of category II. Process

independent without human assistance: the system decides
the rate and other conditions for synchronization.

3.2.2 Optimization

Optimization is identifying the productive and non-
productive aspects of a system and maximizing the
productivity, and minimizing the non-productive aspects in
a manner akin to lean manufacturing. At the lower maturity
levels, there are no capabilities in the production system
for optimization. As the autonomy level increases, data
collection of relevant data is implemented at individual
processing stations. At higher levels, data for the whole
production line is gathered, making it possible to assess
and display the productive and non-productive components
of the operation. Level four takes the collected data and
links it to the objective: both the total productive and
non-productive contributions are identified, but a human
operator is required to decide on how to implement the
optimization actions. At level five, no human control for
optimization is necessary, and the system optimizes itself.

3.2.3 Reliability

The reliability of a system needs to be considered for its
autonomy. The ability to overcome failures during operation
is a critical feature that would ensure continuous and
effective operation. A “failure” — as intended here —
can include both a total breakdown, but also failure to
produce parts at the required quality. At maturity level zero,
a system cannot detect or respond to failures. As maturity

increases, the system gains the ability to identify that an
error has occurred and respond safely. Later, it will diagnose
failures and gather the information that allows the system to
predict them. Also, with growing maturity, it becomes less
and less common to experience unpredictable variations in
process quality, with less disruptions for parameters such
as productivity and production cost. Going further, higher
levels of maturity will have a recovery routine that will
help the system to reallocate resources to avoid stops or
disruption to its operation, and in case of lack of process
stability, bringing a process back into control. This could be
done at the software and hardware level (if backup systems
are included), and it may involve informing human workers
on what actions are required, or (at level five) executing the
recovery plan itself.

3.3 Interactions

Though interoperability allows for data exchange, acting
upon the data is required for interaction. Seamless
interaction among humans, machines, and devices is a
requirement of autonomous manufacturing systems that are
able to control the interconnected manufacturing process
flows (see Fig. 3).

3.3.1 Context-aware interactions

Context awareness is the ability of the system to interpret,
adapt resources, and associate data with the system’s
environment to better understand the situation the system is
in and how data should be best used [69, 70].
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Fig. 3 Maturity levels of category III. Interactions
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The increase in the level of autonomy will require
an enhancement of context-awareness features. Non-
autonomous systems run pre-defined programs without
being aware of surrounding contextual information and
integration. As maturity increases, systems become aware
of their context and adapt their operations to the currently
running processes and the operation of other external
resources. At the highest maturity levels, the system can
identify its current context, running processes, external
resources, and the context in which the human operator
interacts with a system and the context of the environment,
thus enabling other autonomy processes to increase their
usability and effectiveness by taking environmental context
into account.

3.3.2 Interactions with humans

The future of human-machine collaborations should be to
enable the workforce to handle complexity by complement-
ing rather than replacing human capabilities and skills [71].
Effective autonomy requires consideration of three aspects;
the operation of the system, the programming of individual
pieces of equipment, and the control of the overall sys-
tem. In each case, the system includes both manufacturing

machines, but also human workers, and enabling productive
and safe collaborative systems is the priority.

A low level of autonomy requires strict protective measures
where humans and machines interact, as the system
cannot adapt to interactions between the two. As maturity
increases, coexistence is possible, but with limited contact
and the processes being performed independently. A more
interactive level allows both actors to share the workspace
and communicate. A cooperative operation is developed
when both actors have their own objectives and goals from
a mutually beneficial perspective. The highest level of
maturity allows a complete collaboration between actors:
they have compatible objectives and goals, and the work
fluently follows coordinated and synchronized operations.

How a human instructs a machine to perform a task is
complex. At low levels of maturity, programming involves
writing instructions and uploading them to the machine.
Higher maturity in this area enables learning through
demonstration, based on the repetition of movements
performed by the human operator. It requires a high
knowledge of the process, but the program is written directly
by the system, so it requires less programming knowledge.
The highest level of autonomy occurs when the system
autonomously understand its capabilities, as well as the

Fig. 4 Maturity levels of category IV. Infrastructure
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tasks it has to perform without specific human guidance or
as a collaborative partner in the process [72].

Manufacturing systems are combinations of humans
and machines, and controlling the entire system effec-
tively is challenging. Human-in-the-loop (HitL) control
allows the integration of human operators, and commu-
nication between human and machines. As almost any
system requires some minimal human intervention (sys-
tem start/shutdown, continue command, etc.), a low level of
mono-directional (i.e., human-to-the-system) interaction is
required. At higher autonomy levels, the control role over
the system can move to a more active one (high HitL),
where the human operator is an integrated element of the
system during main operations and task execution, with
bi-directional information flow and awareness between the
system and the operator.

3.3.3 Safety

Safety features in autonomous systems are classified as
intrinsic or extrinsic. Low levels of safety maturity use
extrinsic safety measures, which are external components
such as light gates or floor scanners. At this level, the system
is built rigidly, and uncertainty is reduced to the minimum.
Medium maturity can use intrinsic safety measures based
on built-in rules: systems consider safety measures before
acting and require the participation of workers in rule man-
agement. A higher level of maturity will ensure process and
personal safety. The highest maturity level includes flexi-
ble rules with high levels of adaptation to enable the system
to respond safely to dynamic scenarios while at the same
time being called upon to plan and reflect on their actions.

3.4 Infrastructure

Industry 4.0 helps the integration of various actors within
the supply chain. However, this means the enabling a digital
infrastructure is a factor that cannot be ignored [73] (see
Fig. 4 for the maturity of features and functionalities).

3.4.1 Connectivity

Connectivity can be divided into two functionalities: the
type and properties of the network being used and the
levels at which the network is deployed. The type of
network influences the available data exchange strategies
while also determining how agile the system is to change.
The application level is where elements of the production
system are connected, from the low-level process and field
elements to high-level connectivity between manufacturing
sites. The efficiency of a system depends on how well the
individual elements of the production system are networked,

as this is a requirement for data exchange and collaboration
in autonomous systems [74].

At the lowest maturity level, system elements are not
networked and rely on the manual movement of data.
At the maturity level, two networked elements receive
information and feedback via a centralized server, so there
is no direct communication between the elements. At
maturity, four decentralized networked production elements
can communicate with each other without a central unit,
facilitating robustness to failure and simpler replacement of
elements and systems.

3.4.2 Industry control

For the development of industrial control technology, two
aspects are identified: control technology development and
application levels. For control technology development, at
maturity level 1, the theory and hardware are developed,
while at maturity level 5, the intelligence technology for
control theory should be developed. For application levels,
at maturity level 1, the industry control is only applied in
the process. As the application level goes up, the industry
control can be used in bigger and more places. At maturity
level 5, it will be expanded to connected locations.

3.4.3 Cybersecurity

Cybersecurity is the protection of information and opera-
tional technology infrastructure from internal and external
threats. At maturity one, the minimum required security
level is implemented (i.e., from government safety stan-
dards). At maturity level two, it is secured through the con-
tinuous monitoring of the running processes and connected
devices. At maturity, three possible attack vectors can be
predicted and reported to a human operator. The highest
maturity level four has automatic intrusion detection either
directly implemented into computers and controllers or with
separate hardware. Either approach allows the system can
secure itself from most attacks [75].

3.5 Self-X

As discussed in the background review, self-X properties
are a collection of methodologies that enable systems to
manage and control themselves. Self-X capabilities are
required to reach higher levels of autonomy in future
production systems, and the autonomous nature based on
the self-X capabilities is needed to adapt to unforeseen
environmental conditions and requirements. Figure 5 shows
the full scale of capabilities that can lift it to another
level of autonomy through the five levels of maturity we
described.
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Fig. 5 Maturity levels of
category V. Self-X capabilities

On lower levels, a system is able to monitor the
environment and the process and assess if a fault is
happening; it goes to the highest level of maturity where
the system is capable of organizing processes, designing
features, and structuring itself to intercept external attacks,
repair faults, and damages, and adapt the production
schedule to the demands placed upon it.

3.6 Measurement

Measurement of properties in a manufacturing process is
essential to maintaining product quality. Measuring the
performance of manufacturing processes is also critical for
any system to understand how well the system is operating
and what can be done to improve it. The suitability of
measurement is a function of its accuracy, stability, and
certainty [76] (see Fig. 6).

3.6.1 Accuracy

Accuracy encompasses all the qualities that a measure-
ment device must have to be acceptably used in a defined
task. “Precision” is considered the distance between the
measured value and the “true” reference value of a measure-
ment. The concept of accuracy also includes “repeatability”;
the capability to replicate the same measured value for
each reference value. The third functionality is “sensitiv-
ity,” the ratio between a change in measurement value and a
change in reference value. Sensitivity also includes the abil-
ity to distinguish true positives and true negatives from false
positives and false negatives [77].

When measuring a manufacturing process’s perfor-
mance, the lowest levels of maturity have no accuracy
determination mechanism, but this improves as the matu-
rity level increases. At lower maturity levels, the calibration
and setting of parameters require human intervention as the
environment changes, but at the highest levels, the system

continuously adapts the measurement processes to maintain
accuracy despite changing conditions. At higher levels, an
automatic increase of sensitivity is also possible without
human intervention.

3.6.2 Stability

Over time, a measurement device could exhibit variations
in the quality and reliability of the output value. If a
device adapts to that and maintains standards of quality
measurement, then it could be considered stable.

Low stability maturity offers no safeguards on the
reliability of measurements. At medium levels of maturity,
guarantees are made only if the environmental conditions
remain constant. At high levels, systems can evaluate their
performances based on historical data of operations and
adapt to changing conditions.

3.6.3 Certainty

Whenever maintenance is needed for an instrument that
measures properties, a calibration of this instrument is usually
needed to verify its accuracy. This allows the operator
to be certain of the measurement’s reliability. Certainty
takes into account the ability of a production system
to validate measurements that are given as an operation
input.

At maturity level one, the system measures values for
a given operation cycle. As the maturity level increases,
the system might be able to receive measurements for each
operation in the cycle, but still without complete certainty.
At a higher level, it takes into account the noise and
identifies the factors that cause it. At the highest possible
level, the system is capable of dealing with that noise factor
by itself: it eliminates the errors to conduct the most precise
operation it can. At this stage, no human effort is involved
to clean the signal.
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Fig. 6 Maturity levels of category VI. Measurement performance

4 Application and validation of themodel

In this section, the IDEAS (Instantly Deployable Evolvable
Assembly Systems) system is introduced to illustrate how
to apply the model of autonomous features to a real system.
It was an EU FP7-funded project that started in 2010 and

ended in 2013. Its target was to develop evolvable assembly
systems for two industrial customers, IVECO S.p.A. and
Electrolux AB [78].

The main goal of IDEAS was to implement proxy
technology in a commercially available control board, to
enable distributed control at the workshop level. What is
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Fig. 7 The ECU Assembly System (MASMEC) [78]

considered here is not the planning or logistics level, but the
operational level of the assembly system.

Two industrial cells were built to verify the chosen
approach. They were built at KTH (manufacturing) and
MASMEC S.p.A. [79]. The products to assemble were an
ECU (Electronic Control Unit) from a commercial vehicle
and some specific washing-machine components. The
MASMEC system was therefore designed to assemble two
variants of the ECU, whereas the KTH system assembled
three variants of the “feet” assemblies. Figures 7 and 8
illustrate the two production cells.

To demonstrate the use of the model, the ECU Assembly
System (MASMEC) will be examined in detail.

The evaluation must be made on the separate categories
of the workshop; therefore, if some of the components
achieve autonomous behavior and others do not, based on
the information from Section 3, the user must perform an
overall evaluation and give an “averaged” score. If they
want to go into more details, it is possible to clusterize sub-
systems and perform the same evaluation on them as they
would on the whole system. Then, they would obtain a value

Fig. 8 The Washing Machine Components Assembly System
(KTH) [78]

for each sub-system, and decide if they want to keep them
separate, or merge them in an overall evaluation.

4.1 Data, information, and knowledge

The data feature can be divided into three functionalities:
data structure, data processing, and data integration. This
system utilizes verified data exchange protocols based
on semi-structured data; therefore, the “data structure”
maturity level score is ML2 [ML2]. The system is
programmed to perform a real-time adaptation of the
production based on the analysis of data streams that it
receives, so it scores the highest maturity level for “data-
processing” [ML5]. For “data integration,” this system
implements life cycle analysis, including goal and scope
definition, inventory analysis, life cycle impact assessment,
and life cycle improvement. There is an integration of
cross-life-cycle data, but this system does not use digital
twins [ML3]. Combining the above maturity levels of data
features, the averaged autonomy level in the “data” feature
is ML3.

The system uses data analysis as a key part of its
functionality, but it is not able to self-analyze the raw data
of the underlying processes, and it requires humans to
implement knowledge design and the collected historical
data. It, however, possesses a low-level knowledge of
entities and running processes to help identify the context
[ML2].

Principles of interoperability, multi-agent system pro-
gramming, and OPC connection are used in this system,
enabling efficient data sharing. But no knowledge and infor-
mation interoperability principles are utilized in this system
[ML3].

Combining the above maturity levels of data feature,
knowledge management feature, and interoperability fea-
ture, the autonomy level of the category of data, informa-
tion, and knowledge is AL3 (I-AL3).

4.2 Process

The category process has three features: synchronization,
optimization, and reliability. The ECU Assembly systems
have material synchronization in their manufacturing opera-
tions. It also features a partially automatic unloading station,
(see Fig. 7) [ML3]. For optimization, no identification
of productive and non-productive work in the system is
performed [ML1]. Reliability: This ECU Assembly sys-
tem has no self-recovery routine [ML1]. Considering the
mentioned features, the autonomy level of the process is
(II-AL2).
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4.3 Interactions

Seamless interaction between humans, machines, and smart
devices has three features in our autonomous model:
context-aware interactions, interaction with humans (in
terms of operation, programming, and control), and safety.
The system runs as pre-programmed without being aware of
the current context [ML1]. As mentioned in Section 3, the
interaction with humans has three functionalities: operation,
programming, and control. Humans are required to unload
the workpieces manually, but other processes are automated
in the ECU Assembly system [ML2]. No learning by
demonstration and reinforcement learning are used [ML1].
The assembly system does not integrate the human operator
and monitoring process [ML1]. To summarize, the maturity
level of interaction with humans can be assigned as ML2.
The only safety measures deployed during this project are
extrinsic and external components, so there is no autonomy
involved in safety deployment [ML1]. In conclusion, the
autonomy level of interaction is (III-AL1).

4.4 Infrastructure

As mentioned in Section 3, the category of infrastructure
has three features: connectivity, industry control, and
cybersecurity. The ECU system is a fully connected
production system [ML2]. The types of networks are
still unclear. This system uses an agent-based control
architecture that considers manufacturing components as
mechatronic agents that can be plugged or unplugged to
create systems, without reprogramming [80]. The control
technology is applied to the production system level and
is applied in a network with the other components of the
system [ML3]. A key challenge for this cell is in creating
an architecture for which an effective control structure can
be instantiated for any assembly system layout. As the
demands on assembly are extremely diverse (see [78]), this
poses some challenges. The final Mechatronic Architecture
is based on four basic agents: (1) Machine Resource Agent
(MRA); Coalition Leader Agent (CLA); Transportation
System Agent (TSA); Human Machine Interface Agent
(HMI-A). This system cannot predict possible attack vectors
and the IT infrastructure is also not secure through the
running processes and connected devices [ML1]. This
category has better scores than the previous category, and its
overall score is (IV-AL2).

4.5 Self-X

Category self-X consists of four features:
self-configuration, self-healing, self-optimization, and self-
protection. The IDEAS project developed reconfigurability
and holonic manufacturing principles. This system included

the first self-reconfiguring system demonstration and new
mechatronic architecture, and its main strength was its
self-configured modules [78] [ML4]. However, this system
was limited in self-healing, self-optimization, and self-
protection [ML1]. In conclusion, the assigned autonomy
level for self-X is (V-AL2).

4.6 Measurement

Measurement performance is split into three features:
accuracy (precision, repeatability, and sensitivity), stability,
and certainty. This system was able to compensate for low
precision in measurement (though it depends on input from
external sources) [ML2]. The control boards functioned
very well in more than two different applications. The
manufacturing system was thoroughly tested to be perfectly
functioning at other partners’ labs [81]. They adapted
to change and worked under new conditions, after input
from humans [ML2]. Low sensitivity in measurements
was detected and human operators were signaled [ML2].
The maturity level of the “accuracy” feature is ML2. The
decision-making process implemented on the board during
production processes was stable [ML3]. The system made
measurements for every operation performed to enable
adaptation of the production process when needed, but it
was unable to identify errors that may cause uncertainties
[ML2]. Overall, the autonomy level for measurement
performance is (VI-AL3).

4.7 Summary table

We summarized the results of the evaluation in Table 3,
showing the maturity levels of the features (averaged for
those features that have multiple functionalities), and the
Autonomy Levels assigned to each category by exploiting
the description and figures in Section 3.

The Autonomy Levels are in the range between 1 and 3
(out of a maximum of 5), meaning that this system did not
reach the highest levels of autonomy. This system did not
complete the transition from Autonomous Level 2 (AL2)
to Autonomous Level 3 (AL3), as defined in Section 3, so
it is not an Adaptable Factory. However, this was expected
both because it was developed before the popularisation
of the Industry 4.0 concept, and because this model is
intended to encompass technology developments in short to
medium term — current approaches do not implement all
the required features simultaneously to get to the maximum
level of autonomy described in this paper. The reader can
visualize a summary of the scores in Fig. 9.

The final goal of the model is to provide maturity
characterization of the features of a system, so that the
user can easily visualize where they would need to act to
increase the overall level of maturity. Giving a numerical
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Table 3 Summary of autonomy and maturity scores for ECU Assembly System application for the validation of the model

Category Autonomy level for categories Feature Maturity level for features

I. Data, information, and knowledge I-AL3 Data 3

Knowledge management 2

Interoperability 3

II. Process II-AL2 Synchronization 3

Optimization 1

Reliability 1

III. Interactions III-AL1 Context awareness 1

Interaction with humans 2

Safety 1

IV. Infrastructure IV-AL2 Connectivity 2

Industry control 3

Cybersecurity 1

V. Self-X V-AL2 Self-configuration 4

Self-healing 1

Self-optimization 1

Self-protection 1

VI. Measurement performances VI-AL3 Accuracy 2

Stability 3

Certainty 2

overall level of maturity would rely on the personal
interpretation of the lead evaluator; averaging the scores in
the categories provides little additional information, since
they are separate and refer to different aspects. By doing
so, the user can concentrate on the individual values and
address them separately.

As many CMMIs experienced in the past, the issue of
flawlessly evaluating the system is of utmost importance.
Any assessment process comes with inaccurate, missing,
and misunderstood information. Moreover, it often happens
that certain levels of the model overlap, causing confusion
and leading to subjective judgement of the evaluation.
Researchers tried to fix this problem by applying scoring
systems that rely less and less on the subjective judgement
of the evaluator, based on fuzzy quantitative benchmarks
model [82], and Fuzzy Expert System [83], which is a
simple but effective approach to solve fuzzy aspects such
as overlapping between maturity levels. We state that our
model does not yet conforms to such systems, but it will be
our next priority to set the validation of the ECU example to
said more trustworthy evaluation systems.

4.8 Limitations

One of the main limitations of the model is that the authors
assigned the highest maturity levels for features where the

technology is currently not employed in manufacturing.
Therefore, the highest maturity levels are still impossible
to reach outside some research demonstrators. The system
evaluated here focused on running with a multi-agent
control setup, being able to re-configure on the fly, and
having self-configuring modules. For these aspects, it
performs excellently, but it was not intended and developed
to meet all the criteria needed to reach full autonomy [84].
It had a specific purpose, and it achieved it with prowess.
This model is a guide to autonomy and how it could
be implemented, but we acknowledge that high levels of
autonomy are not the goal for most manufacturing systems,
though we believe that it brings a high added-value where
autonomy is required. Another limitation is that in some
fields of manufacturing not all the categories of features
of the model are present or easy to evaluate. A solution
would be to exclude those features from the evaluation and
complete the evaluation without them. However, this would
limit the possibility of comparing it with other product
solutions.

Since the criteria for evaluation of features of the model are
sometimes qualitative, discrepancies might appear between
evaluations made by different people on systems that may
seem similar. However, the description of the features
that we provide is clear and supported by established
literature on the topic, so analysts that perform the
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Fig. 9 Complete representation of the model scores for ECU Assembly System: Autonomy Level is on the axis of the diagram in the center,
maturity scores for the features in the diagrams around it

evaluation might refer to the provided literature whenever in
doubt.

Numerical judgement of the features based on some
experimental testing setup and data extraction would be
optimal, but it would require additional time and a big
amount of resources to be performed, and especially would
require to be performed on a selection of systems, and not
a single one. Therefore, we relied on this example for the

work in this manuscript, and we defer to future research for
additional data examples.

5 Conclusion

Industry 4.0 brought digital systems to the forefront of man-
ufacturing development, leading to major transformations
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in manufacturing requirements, capabilities, and operational
systems. Autonomy is a key goal achievable through dig-
italization, and this paper presents an investigation of the
definition of autonomy in both the scientific and indus-
trial communities. The main contributions of this paper are
threefold: first, a background work analysis helps clarify
autonomy goals and definitions in manufacturing systems.
Secondly, the analysis provides a list of the required features
of autonomous systems that support the implementation of
autonomy in manufacturing. Thirdly, a five-stage model is
designed to guide the evaluation of a particular manufac-
turing system and pave the way for the gradual transition
towards autonomy.

Section 2 starts with the definition of autonomy with its
goals in the manufacturing context. The difference between
autonomy and automation is also in the key ability of an
autonomous entity to face unanticipated situations and adapt
its course of action as they appear. Furthermore, a variety
of engineering domains in which autonomy applications
were reported in the literature is also provided, ranging from
unmanned vehicles to manufacturing areas.

This leads to the five-level model of autonomy in
manufacturing systems, from no autonomy to a fully
autonomous factory. Low autonomy level manufacturing
systems can be highly effective in pre-defined situations but
will depend on human decisions to react to unanticipated
contexts. Conversely, the highest level implies total
independent cognitive functioning mechanisms on different
features in terms of data, information, and knowledge,
process, interaction, infrastructure, self-characteristics, and
measurement performance.

The system view of these levels is broken down into
the contributing features as indicated by Table 2, and
Section 3 shows the different features associated with
maturity levels. As the maturity level of these features and
functionalities increases, the overall autonomous level of the

manufacturing system also increases. This approach allows
the identification of factors that may be holding a system back
from achieving its autonomous potential. The validation of
the model performed in Section 4 confirmed that the model
could be used to evaluate autonomous systems.

Even though the effort toward autonomy implementation
is growing, in current leading manufacturing industries —
such as semiconductor, aerospace, and automotive — the
highest autonomy level has not been achieved. Development
of this work in the future will provide an investigation of
the barriers and challenges that hinder the development of
autonomous features in the industry, as well as an analysis of
the business models and considerations that may hold back
an otherwise technically possible implementation.

Using the model presented in this paper to evaluate
other manufacturing systems that aim to reach smart
manufacturing and complete autonomy would provide a
benchmark for other companies that are interested in
investing in this evolution program, as well as evaluating at
two-point times one system that is currently experiencing a
transition from lacking autonomy in its manufacturing plant
to a completely autonomous system. The authors are putting
their effort into finding such systems to evaluate, and an
opportunity might be provided by the FA3D2 experimental
test-bed [85], which will be a technology demonstrator for
the authors involved in the paper.

Appendix

The authors would like to append to the manuscript the
summary Fig. 10 to give the reader a complete overview and
the checklist of all the features to be graded in the model,
along with Fig. 11 in the Appendix, where the score can be
inputted and visualized (as in the example in Section 4, see
Fig. 9).
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Fig. 10 Checklist and summary of the complete model
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Fig. 11 Representation of the model — empty
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