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Introduction: Neuroimaging technology has experienced explosive growth and
transformed the study of neural mechanisms across health and disease. However,
given the diversity of sophisticated tools for handling neuroimaging data, the field
faces challenges in method integration, particularly across multiple modalities and
species. Specifically, researchers often have to rely on siloed approaches which
limit reproducibility, with idiosyncratic data organization and limited software
interoperability.

Methods: To address these challenges, we have developed Quantitative
Neuroimaging Environment & Toolbox (QuNex), a platform for consistent end-
to-end processing and analytics. QuNex provides several novel functionalities
for neuroimaging analyses, including a “turnkey” command for the reproducible
deployment of custom workflows, from onboarding raw data to generating
analytic features.

Results: The platform enables interoperable integration of multi-modal,
community-developed neuroimaging software through an extension framework
with a software development kit (SDK) for seamless integration of community
tools. Critically, it supports high-throughput, parallel processing in high-
performance compute environments, either locally or in the cloud. Notably,
QuNex has successfully processed over 10,000 scans across neuroimaging
consortia, including multiple clinical datasets. Moreover, QuNex enables
integration of human and non-human workflows via a cohesive translational
platform.

Discussion: Collectively, this e�ort stands to significantly impact neuroimaging
method integration across acquisition approaches, pipelines, datasets,
computational environments, and species. Building on this platform will enable
more rapid, scalable, and reproducible impact of neuroimaging technology
across health and disease.
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Introduction

Neuroimaging has transformed the study of the central nervous

system across species, developmental stages, and health/disease

states. The impact of neuroimaging research has led to the

development of a diverse and growing array of tools and pipelines

that address distinct aspects of data management, preprocessing,

and analysis [e.g., AFNI (Cox, 1996), FreeSurfer (Fischl, 2012),

FSL (Smith et al., 2004), SPM (Ashburner, 2012), HCP (Glasser

et al., 2013), fMRIPrep (Esteban et al., 2019), QSIPrep (Cieslak

et al., 2021), PALM (Winkler et al., 2014)]. However, the

growing array of neuroimaging tools has created challenges for

integration of such methods across modalities, species, and analytic

choices. Furthermore, different neuroimaging techniques (e.g.,

functional magnetic resonance imaging/fMRI, diffusion magnetic

resonance imaging/dMRI, arterial spin labeling/ASL, task-evoked

versus resting-state etc.) have often spurred the creation of

methodology-specific silos with limited interoperability across tools

for processing and downstream analyses. This has contributed

to a fragmented neuroimaging community in lieu of integrative,

standardized, and reproducible workflows in the field (Botvinik-

Nezer et al., 2020).

A number of coordinated efforts have attempted to standardize

acquisition and processing procedures. For example, the Human

Connectome Project (HCP)’s Minimal Preprocessing Pipelines

(MPP) (Glasser et al., 2013) allow quality control (QC) and

distortion correction for several neuroimaging modalities through

a unified framework, while considering multiple formats for

preserving the geometry of different brain structures (surfaces

for the cortical sheet and volumes for deep structures). Another

state-of-the-art preprocessing framework, fMRIPrep (Esteban

et al., 2019), focuses on fMRI, seeking to ensure high-quality

automated preprocessing and integrated QC. QSIPrep (Cieslak

et al., 2021) enables similar-in-spirit automated preprocessing

for dMRI. FSL’s XTRACT (Warrington et al., 2020) allows

consistent white matter bundle tracking in human and non-

human primate dMRI. Several high-level environments, such as

nipype (Gorgolewski et al., 2016), micapipe (Cruces et al., 2022),

and BrainVoyager (Goebel, 2012), have also provided frameworks

for leveraging other tools to build neuroimaging pipelines,

including support across multiple modalities. Such efforts have

been instrumental in guiding the field toward unified and

consistent handling of data and increasing accessibility for users

to state-of-the-art tools. However, these solutions are mostly

application- or modality-specific, and therefore are not designed

to enable an integrative workflow framework that is modality-

and method-agnostic. Many of these options are uni-modal

preprocessing pipelines (e.g., fMRIPrep, QSIPrep) or preprocessing

pipelines developed for specific consortia (HCP and UKBiobank

pipelines). To date, no environment has been explicitly designed

to seamlessly connect external and internally-developed multi-

modal preprocessing pipelines with downstream analytic tools,

and provide a comprehensive, customizable ecosystem for flexible

user-driven end-to-end neuroimaging workflows.

To address this need, we have developed the Quantitative

Neuroimaging Environment and Toolbox (QuNex). QuNex is

designed as an integrative platform for reproducible neuroimaging

analytics. Specifically, it enables researchers to seamlessly execute

data preparation, preprocessing, QC, feature generation, and

statistics in an integrative and reproducible manner. The “turnkey”

end-to-end execution capability allows entire study workflows,

from data onboarding to analyses, to be customized and

executed via a single command. Furthermore, the platform is

optimized for high performance computing (HPC) or cloud-based

environments to enable high-throughput parallel processing of

large-scale neuroimaging datasets [e.g., Adolescent Brain Cognitive

Development (Casey et al., 2018) or UK Biobank (Bycroft et al.,

2018)]. In fact, QuNex has been adopted as the platform of choice

for executing workflows across all Lifespan and Connectomes of

Human Disease datasets by the Connectome Coordinating Facility

(Elam et al., 2021).

Critically, we have explicitly developed QuNex to integrate and

facilitate the use of existing software packages, while enhancing

their functionality through a rich array of novel internal features.

Our platform currently supports a number of popular and well-

validated neuroimaging tools, with a framework for extensibility

and integration of additional original packages based on user needs

(see Section Discussion). Moreover, QuNex offers functionality

for onboarding entire datasets, with compatibility for the BIDS

(Brain Imaging Data Structure, Gorgolewski et al., 2016) or HCP-

style conventions, as well as support for NIFTI (volumetric),

GIFTI (surface meshes), CIFTI (grayordinates), and DICOM file

formats. Lastly, QuNex enables analysis of non-human primate

(Hayashi et al., 2021) and rodent (e.g., mouse) (Zerbi et al., 2015)

datasets in a complementary manner to human neuroimaging

workflows. To the best of our knowledge, no existing framework

provides comprehensive functionality to handle the diversity

of neuroimaging workflows across species, modalities, pipelines,

analytic workflows, datasets, and scanner manufacturers, while

explicitly enabling methodological extensibility and innovation.

QuNex offers an integrative solution that minimizes technical

bottlenecks and access friction for executing standardized

neuroimaging workflows at scale with reproducible standards.

Of note, QuNex is an integrative framework for multi-

modal, multi-species neuroimaging tools and workflows,

rather than a choice of preprocessing or analytic pipeline;

as such, QuNex provides users with multiple options and

complete control over processing and analytic decisions,

giving them the opportunity to pick the right tools for

their job. Thus, QuNex provides a novel, integrative

solution for consistent and customizable workflows in

neuroimaging.

In this paper, we present QuNex’s capabilities through specific

example use cases: (1) Turnkey execution of neuroimaging

workflows and versatile selection of data for high-throughput

batch processing with native scheduler support; (2) Consistent and

standardized processing of datasets of various sizes, modalities,

study types, and quality; (3) Multi-modal feature generation at

different levels of resolution; (4) Comprehensive and flexible

general linear modeling at the single-session level and integrated

interoperability with third-party tools for group-level analytics; (5)

Support for multi-species neuroimaging data, to link, unify, and

translate between human and non-human studies. For these use

cases, we sample data from over 10,000 scan sessions that QuNex
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has been used to process across neuroimaging consortia, including

clinical datasets.

Methods

Description of the preprocessing validation
datasets

We tested preprocessing using QuNex on a total of 16

datasets, including both publicly-available and aggregated internal

datasets. For each dataset, we prepared batch files with parameters

specific to the study (or site, if the study is multi-site and

acquisition parameters differed between sites). We then used

QuNex commands to run all sessions through the HCP Minimal

Preprocessing Pipelines (MPP) for structural (T1w images; T2w if

available), functional data, and diffusion data (if available). A brief

description of each dataset in Supplementary material. Additional

details on diffusion datasets and preprocessing can also be found

below.

Preprocessing of validation datasets

All datasets were preprocessed using QuNex with the HCP

MPP (Glasser et al., 2013) via QuNex. A summary of the HCP

Pipelines is as follows: the T1w structural images were first

aligned by warping them to the standard Montreal Neurological

Institute-152 (MNI-152) brain template in a single step, through

a combination of linear and non-linear transformations via

the FMRIB Software Library (FSL) linear image registration

tool (FLIRT) and non-linear image registration tool (FNIRT)

(Jenkinson et al., 2002). If a T2w was present, it was co-registered

to the T1w image. If field maps were collected, these were

used to perform distortion correction. Next, FreeSurfer’s recon-

all pipeline was used to segment brain-wide gray and white

matter to produce individual cortical and subcortical anatomical

segmentations (Reuter et al., 2012). Cortical surface models were

generated for pial and white matter boundaries as well as

segmentation masks for each subcortical gray matter voxel. The

T2w image was used to refine the surface tracing. Using the pial and

white matter surface boundaries, a “cortical ribbon” was defined

along with corresponding subcortical voxels, which were combined

to generate the neural file in the Connectivity Informatics

Technology Initiative (CIFTI) volume/surface “grayordinate” space

for each individual subject (Glasser et al., 2013). BOLD data were

motion-corrected by aligning to the middle frame of every run

via FLIRT in the initial NIFTI volume space. Next a brain-

mask was applied to exclude signal from non-brain tissue.

Next, cortical BOLD data were converted to the CIFTI gray

matter matrix by sampling from the anatomically-defined gray

matter cortical ribbon and subsequently aligned to the HCP atlas

using surface-based nonlinear deformation (Glasser et al., 2013)

. Subcortical voxels were aligned to the MNI-152 atlas using

whole-brain non-linear registration and then the Freesurfer-

defined subcortical segmentation was applied to isolate the CIFTI

subcortex. For datasets without field maps and/or a T2w image,

we used a version of the MPP adapted for compatibility with

“legacy” data, featured as a standard option in the HCP Pipelines

provided by the QuNex team (https://github.com/Washington-

University/HCPpipelines/pull/156). The adaptations for single-

band BOLD acquisition have been described in prior publications

(Ji et al., 2019a, 2021). Briefly, adjustments include allowing the

HCP MPP to be conducted without high-resolution registration

using T2w images and without optional distortion correction using

field maps. For validation of preprocessing via QuNex, we counted

the number of sessions in each study which successfully completed

the HCP MPP versus the number of sessions which errored during

the pipeline.

Description of the datasets used for
analytics

HCP young adults (HCP-YA) dataset
To demonstrate neuroimaging analytics and feature generation

in human data, we used N = 339 unrelated subjects from the

HCP-YA cohort (Van Essen et al., 2013). The functional data

from these subjects underwent additional processing and removal

of artifactual signal after the HCP MPP. These steps included

ICA-FIX (Glasser et al., 2013; Salimi-Khorshidi et al., 2014) and

movement scrubbing (Power et al., 2013) as done in our prior

work (Ji et al., 2019a, 2021). We combined the four 15-min

resting-state BOLD runs in order of acquisition, after first

demeaning each run individually and removing the first 100

frames to remove potential magnetization effects (Ji et al., 2019b).

Seed-based functional connectivity was computed using qunex

fc_compute_seedmaps and calculated as the Fisher’s

Z-transformed Pearson’s r-value between the seed region

BOLD time-series and time-series in the rest of brain. Task

activation maps were computed from a language processing task

(Barch et al., 2013), derived from Binder et al. (2011). Briefly,

the task consisted of two runs, each with four blocks of three

conditions: (i) Sentence presentation with detection of semantic,

syntactic, and pragmatic violations; (ii) Story presentation with

comprehension questions (“Story” condition); (iii) Math problems

involving sets of arithmetic problems and response periods (“Math”

condition). Trials were presented auditorily and participants chose

one of two answers by pushing a button. Task-evoked signal for

the Language task was computed by fitting a GLM to preprocessed

BOLD time series data with qunex preprocess_conc .

Two predictors were included in the model for the “Story” and

“Math” blocks, respectively. Each block was ∼30 s in length and

the sustained activity across each block was modeled using the

Boynton HRF (Boynton et al., 1996). Results shown here are from

the Story vs. Math contrast (Glasser et al., 2016a; Ji et al., 2019b).

Across all tests, statistical significance was assessed with PALM

(Winkler et al., 2014) via qunex run_palm . Briefly, threshold-

free cluster enhancement was applied (Smith and Nichols, 2009)

and the data were randomly permuted 5,000 times to obtain a null

distribution. All contrasts were corrected for family-wise error.

Diffusion data from this dataset were first preprocessed with the

HCP MPP (Glasser et al., 2013) via qunex hcp_diffusion ,

including susceptibility and eddy-current induced distortion

and motion correction (Andersson et al., 2003; Andersson and
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Sotiropoulos, 2016) and the estimation of dMRI to MNI-152 (via

the T1w space Andersson and Sotiropoulos, 2016) registration

fields. Next, fiber orientations were modeled for up to three

orientations per voxel using the FSL’s bedpostX crossing fibers

diffusion model (Behrens et al., 2007; Jbabdi et al., 2012), via

qunex dwi_bedpostx_gpu. After registering to the standard

space, whole brain probabilistic tractography was run with

FSL’s probtrackx via qunex dwi_probtracx_dense_gpu ,

producing a dense connectivity matrix for the full CIFTI space.

Further, we estimated 42 white matter fiber bundles, and

their cortical termination maps, for each subject via XTRACT

(Warrington et al., 2020). Following individual tracking, resultant

tracts were group-averaged by binarizing normalized streamline

path distributions at a threshold and averaging binary masks across

the cohort to give the percentage of subjects for which a given

tract is present at a given voxel. For all tracts except the middle

cerebellar peduncle (MCP), which is not represented in CIFTI

surface file formats, the cortical termination map was estimated

using connectivity blueprints, as described in Mars et al. (2018).

These maps reflect the termination points of the corresponding

tract on the white-gray matter boundary surface.

Non-human primate macaque datasets
Neural data from two macaques (one in vivo, one ex vivo) are

shown. Structural (T1w, T2w, myelin) and functional BOLD data

were obtained from a session in the publicly-available PRIMatE

Data Exchange (PRIME-DE) repository (Milham et al., 2018),

specifically from the University of California-Davis dataset.

In this protocol, subjects were anesthesized with ketamine,

dexmedetomidine, or buprenorphine prior to intubation and

placement in stereotaxic frame with 1–2% isoflurane maintenance

anesthesia during the scanning protocol. They underwent 13.5 min

of resting-state BOLD acquisition (gradient echo voxel size: 1.4

× 1.4 × 1.4 mm; TE: 24 ms; TR: 1,600 ms; FOV = 140 mm) as

well as T1w (voxel size: 0.3 × 0.3 × 0.3 mm; TE: 3.65 ms; TR:

2,500 ms; TI: 1,100 ms; flip angle: 7◦), T2w (voxel size: 0.3 × 0.3

× 0.3 mm; TE: 307 ms; TR: 3,000 ms), spin-echo field maps, and

diffusion on a Siemens Skyra 3T scanner with a 4-channel clamshell

coil. Preprocessing steps are consistent with the HCP MPP and

described in detail in Autio et al. (2020) and Hayashi et al. (2021).

The high-resolution macaque diffusion data shown

were obtained ex vivo and have been previously described

(Mars et al., 2018; Eichert et al., 2020; Warrington et al., 2020) and

are available via PRIME-DE (http://fcon_1000.projects.nitrc.org/

indi/PRIME/oxford2.html). The brains were soaked in phosphate-

buffered saline before scanning and placed in fomblin or fluorinert

during the scan. Data were acquired at the University of Oxford

on a 7T magnet with an Agilent DirectDrive console (Agilent

Technologies, Santa Clara, CA, USA) using a 2D diffusion-

weighted spin-echo protocol with single line readout (DW-SEMS,

TE/TR: 25 ms/10 s; matrix size: 128 × 128; resolution: 0.6 × 0.6

mm; number of slices: 128; slice thickness: 0.6 mm). Diffusion

data were acquired over the course of 53 h. For each subject, 16

non-diffusion-weighted (b = 0 s/mm2) and 128 diffusion-weighted

(b = 4,000 s/mm2) volumes were acquired with diffusion directions

distributed over the whole sphere. FA maps were registered to

the standard F99 space (Van Essen, 2002) using FNIRT. As with

the human data, the macaque diffusion data were modeled using

the crossing fiber model from bedpostX and used to inform

tractography. Again, 42 white matter fiber bundles, and their

cortical termination maps, were estimated using XTRACT.

Functional parcellation and seed definitions

Throughout this manuscript we used the Cole-Anticevic Brain-

wide Network Partition (CAB-NP) (Ji et al., 2019b), based on the

HCP MMP (Glasser et al., 2016a), to demonstrate the utility of

parcellations in QuNex. These parcellations (along with atlases

provided by FSL/Freesurfer) are also currently distributed with

QuNex. However, users can choose to use alternative parcellations

by simply providing QuNex with the relevant parcellation files.

The CAB-NP was used for definitions of functional networks (e.g.,

the Language network) and parcels in the cortex and subcortex.

Broca’s Area was defined as Brodmann’s Area 44, corresponding to

the parcel labeled “L_44_ROI” in the HCP MMP and “Language-

14_L-Ctx” in the CAB-NP (Glasser et al., 2016a). The left Primary

Somatorysensory Area (S1) region was defined as Brodmann’s

Area 1 and corresponds to the parcel labeled “L_1_ROI” in

the HCP MMP and “Somatomotor-29_L-Ctx” in the CAB-NP

(Glasser et al., 2016a).

Design and features for open science

QuNex is developed in accordance to modern standards in

software engineering. Adhering to these standards results in a

consistently structured, well-documented, and strictly versioned

platform. All QuNex code is open and well-commented which

both eases and encourages community development. Furthermore,

our Git repositories use the GitFlow branching model which,

besides keeping our repositories neat and tidy, also helps with

the process of merging community developed features into our

solution. QuNex has an extensive documentation, both in the

form of inline help, accessible from CLI and a Wiki page. Inline

documentation offers a short description of all QuNex commands

and their parameters while the Wiki documentation offers a

number of tutorials and more extensive usage guides. Furthermore,

users can establish a direct communication with QuNex developers

through the official QuNex forum (https://forum.qunex.yale.edu/),

where they can get additional support and discuss or suggest

possible new features or anything else QuNex related. To assure

maximum possible levels of tractability and reproducibility, QuNex

is versioned by using the semantic versioning process (https://

semver.org/). The QuNex platform is completely free and open

source—QuNex source code is licensed under the GPL (GNU

General Public License). Furthermore, QuNex is not only open

by nature, but also by design. In other words, we did not simply

open up the QuNex code base, we developed it to be as open and

accessible as possible. To open up QuNex to the neuroinformatics

community, we designed a specialized extensions framework.

This framework supports development in multiple programming

languages (e.g., Python, MATLAB, R, Bash) and was built with
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the sole intention to ease the integration of custom community

based processing and analysis commands into the QuNex platform.

Extensions developed through this extensions framework can

access all the tools and utilities (e.g., the batch turnkey engine,

logging, scheduling ...) residing in the core QuNex code. Once

developed, QuNex Extensions are seamlessly attached to the

QuNex platform and ran in the same fashion as all existing QuNex

commands. Our end goal is to fold the best extensions into our

core codebase and thus have a community supported, organically

growing neuroimaging platform. Asmentioned, to ease this process

we have also prepared an SDK, which includes the guidelines

and tools that should both speed up the extension development

process and make extensions code more consistent with the core

QuNex code. This will then allow for faster adoption of QuNex

Extensions into the core codebase. See Supplementary Figure 10 for

visualization of the QuNex Extensions framework.

Since QuNex and other similar platforms depend on a

number of software tools which are developed independently,

assuring complete reproducibility can be a challenging task

since researchers are required to track and archive all the

dependencies. To alleviate this issue we publish a container

along each unique QuNex version. As a result, using the

container for processing and analysis allows users to achieve

complete reproducibility by tracking a single number—

the version of the QuNex platform used in processing

and analysis. QuNex containers are not only important

because they offer complete transparency and reproducibility,

through them users can execute their studies on a number

of different platforms and systems (e.g., HPC system,

cloud services, PC, etc.). Just like the QuNex source code,

QuNex containers are also completely free and open to the

research community.

Containerization and deployment

Through containerization, QuNex is fully platform-agnostic

and comes in the form of both Docker and Singularity containers.

This offer several advantages to end users. First, the QuNex

container includes all of the required dependencies, packages,

and libraries which greatly reduces the time a user needs

to setup everything and start processing. Second, the QuNex

container is meticulously versioned and archived, which guarantees

complete reproducibility of methods. Last but not least, containers

can be run on practically every modern operating system

(e.g., Windows, macOS, Linux) and can be deployed on any

hardware configuration (e.g., desktop computer, laptop, cloud,

high performance computing system). Users can easily execute

the QuNex container via the included qunex_container

script, which removes common technical barriers to connecting a

container with the operating system. Furthermore, when running

studies on an HPC system users need to manually configure the

parameters of the underlying scheduling system, which can be

again a tedious task for those that are not familiar with scheduling

system. To alleviate this issue, the qunex_container script

offers native support for several popular job schedulers (SLURM,

PBS, LSF).

QuNex commands

A detailed list and a short description of all commands, along

with a visualization of how commands can be chained together, can

be found in the Supplementary material. Here, we specify a short

description for each of the functional groups of QuNex commands.

Study creation, data onboarding, and mapping
This group of commands serves for setting up a QuNex study

and its folder structure, importing your data into the study and

preparing all the support files required for processing.

HCP pipelines
These commands incorporate everything required for

executing the whole HCP MPP along with some additional HCP

Pipelines commands. Commands support the whole HCP MPP

along with some additional processing and denoising commands.

Below is a very brief overview of each pipeline, for details please

consult the manuscript prepared by Glasser et al. (2013) and the

official HCP Pipelines repository (https://github.com/Washington-

University/HCPpipelines). See Supplementary Figure 3 for a

visualization of HCP Pipelines implementation in QuNex.

Quality control
QuNex contains commands through which users can execute

visual QC for a number of commonly used MRI modalities—raw

NIfTI, T1w, T2w, myelin, fMRI, dMRI, eddyQC, etc.

Di�usion analyses
QuNex also includes functionality for processing images

acquired through dMRI. These commands prepare the data for

a number of common dMRI analyses including diffusion tensor

imaging (DTI) and probabilistic tractography.

BOLD analyses
Before running task-evoked and resting-state functional

connectivity analyses, BOLD data needs to be additionally

preprocessed. First, all the relevant data needs to be prepared—

BOLD brain masks need to be created, BOLD image statistics need

to be computed and processed and nuisance signals need to be

extracted. These data are then used to process the images, which

might include spatial smoothing, temporal high and/or low pass

filtering, assumed HRF and unassumed HRF task modeling and

regression of undesired nuisance and task signal.

Permutation analysis of linear models (PALM)
The main purpose of this group of commands is to allow easier

use of results and outputs generated by QuNex in various PALM

(Winkler et al., 2014) analyses (e.g., second-level statistical analysis

and various types of statistical tests).
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Mice pipelines
QuNex contains a set of commands for onboarding and

preprocessing rodent MRI data (typically in the Bruker format).

Results of the mice preprocessing pipelines can be then analyzed

using the same set of commands as with human data.

Results

Through QuNex, researchers can use a single platform to

perform onboarding, preprocessing, QC, and analyses across

multiple modalities and species. We have developed an open-

source environment for multi-modal neuroimaging analytics.

QuNex is fully platform-agnostic and comes in the form of

both Docker and Singularity containers which allows for easy

deployment regardless of the underlying hardware or operating

system. It has also been designed with the aim to be community-

driven. To promote community participation, we have adopted

modern and flexible development standards and implemented

several supporting tools, including a SDK that includes helper

tools for setting up a development environment and testing

newly developed code, and an extensions framework through

which researchers can integrate their own pipelines into the

QuNex platform. These tools enable users to speed up both their

development and integration of newly developed features into the

core codebase. QuNex comes with an extensive documentation

both in the format of inline help through the command line

interface (CLI) and a dedicated Wiki page. Furthermore, users

can visit our forum (https://forum.qunex.yale.edu/) for anything

QuNex related, from discussions to feature requests, bug reports,

issues, usage assistance, and to request the integration of other

tools.

QuNex is an integrative multi-modal and
multi-species neuroimaging platform

Given the diversity of sophisticated tools for handling

neuroimaging data, the field faces a key challenge around

method integration. We addressed this challenge by building a

platform for seamless integration of a wide array of neuroimaging

operations, ranging from low-level onboarding of raw data

to final cutting-edge surface-based analyses and visualizations.

Figure 1 provides a general overview of the QuNex platform,

while a summary of QuNex commands and functionalities is

shown in Supplementary Figure 1. QuNex supports processing of

diverse data from multiple species (i.e., human, macaque, and

mouse), modalities (e.g., T1w, T2w, fMRI, dMRI), and common

neuorimaging data formats (e.g., DICOM, NIfTI, and vendor-

specific Bruker and PAR/REC). It offers support for onboarding

of BIDS-compliant or HCP-style datasets and native support for

studies that combine neuroimaging with behavioral assessments.

To this end, it allows for integrated analyses with behavioral data,

such as task performance or symptom assessments, and provides

a clear hierarchy for organizing data in a study with behavior and

neural modalities (see Supplementary Figure 2).

QuNex is capable of generating multi-modal imaging-derived

features both at the single subject level and at the group level.

It enables extraction of structural features from T1w and T2w

data (e.g., myelin, cortical thickness, volumes, sulcal depth, and

curvature), whitemattermicrostructure and structural connectivity

features from dMRI data (e.g., whole-brain “dense” connectomes,

regional connectivity, white matter tract segmentation) and

functional features from fMRI data (e.g., activationmaps and peaks,

functional connectivity matrices, or connectomes). As described

below and shown in Figure 4, features can be extracted at the dense,

parcel, or network levels using surface or volume-based analysis.

Turnkey engine automates processing via a
single command

Efficient processing of neuroimaging datasets requires

streamlined workflows that can execute multiple steps, with

minimal manual intervention. One of the most powerful

QuNex features is its “turnkey” engine, accessible through the

run_turnkey command. The turnkey functionality allows users

to chain and execute several QuNex commands using a single

command line call, enabling the generation of consistent outputs

in an efficient, streamlined manner. The turnkey steps are entirely

configurable andmodular, such that users can customize workflows

to suit their specific needs. An example of an end-to-end workflow

is shown in Figure 2A. The QuNex turnkey engine supports data

onboarding of the most commonly used neuroimaging formats,

state-of-the-art preprocessing pipelines (e.g., HCP MPP; Glasser

et al., 2013, see Supplementary Figure 3) and denoising techniques,

as well as steps for data QC. QuNex expands upon preprocessing

functionalities offered by other packages by providing robust QC

functionality, via visualizing key features of multi-modal data

(including T1w, T2w, dMRI, and BOLD, Supplementary Figure 4).

This simplifies thorough validation of the quality of input data as

well as the intermediate and final preprocessing outputs. Users

can additionally choose to generate neuroimaging features for use

in further analyses, including the parcellation of timeseries and

functional connectivity.

Filtering grammar enables flexible selection
of study-specific data processing

Flexible selection of sessions/scans for specific steps is an

essential feature for dataset management, especially datasets from

multiple sites, scanners, participant groups, or scan types. For

example, the user may need to execute a command only on data

from a specific scanner; or only on resting-state (vs. task-based)

functional scans for all sessions in the study. QuNex enables such

selection with a powerful filtering grammar in the study-level

“batch files,” which are text files that are generated as part of the

onboarding process.

Batch files containmetadata about the imaging data and various

acquisition parameters (e.g., site, device vendor, group, subject ID,

session ID, acquired modalities) and serve as a record of all session-

specific information in a particular study. When users create the

batch file through the create_batch command, QuNex sifts

through all sessions in the study and adds the information it needs

for further processing and analyses to the batch file. This makes

the batch file a key hub that stores all the relevant study metadata.
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FIGURE 1

QuNex provides an integrated, versatile, and flexible neuroimaging platform. (A) QuNex supports processing of input data from multiple species,
including human, macaque, and mouse. (B) Additionally, data can be onboarded from a variety of popular formats, including neuroimaging data in
DICOM, PAR/REC, NIfTI formats, a full BIDS dataset, or behavioral data from task performance or symptom assessments. (C) The QuNex platform is
available as a container for ease of distribution, portability, and execution. The QuNex container can be accessed via the command line and contains
all the necessary packages, libraries, and dependencies needed for running processing and analytic functions. (D) QuNex is designed to be easily
scalable to accommodate a variety of datasets and job sizes. From a user access point (i.e., the user’s local machine), QuNex can be deployed locally,
on cloud servers, or via job schedulers in supercomputer environments. (E) QuNex outputs multi-modal features at the single subject and group
levels. Supported features that can be extracted from individual subjects include structural features from T1w, T2w, and dMRI (such as myelin,
cortical thickness, sulcal depth, and curvature) and functional features from BOLD imaging (such as functional connectivity matrices). Additional
modalities, e.g., receptor occupancy from PET (positron emission tomography), are also being developed (see Section Discussion). Features can be
extracted at the dense, parcel, or network levels. (F) Importantly, QuNex also provides a comprehensive set of tools for community contribution,
engagement, and support. A Software Development Kit (SDK) and GitFlow-powered DevOps framework is provided for community-developed
extensions. A forum (https://forum.qunex.yale.edu) is available for users to engage with the QuNex developer team to ask questions, report bugs,
and/or provide feedback.

One of the key advantages of this approach is that users can easily

execute commands on all or only a specific subset of sessions from a

study by filtering the study-level batch file. Figure 2B visualizes the

logic behind filtering data subsets from batch files and examples of

the filter parameter in a QuNex command. Information about

each scan (e.g., scanner/device, institution/scan site, group, subject

ID, session ID, modality, scan tag) in the batch file is provided using

a key:value format (e.g., group:patient ). While some

keys are required for QuNex processing steps (e.g., session ,

subject ) and are populated automatically during the onboarding

process, users can add as many additional key:value tags as

they need. The filter parameter in a QuNex command will

search through the batch file and select only the scans with

the specified key:value tag. This filtering can be executed at

multiple levels, from selecting all scans from a particular type of

scanner to scans from only a single session. For example, the setting

filter = “device:Siemens” will select all data for scans

conducted by a Siemens scanner, whereas the setting filter =

“session:0001_1” will select only data from the session ID

0001_1.

QuNex provides native scheduler support
for job management

Many institutions use HPC systems or cloud-based servers

for processing, necessitating job management applications such as

scheduler software and custom scheduling scripts (see examples in

Supplementary Figure 5). This is especially important for efficient

processing of large datasets which may include thousands of

sessions. While QuNex is platform-agnostic, all QuNex commands,

including run_turnkey , are compatible with commonly used

scheduling systems (i.e., SLURM, PBS, and LSF) for job

management in HPC systems (Supplementary Figure 6). Thus,

QuNex is easily scalable and equipped to handle high-throughput,

parallel processing of large neuroimaging datasets. To schedule

a command on a cluster, users simply provide a scheduler

parameter to any QuNex command call and the command will

be executed as a job on an HPC system, eliminating the need

for specialized scripts with scheduling directives. Additionally,

QuNex provides parameters for users to easily customize the

parallelization of their jobs from the command line call. The

parjobs parameter specifies the total number of jobs to run

in parallel; parsessions specifies the number of sessions

to run in parallel within any single job; and parelements

specifies the number of elements (e.g., fMRI runs) within each

session to run in parallel. Users can provide the scheduling

specification for their jobs to ensure that computational resources

are allocated in a specific way; otherwise, QuNex will automatically

assign scheduling values for job parallelization, as described

in Supplementary Figure 7. Figure 2C shows examples of how

the native support for scheduling and QuNex’s parallelization

parameters can be leveraged to customize the way processing

is distributed across jobs. For example, specifying parjobs=1 ,

parsessions=2 , and parelements=1 will ensure that only

one job is run at a time on the compute nodes, with two sessions
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FIGURE 2

QuNex turnkey functionality and batch engine for high-throughput processing. (A) QuNex provides a “turnkey” engine which enables fully
automated deployment of entire pipelines on neuroimaging data via a single command (qunex run_turnkey ). An example of a typical workflow
with key steps supported by the turnkey engine is highlighted, along with the example command specification. QuNex supports state-of-the-art
preprocessing tools from the neuroimaging community (e.g., the HCP MPP; Glasser et al., 2013). For a detailed visual schematic of QuNex steps and
commands (see Supplementary Figure 1). (B) The QuNex batch specification is designed to enable flexible and comprehensive “filtering” and
selection of specific data subsets to process. The filtering criteria can be specified at multiple levels, such as devices (e.g., Siemens, GE, or Philips MRI
scanners), institutions (e.g., scanning sites), groups (e.g., patient vs. controls), subjects, sessions (e.g., time points in a longitudinal study), modalities
(e.g., T1w, T2w, BOLD, di�usion), or scan tags (e.g., name of scan). (C) QuNex natively supports job scheduling via LSF, SLURM, or PBS schedulers and
can be easily deployed in HPC systems to handle high-throughput, parallel processing of large neuroimaging datasets. The scheduling options
enable precise specification of paralellization both across sessions and within session (e.g., parallel processing of BOLD images) for optimal
performance and utilization of cluster resources.
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running in parallel. Any individual elements within each session

(e.g., multiple BOLD runs) will run serially, one at a time. This

parallelization and scheduling functionality, in combination with

the turnkey engine and batch specification, is extremely powerful at

handling large-scale datasets, while providing great flexibility and

user friendliness in optimization to maximally utilize computing

resources. Through a single QuNex command line call, a user

can onboard, process, and analyze thousands of scans on an HPC

system in a parallel manner, drastically reducing the amount of time

and effort for datasets of scale.

Parameter specification environment
enables reproducible workflows of
multi-modal datasets

The diversity of neuroimaging parameters can lead to

challenges in replicating preprocessing choices and thus affect the

reproducibility of results. QuNex supports consistent specification

and documentation of parameter values by storing this information

in the parameter header of batch files (see Figure 3B for an example)

while allowing users to specify the parameters appropriate for

their data (e.g. echo spacing, TR) and preprocessing preferences

(e.g., spatial smoothing, filtering, global signal regression). Full

descriptions for all supported parameters for each QuNex function

are available in the documentation (http://qunex.readthedocs.io/)

and the in-line help. Many parameters in neuroimaging pipelines

are the same across different steps or commands, or across different

command executions (e.g., if data for the same study/scanner are

processed sequentially). By providing these parameters and their

values in the batch files, users are assured that shared parameters

will use the same value across pipeline steps. Furthermore, such

specification enables complete transparency and reproducibility,

as processing workflows can be fully replicated by using the

same batch files, and the batch files themselves can be easily

shared between researchers. For convenience, an alternative way

of providing parameters is through the CLI call; if a parameter is

defined both in the batch file and in the CLI call, the version in the

CLI call takes precedence.

Preprocessing functions are typically executed on multiple

sessions at the same time so that they can run in parallel. As

mentioned above, QuNex utilizes batch files to define processing

parameters, in order to facilitate batch processing of sessions.

This batch file specification allows QuNex to produce standardized

outputs from data across different studies while allowing for

differences in acquisition parameters (e.g., in a multi-site study,

where scanner manufacturers may differ across sites). Figure 3A

illustrates two example use-case datasets (Datasets I and II). The

flexibility of the QuNex batch parameter specification enables all

data from these different studies and scanners to be preprocessed

consistently and produce consistent outputs in all modalities.

Figure 3B illustrates an example of a real-world batch parameter

specification. This information is included in the header of a batch

file, and is followed by the session-level information (as shown in

Figure 2B) for all sessions.

We have successfully used QuNex to preprocess and analyze

data from a large number of public and private neuroimaging

datasets (Figure 3C; Elam et al., 2021), totalling more than

10,000 independent scan sessions from over 50 different

scanners. Figure 3D shows that the data differ in terms of the

scanner manufacturer (Philips, GE or Siemens), acquisition

technique (simultaneous multi-slice/multi-band), and the study

purpose (clinical, basic, longitudinal and pharmacology studies).

These datasets also span participants from different stages of

development, from children to older adults. Across these diverse

datasets, the percentage of successfully processed sessions is

extremely high: 100% in the majority of studies and ∼98.5% in

total across all studies (Figure 3C). Of note, QuNex supports the

preprocessing efforts of major neuroimaging consortia and is

used by the Connectome Coordination Facility to preprocess all

Lifespan and Connectomes Related to Human Disease (CRHD)

datasets (Elam et al., 2021).

QuNex supports extraction of multi-modal
features at multiple spatial scales

Feature engineering is a critical choice in neuroimaging studies

and features can be computed across multiple spatial scales.

Importantly, given the challenges with mapping reproducible

brain-behavioral relationships (Marek et al., 2022), selecting the

right features at the appropriate scale is vital for optimizing

signal-to-noise in neural data and producing reproducible results.

QuNex enables feature generation and extraction at different

levels of resolution (including “dense” full-resolution, parcels, or

whole-brain networks) for both volume and CIFTI (combined

surface and volume) representations of data, consistently across

multiple modalities, for converging multi-modal neuroimaging

analytics. While some parcellations are currently distributed with

QuNex [such as the HCP-MMP1.0 (Glasser et al., 2016a), CAB-

NP (Ji et al., 2019b), and atlases distributed within FSL/FreeSurfer]

users are able to use whichever parcellation they wish to use

by providing the relevant parcellation files [e.g., Brainnetome

(Fan et al., 2016) or Schaefer (Schaefer et al., 2018) atlases] to the

appropriate function in QuNex (e.g., parcellate_bold ).

Figure 4 shows convergent multi-modal results in a sample of N

= 339 unrelated young adults. Myelin (T1w/T2w) maps reflect

high myelination in sensorimotor areas such as primary visual

and sensorimotor networks, and lower myelination in higher-order

association networks (Figure 4A; Glasser and Van Essen, 2011).

DMRI measures capture the white matter connectivity structure

through tract termination (Warrington et al., 2020) and maximal

intensity projection (MIP) of the left arcuate fasciculus (Figure 4B);

as well as structural connectivity (Glasser et al., 2016a). For

example, seed-based structural connectivity of Broca’s area (Fadiga

et al., 2009; Friederici and Gierhan, 2013) highlights connections

to canonical language areas such as Wernicke’s area (Binder,

2015), superior temporal gyrus, and sulcus (Friederici et al., 2006;

Frey et al., 2008), and frontal language regions (Friederici, 2011;

Friederici and Gierhan, 2013; Figure 4C). This is consistent with

the results of seed-based functional connectivity of Broca’s area

from resting-state fMRI data in the same individuals (Figure 4D);

and furthermore, it is aligned with the activation patterns from

a language task (Figure 4E; Barch et al., 2013). Across modalities,
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FIGURE 3

Consistent processing at scale and standardized outputs through batch specification. (A) The batch specification mechanism in QuNex is designed to
support data processing from single-site and multi-site datasets to produce standardized outputs. Acquisition parameters can be flexibly specified for
each sequence. Here, example datasets I (single-site study) and II (multi-site study) illustrate possible use cases, with the sequences in each dataset
shown in green text. Although Dataset I does not include T2w scans, and Dataset II contains data from di�erent scanners, all these data can be
consistently preprocessed in all modalities to produce standardized output neural features. (B) Parameters can be tailored for each study in the
header of the batch processing file. An example is shown with parameters in green text tailored to Site B in Dataset II (similar to those used in HCP
datasets; Glasser et al., 2013). Detailed instructions and examples for setting up the batch parameter header for a user’s specific study is available in
the documentation. (C) QuNex has been highly successful in preprocessing data from numerous publicly available as well as private datasets,
totalling over 10,000 independent scan sessions from over 50 di�erent scanners. In some cases, advanced user options can be used to rescue
sessions which failed with “out-of-the-box” default preprocessing options. These options include using custom brain masks, control points, or expert
file options in Freesurfer (Fischl, 2012; McCarthy et al., 2015) (see Supplementary material). The number of successful/total sessions is reported in
each bar. The number of sessions rescued with advanced options is shown in parentheses, when applicable. The total proportion of successfully
preprocessed sessions from each study (including any sessions rerun with advanced options) as well as the grand total across all studies is shown
above the bar plots. The majority of the sessions which failed were due to excessive motion in the structural T1w image, which can cause issues with
the registration and segmentation. (D) QuNex has been successfully used to preprocess data with a wide range of parameters and from diverse
datasets. (Left) QuNex has been tested on MRI data acquired with the three major scanner manufacturers (Philips, GE, and Siemens). Here NS

specifies the number of individual scan sessions that were acquired with each type of scanner. (Middle) QuNex is capable of processing images
acquired both with and without simultaneous multi-slice (SMS) acquisition (also known as multi-band acquisition, i.e., Simultaneous Multi-Slice in
Siemens scanners; Hyperband in GE scanners; and Multi-Band SENSE in Philips scanners; Kozak et al., 2020). (Right) QuNex has been tested on data
from clinical, pharmacology, longitudinal, and basic population-based datasets. Here, ND specifies the number of datasets; NS specifies the total
number of individual scan sessions in those datasets.

QuNex supports the extraction of metrics as raw values (e.g.,

Pearson’s r or Fisher’s Z for functional connectivity; probabilistic

tractography streamline counts for structural connectivity; t-values

for task activation contrasts) or standardized Z-scores.

Notably, features across all modalities can be extracted in

a consistent, standardized format after preprocessing and post-

processing within QuNex. This enables frictionless comparison

of features across modalities, e.g., for multi-modal, multi-variate

analyses.

QuNex enables single-session modeling of
time-series modalities

Modeling of time-series data, such as BOLD, at the single-

session level can be used for a variety of purposes, including

nuisance regression and extracting task activation for individual

subjects. QuNex supports denoising and modeling of time-

series data at the single-session level via a general linear model

(GLM) framework, executed through the preprocess_conc

command. Here, we demonstrate this framework with functional

BOLD time-series. Figure 5A showcases a use case where

resting-state BOLD data are first denoised and then used to

compute seed-based functional connectivity maps of the primary

somatosensory area (S1). During the denoising step, the user

can specify which sources of nuisance signal to remove (e.g.,

motion parameters and their derivatives and BOLD signals

extracted from ventricles, white matter, whole brain or any

other custom defined regions, and their first derivatives). If

specified, these nuisance signals are included as covariates in

the GLM, which produces, for each BOLD run, residual time-

series data as well as coefficient maps for all specified regressors.

Frontiers inNeuroinformatics 10 frontiersin.org

https://doi.org/10.3389/fninf.2023.1104508
https://www.frontiersin.org/journals/neuroinformatics
https://www.frontiersin.org


Ji et al. 10.3389/fninf.2023.1104508

FIGURE 4

Extracting multi-modal processing features at multiple levels of resolution. Output features from multiple modalities are shown, as an example of a
cross-modal analysis that may be done for a study. Here, features were computed from a cohort of N = 339 unrelated subjects from the HCP Young
Adult cohort (Van Essen et al., 2013). In addition to cross-modality support, QuNex o�ers feature extraction at “dense” (i.e., full-resolution),
parcel-level and network-level resolutions. All features are shown below at all three resolutions. We used the Cole-Anticevic Brainwide Network
Parcellation (CAB-NP) (Glasser et al., 2016a; Ji et al., 2019b), computed using resting-state functional connectivity from the same cohort and
validated and characterized extensively in Ji et al. (2019b). (A) Myelin maps, estimated using the ratio of T1w/T2w images (Glasser and Van Essen,
2011). (B) Left arcuate fasciculus computed via di�usion tractography (Warrington et al., 2020). Surface views show the cortical tract termination
(white-gray matter boundary endpoints) and volume views show the maximal intensity projection. (C) Structural connectivity of Broca’s area (parcel
corresponding to Brodmann’s Area [BA] 44, green star) (Glasser et al., 2016a). (D) Resting-state functional connectivity of Broca’s area (green star).
For parcel- and network-level maps, resting-state data were first parcelated before computing connectivity. (E) Task activation maps for the “Story vs.
Math” contrast in a language processing task (Barch et al., 2013). For parcel- and network-level maps, task fMRI data were first parcellated before
model fitting. (F) (Left) Whole-brain Language network from the CAB-NP (Ji et al., 2019b). (Right) The mean t-statistic within Language network
regions from the “Story vs. Math” contrast [shown in (E)] improves when data are first parcellated at the parcel-level relative to dense-level data and
shows the greatest improvement when data are first parcellated at the network-level. Error bars show the standard error. (G) (Left) T-statistics
computed on the average parcel beta estimates are higher compared to the average T-statistics computed over dense estimates of the same parcel.
Teal dots represent 718 parcels from the CAB-NP × 3 Language task contrasts (“Story vs. Baseline”; “Math vs. Baseline”; “Story vs. Math”). (Right)
Similarly, T-statistics computed on beta estimates for the network are higher than the average of T-statistics computed across parcels within each
network.

The denoised time-series can then be used for further analytics,

e.g., by computing seed-based functional connectivity using the

fc_compute_seedmaps command. Of note, users can also

choose to instead perform denoising using the HCP’s ICA-FIX

pipeline (Glasser et al., 2016b) via hcp_icafix , which is also

currently supported.
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FIGURE 5

General Linear Model (GLM) for single-session modeling of time-series modalities and integrated interoperability with PALM for group-level analytics.
(A) The QuNex GLM framework enables denoising and/or event modeling of resting-state and task BOLD images at the individual-session level in a
single step. A use case is shown for resting-state BOLD data. At the single-subject level, FL FLthe user can choose to specify FL individual nuisance
regressors (such as white matter and ventricular signal and motion parameters) such that they are regressed out of the BOLD timeseries with the
qunex preprocess_conc function. The regressors can be per-frame (as shown), per-trial, or even per-block. The GLM outputs a residual
timeseries of “denoised” resting-state data as well as one coe�cient map per nuisance regressor. The resting-state data for each subject can then be
used to calculate subject-specific feature maps, such as seed-based functional connectivity maps with qunex fc_compute_seedmaps . (B) The
GLM engine can also be used for complex modeling and analysis of task events, following a similar framework. Event modeling is specified in qunex
preprocess_conc by providing the associated event file; the method of modeling can be either assumed (using a hemodynamic response function
[HRF] of the user’s choosing, e.g. Boynton) or unassumed. Here, an example from the HCP’s Language task is shown. The two events, “Story” and
“Math,” are convolved with the Boynton HRF to build the subject-level GLM. As with the resting-state use case shown in (A), the GLM outputs the
single-subject residual timeseries (in this case “pseudo-resting state”) as well as the coe�cient maps for each regressor, here the Story and Math
tasks. (C) Connectivity maps from all subjects can then be entered into a group-level GLM analysis. In this example, the linear relationship between
connectivity from the primary somatosensory area (S1) seed and age across subjects is tested in a simple GLM design with one group and one
explanatory variable (EV) covariate, demeaned age. QuNex supports flexible group-level GLM analyses with non-parametric tests via Permutation
Analysis of Linear Models (PALM, Winkler et al., 2014), through the qunex run_palm function. The specification of the GLM and individual contrasts
is completely configurable and allows for flexible and specific hypothesis testing. Group-level outputs include full uncorrected statistical maps for
each specified contrast as well as p-value maps that can be used for thresholding. Significance for group-level statistical maps can be assessed with
the native PALM support for TFCE (Winkler et al., 2014, shown) or cluster statistics with familywise error protection (FWEP). (D) The subject-level task
coe�cient maps can then be input into the qunex run_palm command along with the group-level design matrix and contrasts. The group-level

(Continued)
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FIGURE 5 (Continued)

output maps show the di�erences in activation between the Story and Math conditions. (E) QuNex also supports multi-variate and joint inference
tests for testing hypotheses using data from multiple modalities, such as BOLD signal and dMRI. Example connectivity matrices are shown for these
two modalities, with the S1 seed highlighted. Similar to the use cases shown above, maps from all subjects can be entered into a group-level analysis
with a group-level design matrix and contrasts using the qunex run_palm command. In this example, the relationship between age and S1-seeded
functional connectivity and structural connectivity is assessed using a Hotelling’s T2 test and Fisher’s X2. The resulting output maps show the
unthresholded and thresholded (p < 0.05 FWEP, 10,000 permutations) relationship between age and both neural modalities.

For task data, QuNex facilitates the building of design matrices

at the single session-level (Figure 5B). The design matrices can

include: (i) task regressors created by convolving a hemodynamic

response function (HRF, e.g., Boynton, double Gaussian) with

event timeseries (i.e., assumed modeling, as shown here for the

Story and Math blocks of a language task; Barch et al., 2013);

(ii) separate regressors for each frame of the trial, i.e., unassumed

modeling of task response; (iii) a combination of assumed and

unassumed regressors. The events in assumed and unassumed

modeling can be individually weighted, enabling estimates of trial-

by-trial correlation with e.g., response reaction time, accuracy or

precision. The GLM engine estimates the model and outputs both

a residual time-series (“pseudo-resting state”) as well as coefficient

maps for each regressor, reflecting task activation for each of the

modeled events. After a model has been estimated, it is possible to

compute both predicted and residual timeseries with an arbitrary

combination of regressors from the estimated model (e.g., residual

that retains transient task response after removal of sustained task

response and nuisance regressors).

QuNex supports built-in interoperability
with externally-developed tools

QuNex is designed to provide interoperability between

community tools to remove barriers between different stages of

neuroimaging research. One such feature is its compatibility with

XNAT (eXtensible Neuroimaging Archive Toolkit; Marcus et al.,

2007; Herrick et al., 2016), a widely used platform for research data

transfer, archiving, and sharing (Supplementary Figure 8). This

enables researchers to seamlessly organize, process, and manage

their imaging studies in a coherent integrated environment. QuNex

also provides user-friendly interoperability with a suite of tools,

including AFNI, FSL, HCPWorkbench etc.

Another interoperabilty feature is the execution of group-level

statistical testing of neuroimaging maps, which is performed

through Permutation Analysis of Linear Models (PALM)

(Winkler et al., 2014), an externally-developed tool which

executes nonparametric permutation-based significance testing for

neuroimaging data. QuNex provides a smooth interface for multi-

level modeling via PALM. PALM itself supports volume-based

NIFTI, surface-based GIFTI, and surface-volume hybrid CIFTI

images, and allows for fully customizable statistical tests with a

host of familywise error protection and spatial statistics options.

Within QuNex, PALM is called through the qunex run_palm

command, which provides a cohesive interface for specifying

inputs, outputs, and options. The user is able to customize design

matrices and contrasts according to their need and provide these

along with QuNex-generated neural maps to assess for significance

using permutation testing and familywise error protection.

Figure 5C illustrates an example where S1-seed functional

connectivity maps for N = 339 sessions are tested at the group-

level to show a significant negative relationship with age in areas

such as the somatomotor cortices [p < 0.05, non-parametrically

tested and family-wise error protected with threshold-free cluster

enhancement (TFCE); Smith and Nichols, 2009]. As with

functional connectivity maps, task activationmaps can be tested for

significant effects in the group-level GLM with PALM (Figure 5D).

Here, a within-subject t-test of the Story > Math contrast

reveals significant areas of the language network, also shown

in Figures 4E, F. QuNex additionally supports joint inference

from combined multi-modal data via multivariate statistical tests

(e.g., MANOVAs, MANCOVAs) and non-parametric combination

tests (Winkler et al., 2016), also executed through PALM and

thus compatible with permutation testing. For example, seed-

based functional connectivity and structural connectivity of area

S1 from the same individuals can be entered into the same

test as separate modalities. The second-level GLM shown in

Figure 5E is the same one as in Figure 5B to test for age effects.

Such joint inference tests can be used to test whether there are

jointly significant differences on a set of modalities. Thus, QuNex

enables streamlined workflows for multi-modal neuroimaging

feature generation and integrated multi-variate statistical analyses.

QuNex workflows simplify neuroimaging data management and

analysis across a wide range of clinical, translational, and

basic neuroimaging studies, including studies examining the

relationship between neuroimaging features and gene expression

or symptom presentation, or pharmacological neuroimaging

studies of mechanism. Supplementary Figure 9 highlights a few

examples of recently published studies which leveraged QuNex for

preprocessing, feature generation, and analytics.

QuNex also encourages future integration of open source

community tools via the extensions framework, through which

researchers can integrate their own tools and pipelines into the

QuNex platform (Supplementary material). To continually engage

community participation in neuroimaging tool development,

QuNex provides a SDK that includes helper functions for

users to set up a development and testing environment

(Supplementary Figure 10).

Cross-species support for translational
neuroimaging

Studies of non-human species have substantially contributed

to the understanding of the central nervous system, and provided

a crucial opportunity for translational science. In particular, the
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FIGURE 6

QuNex enables neuroimaging workflows across di�erent species. (A) Structural features for exemplar macaque and human data, including surface
reconstructions and segmentation from FreeSurfer. Lower panel shows output myelin (T1w/T2w) maps. (B) Functional features for exemplar
macaque and human showing BOLD signal mapped to both volume and surface. Lower panels show and resting-state functional connectivity
seeded from the lateral geniculate nucleus of the thalamus (green arrow). (C) Di�usion features for exemplar macaque and human data, showing
whole-brain fractional anistropy, and volume and surface terminations of the left optic radiation tract. Lower panels show the structural connectivity
maps seeded from the lateral geniculate nucleus of the thalamus (green arrow). Gray scale reference bars in each panel are scaled to 25 mm.

macaque brain is phylogenetically similar to the human brain,

and comparative neuroimaging studies in macaques have served

to inform and validate human neuroimaging results. It is thus

imperative to develop and distribute tools for consistent processing

and analytics of non-human neuroimaging data for aiding

translational cross-species neuroimaging studies (de Schotten et al.,

2019; Mars et al., 2021). To this end, QuNex supports analogous

workflows for human and non-human primate neuroimaging data.

Figure 6 shows parallel steps for running HCP-style preprocessing

and generatingmulti-modal neural features in human andmacaque

data. Structural data outputs include FreeSurfer segmentation and

labeling of cortical and subcortical areas, T1w/T2w myelin maps

(Figure 6A), and structural metrics such as cortical thickness,

curvature, and subcortical volumes. Functional data outputs

include BOLD signal and metrics such as functional connectivity

(Figure 6B). Diffusion metrics include measures of microstructure

(e.g., fractional anisotropy maps), white matter tracts and their

cortical terminationmaps, and whole-brain structural connectivity,

as shown in Figure 6C. Currently, QuNex supports macaque

diffusion pipelines in the released container, with HCP macaque

functional neuroimaging pipelines (Hayashi et al., 2021) andmouse

neuroimaging pipelines (Zerbi et al., 2015) under development for

a future release. The functional macaque images shown here are

obtained from an early development version of the pipelines.

Discussion

The popularity of neuroimaging research has led to the

development and availability of many tools and pipelines, many of

which are specific to onemodality. This in turn has led to challenges

in method integration, particularly across different neuroimaging
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FIGURE 7

Features included in QuNex and comparisons to other neuroimaging software. A list of tools integrated into QuNex along with supported QuNex
functionalities. We also list functionalities and tools currently available in some popular neuroimaging pipelines/environments, including fMRIPrep
(Esteban et al., 2019), QSIPrep (Cieslak et al., 2021), HCP (Glasser et al., 2013), UK Biobank (Alfaro-Almagro et al., 2018), nipype
(Gorgolewski et al., 2016), micapipe (Cruces et al., 2022), FuNP (Park et al., 2019), NeuroDebian (Halchenko and Hanke, 2012), BrainVoyager
(Goebel, 2012), and LONI (Dinov et al., 2009).
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sub-fields. Additionally, the wide availability of different pipeline

and preprocessing/analytic choices may contribute to difficulties

with producing replicable results (Botvinik-Nezer et al., 2020).

Thus, QuNex is designed to be an integrative platform with

interoperability for externally-developed tools across multiple

neuroimaging modalities. It leverages existing state-of-the-art

neuroimaging tools and software packages, with a roadmap for

continued integration of new tools and features. Additionally,

QuNex provides features such as turnkey functionality, native

scheduler support, flexible data filtering and selection, multi-

modal integration, and cross-species support, to fully enable

neuroimaging workflows.

It should be noted that there are currently several tools

in the neuroimaging community with multi-modality support,

including (but not limited to) FSL, SPM, Freesurfer, AFNI, and

PALM. These softwares all offer preprocessing and/or analytic

capabilities for at least three different neural modalities, such

as T1w, T2w, fMRI, arterial spin labeling (ASL), dMRI, EEG,

MEG, and functional near-infrared spectroscopy (fNIRS). Rather

than reinventing the wheel, QuNex builds upon the decades of

research, optimization, and validation of these tools by using them

as basic building blocks for fundamental steps of neuroimaging

workflows, and augments their functionality and interoperability.

Other high-level environments, such as HCP MPP (Glasser

et al., 2013), UK Biobank pipelines (Alfaro-Almagro et al.,

2018), fMRIPrep (Esteban et al., 2019), QSIPrep (Cieslak et al.,

2021), micapipe (Cruces et al., 2022), nipype (Gorgolewski et al.,

2016), BrainVoyager (Goebel, 2012), FuNP (Park et al., 2019),

Clinica (Routier et al., 2021), brainlife (Avesani et al., 2019),

NeuroDebian (Halchenko and Hanke, 2012), and LONI pipelines

(Dinov et al., 2009), also leverage other neuroimaging tools as

building blocks.We emphasize that QuNex is a unifying framework

for integrating multi-modal, multi-species neuroimaging tools and

workflows, rather than a choice of preprocessing or analytic

pipeline; as such, QuNex can incorporate these options, as

evidenced by the current integration of the HCP MPP and the

planned integration of fMRIPrep. Furthermore, QuNex offers

additional user-friendly features which expand upon the existing

functionality of these tools, including flexible data filtering,

turnkey functionality, support for cloud and HPC deployment,

native scheduling and parallelization options, and collaborative

development tools. A list of the implementations for different

functionalities in QuNex, as well as comparable implementations

in other neuroimaging pipelines and environments, is shown in

Figure 7.

In addition, several commercial platforms are available for

neuroimaging data management and analytics [e.g., Flywheel

(Tapera et al., 2021), QMENTA, Nordic Tools, Ceretype], especially

for clinical applications. While these platforms offer a wide range

of neuroinformatics functionalities, they are difficult to evaluate

due to their high cost of services and proprietary content. On the

contrary, QuNex is free to use for non-commercial research, with

transparent and collaborative code and development.

The QuNex container and SDK, as well as example data

and tutorials, are available at: qunex.yale.edu. The online

documentation can be found at: http://qunex.readthedocs.io/ and

the community forum is hosted at: forum.qunex.yale.edu.

Neuroimaging is an actively advancing field and QuNex

is committed to continual development and advancement

of neuroimaging methods. Below, we list features and

existing external software which are currently under

development/integration, as well as those which are staged

for future release. As neuroimaging techniques advance and

novel tools and methods are developed and adopted, we plan to

integrate them into the QuNex platform either through internal

development or via the extensions framework.

Currently under development: Longitudinal preprocessing;

mouse neuroimaging preprocessing and analytics; EEG

preprocessing and analytics.

Staged for development: PET preprocessing and analytics; BIDS

exporter; fMRIPrep.
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