Jurnal Teknik Sipil: Vol 23, No. 1, February 2023, 86-92 Department of Civil Engineering, University of Tanjungpura. ISSN: 1412-1576 (Print), 2621-8428 (Online), Indonesia

Constructions of UNTAN

Jurnal Teknik Sipil

Journal homepage: https://jurnal.untan.ac.id/index.php/jtsuntan

Analysis of Water Demand and Availability in Wae Mese I Water Treatment Plant to Number of Customers in 2030 (Case Study: PERUMDA Air Minum Wae Mbeliling)

* Apolinaris Dasor¹, Faradlillah Saves¹

¹1Faculty of Enginering, University of 17 Agustus 1945 Surabaya, Indonesia *e-mail: dasorapolinaris@gmail.com

Abstract	Article history:					
Start with bathing, washing, and cooking, and then move from these three activities to the parts of the human body, one of which is water. The need for clean	Submitted dd-mm-year Revise on dd-mm-year Published on dd-mm-year					
water is increasing along with population growth. In this study, an analysis of the need for and availability of clean water was carried out in the service area of the Wae Mese I Water Treatment Plant (WTP), which	<i>Keyword:</i> WTP, Water, Needs, Availability, Production, Population.					
covers seven urban villages in the Kecamatan Komodo. Projected water demand is based on population growth from 2021 to 2030. Projected water availability is based on the production capacity of WTP Wae Mese I from 2021 to 2030. Based on projected water demand and availability, water balance and WTP production capacity were analyzed in 2030. Based on the analysis of the results, the population in	DOI: http://dx.doi.org/10.26418/jtsft					
2030 will reach 45715 people, and the total water demand in 2030 will be 62.06 liters/second. Meanwhile, the capacity of WTP Wae Mese I 40 liters/second has decreased to 33.81 liters/second in 2030. This results in a water deficit of 28.25 liters/second.						

1. Introduction

Water in human life has a very vital function. Human daily activities are inextricably linked to water. From bathing, washing, and cooking to the elements of the human body, one of which also consists of water. The water in question is clean and does not contain chemical elements that can harm or interfere with the function of human organs. Since clean water is a need that will always be there, meeting water needs is related to getting enough water out and meeting quality standards. It must continuously meet the community's needs within a certain period. The development of clean water infrastructure needs attention from the government, the private sector, and the community.

PERUMDA Wae Mbeliling is a business unit owned by the West Manggarai district government and responsible for meeting the clean water needs of the community, which is also a form of government service to the community. PERUMDA's natural water sources for Wae Mbeliling drinking water come from Wae Mowol, Wae Moto, Wae Mbaru, Wae Kaca, Wae Cumpe, and the surface water of the Wae Mese river. The surface water of the Wae Mese River provides raw water for Labuan Bajo, the capital city of West Manggarai Regency. Labuan Bajo is made up of seven villages in the Komodo District. The five springs serve the people of Labuan Bajo through gravity.

In order to improve clean water services, it is crucial to figure out how much clean water is needed and available. The surface water of the Wae Mese River is utilized by building the Wae Mese I Water Treatment Plant (WTP) and distributed using a pump. Wae Mese I WTP services cover the area of the Komodo subdistrict, which includes seven sub-districts. WTP production capacity was 40 liters/second, totaling 4,535 SR in 2021. Wae Mese I WTP's production capacity is insufficient for the community's water needs; it is proven that a system of distributing water twice a week is still implemented for several areas of clean water service. In the next ten years, until 2030, the number of people will grow, increasing the need for clean water. There may need to be more than the amount of clean water that is already available to meet the growing demand for it. Because of this, it is essential to look at the demand and supply of clean water for the next few years until 2030. This research gives a different way to solve the clean water problem, especially for the area served by the Wae Mese I WTP.

2. Materials and Methods

2.1. **Theoretical Frame Work**

This study aims to determine the need for water in the service area of the Wae Mese I water treatment plant from 2021-2030. Water demand increases along with population growth, so population projections are made. The Planning Criteria for the Directorate General of Human Settlements and Public Works Service, 1996, are also used to determine how much water is needed for homes and other places. Based on the results of the water demand analysis, it is known that the water treatment plant will be able to make enough water in 2030 to meet the needs of the Labuan Bajo community.

To make it easier to find out the order in which the final project work will be carried out, the author presents the work methodology in the following flowchart:

2.2. Research Location

Treatment Plan, PERUMDA Air Minum Wae Mbeliling, which includes Labuan Bajo and seven villages in the Kecamatan Komodo. The seven villages are, Macang Tanggar, Batu Cermin, Labuan Bajo, Wae Kelambu, Nggorang, Golo Bilas, and Gorontalo.

The research location in this study is an area in

Nusa Tenggara Timur Province that is included

in the service area of the Wae Mese I Water

Fig 2. Labuan Bajo Administration Map

2.3. Data

Sources of data used in this research are secondary data and primary data. The data are as follows:

a. Secondary Data

Data was obtained from institutions related to research studies, in this case namely PERUMDA Wae Mbeliling Drinking Water. The secondary data is in the form of:

- Data the on population in the service area of Wae Mese I WTP for the last 5 years, namely 2016-2020.
- Existing data for Wae Mese I WTP, in the form of water discharge data and WTP units.
- Data supporting the number of facilities in non-domestic sector, such the as educational, and health.
- office, trade, public and recreational facilities, sports, and industry.
- Image of map of the clean water service area of Wae Mese I WTP.

b. Primary Data

Data is obtained by going down directly to the location/field. The primary data needed is field survey photos, Describe the data used, and how they were obtained.

Fig 1. Research Flowchart

2.4. Analysis Method

2.4.1. Analysis of Population Growth

In this study, population growth was calculated by;

- Geometric Method

- Arithmetic method

Pn = Po(1 + rn)....(2)

- Exponential method

 $Pn = P_0 \ x \ e^{rn} \ \dots \ (3)$

Where:

- Pn : population in year n projection (people)
- Po : total population at the start of the projection
- e : 2.7182818
- r : average population increase (%)
- n : projection period (years)

The basis for selecting the population projections used is the standard deviation calculation. The standard deviation (Sd) is a statistical value that determines the data distribution in the sample and how close the individual data points are to the average sample value. The standard deviation is the smallest because a slight standard deviation means that the data from the projection is not very different from the original data (BPS, 2010).

SD = standard deviation

- Yi = population projection data
- Yn = average number of the initial population
- n = amount of data

2.4.2. Analysis of Clean Water Needs

- Domestic Water Demand

There are many different types of water use in a community, such as household, public, commercial, and industrial uses. Domestic demand includes water for drinking, cooking, washing, laundering, and other household functions (Crouch et al, 2021). The water demand analysis in this study was conducted based on the size of the city as shown in the following table;

Table 1. Clean Water Planning Criteria

		Cities Category Based on Total Population							
	Description	>1.000.000	500.000 s/d 1.000.00	100.000 s/d 500.000	20.000 s/d 100.000	< 20.000			
		Ι	п	ш	IV	IN			
1.	Consumption of house connection units (SR) (liters/person/day)	>150	150-120	90-120	80-120	60-80			
2. (lite	Consumption of hydrant units (HU) ers/person/day)	20-40	20-40	20-40	20-40	20-40			
3.	Non-domestic consumption								
a.	Small business (liters/units/day)	800	800		600				
b.	Big business (liters/units/day)	3000	3000		1500				
C.	Large industry (liters/second/ha)	0,2-0,8	0,2-0,8		0,2-0,8				
d.	tourism(liters/second/ha)	0,1-0,3	0,1-0,3		0,1-0,3				
4.	Water loss(%)	20-30	20-30	20-30	20-30	20-30			
5.	Maximum daily factor	1,15	1,15	1,15	1,15	1,15			
б.	peak hour factor	1,5	1,5	1,5	1,5	1,5			
7.	Number of souls per SR (soul)	5	5	5	5	5			
8.	Number of souls per HU (people)	100	100	100	100	100			
9. (me	Residual pressure in distribution supply sters)	10	10	10	10	10			
10.	Operating hours (hours)	24	24	24	24	24			
11.	Volume reservoir (% max day demand)	15-25	15-25	15-25	15-25	15-25			
12.	SR: HU	50.; 50 s/d	50 ; 50 s/d	80 : 20	70:30	70:30			
13	Service coverage(%)	90.20	90.20	90	90	70			

Source: Kriteria Perencanaan Direktorat Jenderal Cipta Karya, Dinas Pekerjaan Umum, 1996

Non-Domestic Water Demand

Based on spatial plans, non-domestic water demand is the need for clean water for regional facilities and infrastructure that are already in place or are being built. Planning a water supply system in an area depends significantly on how many people live there and how fast they are growing (Mulyadi et al, 2022).

This study calculates non-domestic water demand based on the following table;

 Table 2.
 City Non-Domestic Water Needs

 Categories I, II, III, IV

Sector	Mark	Unit
School	10	liters/person/day
Hospital	200	liters/bed/day
Public health center	2.000	Liters/unit/day
Mosque	3.000	Liters/unit/day
Office	10	Liter/employee/day
Market	12.000	Liters/hectare/day
Shop	500	Liters/unit/day
Hotel	150	liters/bed/day
Restaurant	100	Liter/seat/day
Military complex	60	liters/person/day
Industrial area	0,2-0,8	Liters/second/ha
Tourism area	0.1-0.3	Liters/second/ha

Source: Kriteria Perencanaan Direktorat Jenderal Cipta Karya, Dinas Pekerjaan Umum, 1996

2.4.3. Analysis of Discharge From WTP

It is necessary to recapitulate the water discharge from the water treatment plant for the last five years. The analysis of the discharge from the WTP is intended to estimate the amount of water discharged from the Wae Mese I Water Treatment Plant that can be distributed over the next ten years, namely 2030. A linear regression formula can predict how much water will be available in 2030 based on data from the last five years, 2016–2020.

Yn = a + (b.x)....(5)

Yn : total water debit in the nth year

a,b : costing

- x : period of time (year)
- N : amount of data
- 3. Result and Discussion

3.1. Analysis of Population Growth Result

The total number of people in the study area is the most critical factor in figuring out how much clean water they need. The population data used to calculate the average population growth is data on the population of 7 subdistricts in the Komodo sub-district, namely from 2016–2020. This population projection is planned for the next ten years, from 2021-2030.

The following is data on the population of the Komodo sub-district per village served by the Wae Mese WTP from 2016–2020.

 Table 3. Data on the population in the Komodo

 District

		Year		
2016	2017	2018	2019	2020
4196	4306	4389	4622	4906
7464	7245	6983	7166	7292
3039	3048	3016	3179	3079
1761	1845	1900	2018	2201
5652	5855	6308	6704	7676
5322	5403	5569	5712	6024
7360	7203	6848	6915	6154
34794	34905	35013	36316	37332
	2016 4196 7464 3039 1761 5652 5322 7360 34794	2016 2017 4196 4306 7464 7245 3039 3048 1761 1845 5652 5855 5322 5403 7360 7203 34794 34905	Year 2016 2017 2018 4196 4306 4389 7464 7245 6983 3039 3048 3016 1761 1845 1900 5652 5855 6308 5322 5403 5569 7360 7203 6848 34794 34905 35013	Year 2016 2017 2018 2019 4196 4306 4389 4622 7464 7245 6983 7166 3039 3048 3016 3179 1761 1845 1900 2018 5652 5855 6308 6704 5322 5403 5569 5712 7360 7203 6848 6915 34794 34905 35013 36316

Source: Kecamatan Komodo Dalam Angka 2017 – 2021

The annual population growth rate is then calculated to obtain the average population growth. An example of calculating the population growth rate for the Kecamatan Golo Bilas:

$$r_n = \frac{P_n - P_o}{P_o} x \ 100 \ \%$$
(6)

r_n : growth rate

P_n : population in year n

Po : total population in the initial year

$$r_{2017} = \frac{P_{2017} - P_{2016}}{P_{2016}} \ x \ 100 = \ 2,62 \ \%$$

The following is a recapitulation of the population growth rate for each village.

Table 4. The results of the population growth
rate calculation in Kecamatan
Komodo

				Year		
Village	2016	2017	2018	2019	2020	Average (%)
Golo Bilas		2,62	1,93	5,31	6,14	4,00
Gorontalo	-	-2,93	-3,62	2,62	1,76	-0,54
Macang Tanggar	-	0,30	-1,05	5,40	-3,15	0,38
Nggorang	-	4,77	2,98	6,21	9,07	5,76
Wae Kelambu	-	3,59	7,74	6,28	14,50	8,03
Batu Cermin	-	1,52	3,07	2,57	5,46	3,16
Labuan Bajo	-	-2,13	-4,93	0,98	-11,01	-4,27

The growth rate of the population is shown in Table 4. To predict the composition of the population, geometric, arithmetic, and exponential methods are used. The standard deviation for the arithmetic method is the lowest of the three ways to figure out population projections, so the population forecasting for the planning year (2021–2030) uses the arithmetic method.

An example of calculating the population forecasting for the Kecamatan Golo Bilas:

 $P_n = P_{2020}(1 + (4\% x(Year_n - 2020)))$

 $P_{10(2030)} = 4906 (1 + 4\% x 10) = 6869$ people.

In the same way, calculations were made for each of the areas analyzed, the results of which are shown below;

Table 5. Recapitulation of the results of the
population forecast for 2021-2030 in
each region under review

Village	Year									
	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Golo Bilas	5102	5299	5495	5691	5887	6084	6280	6476	6672	6869
Gorontalo	7252	7213	7173	7134	7094	7054	7015	6975	6936	6896
Macang Tanggar	3091	3102	3114	3125	3137	3149	3160	3172	3183	3195
Nggorang	2328	2454	2581	2708	2835	2961	3088	3215	3342	3468
Wae Kelambu	8292	8908	9524	10140	10756	11373	11989	12605	13221	13837
Batu Cermin	6214	6404	6594	6784	6975	7165	7355	7545	7735	7925
Labuan Bajo	5891	5628	5365	5102	4839	4577	4314	4051	3788	3525
Total	38170	39009	39847	40685	41524	42362	43200	44038	44877	45715

3.2. Analysis of Clean Water Needs Results

This study looks at the demand for clean water based on the standards set by Kriteria Perencanaan Direktorat Jenderal Cipta Karya, Dinas Pekerjaan Umum, 1996. Analysis of clean water demand is carried out for domestic clean water needs and non-domestic clean water needs.

3.2.1. Results of domestic water demand analysis

The domestic water demand analyzed in this study includes house connections (SR) and public hydrants (HU).

Based on Table 1 regarding clean water planning criteria, Kecamatan Komodo is categorized as a small town (IV) with a population between 20,000 - 100,000 people; the results are as follows;

 Table 6. Results of Domestic Water Demand Analysis 2021-2030

No	Year	Total Population	S Co	Service Coverage		ice SR age		HU
			%	% People		People	%	People
[a]	[b]	[c]	[d]	[e]	[f]	[g]	[h]	[i]
1	2021	38170	90	34353	70	24047	30	10306
2	2022	39009	90	35108	70	24575	30	10532
3	2023	39847	90	35862	70	25104	30	10759
4	2024	40685	90	36617	70	25632	30	10985
5	2025	41524	90	37371	70	26160	30	11211
6	2026	42362	90	38126	70	26688	30	11438
7	2027	43200	90	38880	70	27216	30	11664
8	2028	44038	90	39635	70	27744	30	11890
9	2029	44877	90	40389	70	28272	30	12117
10	2030	45715	90	41144	70	28801	30	12343

Furthermore, calculations were carried out to determine the total clean water demand (It/day) distributed through SR and HU using the following equation;

SR =	number of people x std.water usage $\left(\frac{llter}{person}/day\right)$
	86400 second
<u>ип</u> –	number of people x std.water usage $(\frac{llter}{person}/day)$
<i>п0</i> =	86400 second

By entering the SR value in column [g] and HU in column [i] contained in Table 6, the amount of water demand distributed through house connections and public hydrants is obtained as in the following table;

Table 7. Results of analysis of water demand
distributedhouse
house
connections 2021- 2030

No	Year	Number of Served Population (People)	Water Usage Standard (It/person's/day)	Total Water Needs (It/s)
[a]	[b]	[c]	[d]	[e]
1	2021	24047	100	27,83
2	2022	24575	100	28,44
3	2023	25104	100	29,06
4	2024	25632	100	29,67
5	2025	26160	100	30,28
6	2026	26688	100	30,89
7	2027	27216	100	31,50
8	2028	27744	100	32,11
9	2029	28272	100	32,72
10	2030	28801	100	33,33

Table 8. Results of analysis of water demand
distributed through public hydrants
2021- 2030

No	Year	Number of Served Population (People)	Water Usage Standard (It/person's/day)	Total Water Needs (It/s)
[a]	[b]	[c]	[d]	[e]
1	2021	10306	30	3,58
2	2022	10532	30	3,66
3	2023	10759	30	3,74
4	2024	10985	30	3,81
5	2025	11211	30	3,89
6	2026	11438	30	3,97
7	2027	11664	30	4,05
8	2028	11890	30	4,13
9	2029	12117	30	4,21
10	2030	12343	30	4,29

Tables 7 and 8 show that the required domestic water demand is 37.62 Lt/s, which is the domestic water demand in 2030.

The overall domestic water demand is as presented in the following table;

 Table 9. Results of Domestic Water Demand Analysis

	Water Demand (L/s)									
Facility	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
	Domestic									
Home Connection (SR)	27,83	28,44	29,06	29,67	30,28	30,89	31,50	32,11	32,72	33,33
Public Hydrants (HU)	3,58	3,66	3,74	3,81	3,89	3,97	4,05	4,13	4,21	4,29
Total Domestic Water Demands (L/s)	31,41	32,10	32,79	33,48	34,17	34,86	35,55	36,24	36,93	37,62

3.2.2. Results of non-domestic water demand analysis

The analysis of non-domestic water demand in this study was calculated based on the provisions in Table 2, with the following results;

 Table 10.
 Results of Non-Domestic Water

 Demand Analysis

		Water Demand (L/s)								
Facility	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
					Dom	estic				
Health	0,76	0,76	0,76	0,76	0,76	1,13	1,13	1,13	1,13	1,13
Education	1,74	1,78	1,82	1,85	1,89	1,93	1,97	2,01	2,04	2,08
Worship	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36
Hotel	3,22	3,51	3,80	4,09	4,37	4,37	4,95	5,24	5,52	5,81
Trade	1,17	1,20	1,22	1,24	1,27	1,27	1,31	1,34	1,36	1,38
Office	0,145	0,153	0,161	0,168	0,176	0,184	0,191	0,199	0,206	0,214
Airport and seaport	1,45	1,64	1,82	2,01	2,19	2,18	2,56	2,75	2,94	3,12
Total Non-Domestic Water Demands (L/s)	8,85	9,40	9,94	10,48	11,02	11,42	12,47	13,03	13,56	14,09

The analysis of non-domestic water demand shows that the most significant water demand is for hotel activities, and the smallest is for offices.

From the results of the analysis, it can be seen that domestic water demand, especially for house connections, is still the largest demand compared to non-domestic water demand.

Based on the analysis results, domestic water demand is still higher than non-domestic water demand, especially for house connections. In summary and for clarity, the results can be seen in the following table.

 Table 11. Recapitulation of the results of the calculation of clean water demand at the research site

	Water Demand (L/s)									
Facility	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030
Domestic						_				
Home Connection (SR)	27,83	28,44	29,06	29,67	30,28	30,89	31,50	32,11	32,72	33,33
Public Hydrants (HU)		3,66	3,74	3,81	3,89	3,97	4,05	4,13	4,21	4,29
Total Domestic Water Demands (L/s)	31,41	32,10	32,79	33,48	34,17	34,86	35,55	36,24	36,93	37,62
	Non-Domestic									
Health	0,76	0,76	0,76	0,76	0,76	1,13	1,13	1,13	1,13	1,13
Education	1,74	1,78	1,82	1,85	1,89	1,93	1,97	2,01	2,04	2,08
Worship	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36	0,36
Hotel	3,22	3,51	3,80	4,09	4,37	4,37	4,95	5,24	5,52	5,81
Trade	1,17	1,20	1,22	1,24	1,27	1,27	1,31	1,34	1,36	1,38
Office	0,145	0,153	0,161	0,168	0,176	0,184	0,191	0,199	0,206	0,214
Airport and seaport	1,45	1,64	1,82	2,01	2,19	2,18	2,56	2,75	2,94	3,12
Total Non-Domestic Water Demands (L/s)	8,85	9,40	9,94	10,48	11,02	11,42	12,47	13,03	13,56	14,09
Total (L/s)	40,26	41,50	42,73	43,96	45,19	46,28	48,02	49,27	50,49	51,71

Also, the total water demand in the study area was determined by adding 20% to the amount of water lost, as shown in Table 1, to obtain the total water demand in the study area, which is (total domestic water demand plus total nondomestic water demand) multiplied by 20%. The amount of water used daily and the busiest times can be calculated once the total water demand has been determined. Likewise, peak hour water demand is calculated by multiplying the peak hour demand factor by the total water demand. The maximum daily factor and peak hour demand can be seen in the provisions presented in Table 1.

Table 12. Water Loss and Total Water Demandat the Study Site in 2021-2030

Year	Q Domestic and Non-Domestic (L/s)	Water Loss (L/s)	Total Water Needs (L/s)
2021	40,26	8,05	48,31
2022	41,50	8,30	49,80
2023	42,73	8,55	51,28
2024	43,96	8,79	52,75
2025	45,19	9,04	54,22
2026	46,28	9,26	55,54
2027	48,02	9,60	57,63
2028	49,27	9,85	59,12
2029	50,49	10,10	60,58
2030	51,71	10,34	62,06

Table 13.Recapitulation of Water DemandForecasting 2021-2030

Year Q Total (L/s)		Maximum daily requirement (L/s) Kolom [b] x 1,15	Peak Hour Water Requirement (L/s) Kolom [b] x 1,5		
[a]	[b]	[c]	[d]		
2021	48,31	55,55	72,46		
2022	49,80	57,27	74,71		
2023	51,28	58,97	76,92		
2024	52,75	60,66	79,13		
2025	54,22	62,36	81,34		
2026	55,54	63,87	83,31		
2027	57,63	66,27	86,44		
2028	59,12	67,99	88,68		
2029	60,58	69,67	90,87		
2030	62,06	71,37	93,09		

3.3. Analysis of Water Availability

The linear regression method was used to determine how much water was available in the Wae Mese 1 WTP based on data from the last five years (2017–2021). Forecasted water availability is until 2030, so the water balance can be calculated until 2030.

 Table 14. Calculation of Production Capacity

 Forecasting

No	Year	Х	Y	X ²	XY
		(Year to)	(Q Position)		
1	2017	0	38,6	0	0,0
2	2018	1	38,3	1	38,3
3	2019	2	37,9	4	75,8
4	2020	3	37,4	9	112,2
5	2021	4	37,2	16	148,8
n		10	189,4	30	375,1

$$a = \frac{\sum Y \cdot \sum X^2 - \sum X \cdot \sum XY}{N \cdot \sum X^2 - (\sum X)^2} = \frac{189,4 \times 30 - 10 \times 375,1}{5 \times 30 - (10)^2} = \frac{1931}{50}$$

$$b = \frac{N \cdot \sum XY - \sum X \cdot \sum Y}{N \cdot \sum X^2 - (\sum X)^2} = \frac{5 x \ 375, 1 - 10.189, 4}{5 \ x30 - (10)^2} = -0,37$$

Yn = a + (b.x)

 $Y_{2021} = 38,6 + (-0,37x (2021 - 2017)) = 37,2 \ liter/second$

 $Y_{2030} = 38,6 + (-0,37x (2030 - 2017)) = 33,81 \ liter/second$

Table 15. Water Balance Forecasts 2021-2030

Year	Q Production (Q _P) (L/s)	Q Needs (Q _κ) (L/s)	Q _P - Q _K (L/s)
[a]	[b]	[c]	[d]
2021	37,20	48,31	-11,11
2022	36,77	49,07	-12,30
2023	36,40	51,29	-14,89
2024	36,03	52,75	-16,72
2025	35,66	54,22	-18,56
2026	35,29	55,91	-20,62
2027	34,92	57,63	-22,71
2028	34,55	59,12	-24,57
2029	34,18	60,58	-26,40
2030	33,81	62,06	-28,25

Table 15 shows that the demand for clean water at the study site is higher than the amount of clean water that is currently available. To meet the clean water needs at the study site by 2030, either more clean water sources or more clean water storage capacity at the Wae Mese I Water Treatment Plant are needed.

3.4. Conclusion

From the results of the analysis that has been carried out, it can be concluded that, since 2021, the production capacity of the Wae Mese I WTP cannot meet the water needs in the service area, as can be seen from the comparison between the availability of produced water and the water demand of the population, which continues to increase until 2030. So, plans must be made to increase the amount of clean water that can be made or to build a new water treatment plant. The current service area is split into the WTP wae Mese I service area and the new WTP service area.

3.5. Acknowledgment

I am grateful to all those who have cooperated with me during this research so that the results can be published. Thanks to JTS UNTAN as a place of journal publication. Hopefully, this research journal can be helpful in other studies in the field of civil engineering. Finally, I would also like to thank the UNTAN Civil Engineering Journal Team (JTS) for publishing the results of this research so that it can be a valuable reference for developing the Wae Mese I Water Treatment Plant (WTP).

3.6. Author's Note

The authors declare that there is no conflict of interest regarding the publication of this article. Authors confirmed that the paper was free of plagiarism.

3.7. References

- BPS. (2010). Pedoman Perhitungan Proyeksi Penduduk Dan Angkatan Kerja. Jakarta: BPS.
- Crouch, M; Jacobs, H., E.; Speight, V. (2021). Defining domestic water consumption based on personal water use activities. Aqua, Water Infrastucture, Ecosystem, and Society.
- Ditjen Cipta Karya. (1996). **Proyeksi Kebutuhan Air Dan Identifikasi Pola Fluktasi Pemakaian Air**.
- Ditjen Cipta Karya. (2002). Panduan Pengembangan Air Minum.
- Cipta Karya. (1998). Juknis BPAM, DPU.
- Djoko, M. H. (2016). **Sumber Air Baku Utuk Air Minum**. Fakultar Teknik UI.
- Fitri, R. (2016). **Optimalisasi PDAM Dalam Pengelolaan Air Minum Kota Medan**. ArchuGreen, 3(5).
- Hendriyani, I. (2019). Analisa Kebutuan Air Bersih IPA PDAM Samboja Kutai Karta Negara. Media Ilmiah Teknik Sipil.
- Kusumo. B. J. (2016). Pola Konsumsi Air Untuk Kebutuhan Air Domestik Pada PDAM Di Kecamatan Manyaran Kabupaten Wonogiri. Surakarta. Universitas Muhamammadiyah Surakarta.
- Leasiwal, dkk. (2020). Tinjauan Terhadap Kapasitas Produksi Instalasi Pengolahan Air Minum (IPAM) Paca di Kecamatan Tobelo Selatan.Tekno Vol. 19/No. 77.
- Menkes. (1990). Peraturan Menteri Kesehatan No.416/Menkes/PER/IX/1990 Tentang Syarat-syarat Dan Pengawasan Kualitas Air. Jakarta: Menteri Kesehatan RI.
- Mulyadi, D; Wahyudi, S.I.; Soedarsono; Biantoro, A.,W. (2022). Prediction Analysis of Domestic and Non-Domestic Water Needs in Serang City, Banten. Resmilitaris, Vol. 12 No. 4 (2022): Vol.12 No. 4 (2022).
- Pemerintah Indonesia. (2019). Undang-Undang No.17 Tahun 2019 Tentang

Sumber Daya Air. Jakarta: Pemerintahan Pusat.

- PP No. 122. (2015). Sistem Penyediaan Air Minum.
- Prakoso, A. A. (2019). Analisis Kebutuhan Air Bersih di Kecamatan Benowo Kota Surabaya Berdasarkan Proyeksi Pertumbuhan Penduduk 2029.Surabaya. Repository UNTAG Surabaya.
- Putra, R. F. A. (2019). Analisis Debit Air Andalan PDAM Untuk Pelanggan Di Daerah Zona 5 Wilayah Surabaya Barat. Surabaya: Teknik Sipil Untag Surabaya.
- Ranzetti, S. (2015). Non-household Water Demand: The Industrial and Commercial Sectors. Global Issues in Water Policy book series (GLOB,volume 15). Understanding and Managing Urban Water in Transition pp 297–310. Springer.
- Rustam. (2020). Penglolaan Air Bersih Di PDAM Wae Mbeliling. Makassar. Universitas Muhamammadiyah Makassar
- Salim, M. A. (2019). Analisis Kebutuhan dan Ketersediaan Air Bersih (Studi kasus: Kecamatan Bekasi Utara. Jakarta: Repository UINJKT.
- Silalahi, M.D. (2002). Optimalisasi Sarana Yuridis Sebagai Upaya Menumbuhkan Masyarakat Sadar Urgensi Sumber Daya Air. Majalah Air Minum, edisi No. 97 / th. XXIII Desember 2002.