
Scene Recognition for Mobile Robots

in Plant-rich Environments

Considering Traversable Plants

(植物繁茂環境における移動ロボットのための
通過可能植物を考慮した環境認識)

January 2023

Doctor of Philosophy (Engineering)

Shigemichi Matsuzaki

松崎 成道

Toyohashi University of Technology

Abstract

Autonomous mobile robots can help human by automating laborious tasks that are
traditionally done manually. The techniques of mobile robots have been developed in
a last few decades, and have come to maturity in some environments in the recent
years. For example, service robots are commercialized and used in public places such as
restaurants and airports. Such technologies are expected to be applied to a wider variety
of fields. Agriculture is one of the fields where automation is highly demanded due to
labor shortage and aging. Forests are also a type of environment where the automation
of the tasks is expected but yet to be fully realized. Applying autonomous mobile robots
in such fields will bring about positive impact in many ways such as mitigating physically
demanding tasks, and improving productivity.

In agricultural fields and forests, there may be plants growing out to the paths.
However, majority of conventional mobile robots rely on scene recognition methods that
consider only the geometric information of the environment. Those methods, therefore,
cannot recognize paths covered by flexible plants as traversable. This problem hinders
application of mobile robots in unstructured plant-rich environments. To realize success-
ful navigation in such environments, the robots need to have an ability to distinguish
traversable plants from other obstacles.

In this thesis, we describe a framework of scene recognition for robot navigation
in plant-rich environments that explicitly considers traversable plants. The proposed
method employs a image-based deep neural network (DNN) for scene recognition. To
mitigate the need of laborious manual data annotation which is used in a usual practice
of training DNNs, we propose some methods to train the network without manual an-
notation along with the scene recognition framework. This thesis consists of three key
proposals.

First, we propose a method to train a DNN for semantic segmentation that does
not require manual annotation on target images. We work around the need for manual
annotation by utilizing multiple publicly available datasets as source datasets from which
to transfer knowledge about appearances of objects. Specifically, we exploit segmentation
models pre-trained on each source dataset to generate pseudo-labels for the target images
based on agreement of all the pre-trained models on each pixel. The proposed method
allows for effectively transferring the knowledge from multiple sources rather than relying
on a single dataset and realizes precise training of semantic segmentation model.

Second, we propose a method to estimate the traversability of plant parts covering
a path and navigating through them. We employ an image-based DNN model with two
decoder branches to estimate on each pixel the general object classes, and traversability
indicating how likely the object can be hit by the robot while moving. We train the
traversability estimation branch utilizing the robot’s traversal experience during the

i

ii

data acquisition phase, and thus the training procedure is free from manual annotation.
A real-world navigation experiment was conducted using the proposed scene recognition
method.

Third, we propose a method of online refinement of the scene recognition model to
deal with misclassification that occurs during robot operation. In our system, misclas-
sification may lead the robot to getting stuck due to the traversable plants recognized
as obstacles. Yet, misclassification is inevitable in any estimation methods. To deal
with the problem, we propose a framework that allows for refining a semantic segmen-
tation model on the fly during the robot’s operation utilizing observation of a human’s
interaction with the traversable plant parts.

The proposed framework enables robot navigation in plant-rich environments by rec-
ognizing traversability plants. It also allows for easy deployment of the mobile robots in
such environments by providing manual annotation-free training methods, and practical
online refinement of the scene recognition model to easily deal with misclassification
problem.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Limitations of the existing work . 2

1.3 Research goal . 3

1.4 Proposed framework . 3

1.5 Contributions of the thesis . 5

1.6 Thesis outline . 6

2 Literature Review 7

2.1 Scene understanding for mobile robots . 7

2.1.1 Obstacle detection and terrain analysis 7

2.1.2 Traversability estimation considering vegetation 9

2.2 Deep Neural Networks (DNNs) . 11

2.2.1 Artificial Neural Networks (ANNs) 11

2.2.2 Convolutional Neural Networks (CNNs) 12

2.2.3 DNNs for semantic segmentation 15

2.3 Machine learning with limited data . 17

2.3.1 Domain Adaptation (DA) . 17

2.3.2 Few-shot Learning (FSL) . 18

2.3.3 Positive and Unlabeled Learning (PU Learning) 19

3 Multi-source Pseudo-label Learning of Semantic Segmentation 21

3.1 Introduction . 21

3.2 Proposed Method . 22

3.2.1 Overview . 22

3.2.2 Model pre-training . 24

3.2.3 Pseudo-label generation using multiple pre-trained models 24

3.2.4 Model training on the target data 26

3.2.5 The overall algorithm . 27

3.3 Experiments . 27

3.3.1 Experimental setup . 27

3.3.2 Comparison to single-source baselines 30

3.3.3 Comparison to existing methods 32

3.3.4 Comparison of strategies to merge multi-source information 35

3.3.5 Effect of updating the pseudo-labels 35

3.3.6 Ablation on pseudo-label noise suppression strategies 36

3.3.7 Parameter sensitivity analysis . 36

iii

iv CONTENTS

3.4 Discussion and future work . 37
3.4.1 Limitations of the hard pseudo-label generation strategy 37
3.4.2 Attempts to improve the pseudo-label generation and preliminary

results . 37
3.5 Summary . 42

4 Image-Based Scene Recognition for Robot Navigation Considering
Traversable Plants 43
4.1 Introduction . 43
4.2 Proposed Method . 44

4.2.1 Traversability mask . 45
4.2.2 Network architecture . 45
4.2.3 3D semantic voxel map . 48

4.3 Experiments . 49
4.3.1 Evaluation of TEM . 49
4.3.2 Navigation in a greenhouse . 52
4.3.3 Discussion . 56

4.4 Summary . 57

5 Online Refinement of the Scene Recognition Model by Observing
Human’s Interaction with the Environment 59
5.1 Introduction . 59
5.2 Proposed Method . 60

5.2.1 Preliminary: Weight imprinting . 60
5.2.2 Problem setting . 61
5.2.3 Data collection . 61
5.2.4 Network architecture and the loss function 63
5.2.5 Online learning by the robust weight imprinting 64

5.3 Experiments . 65
5.3.1 Experimental setup . 65
5.3.2 Baselines . 65
5.3.3 Online model refinement . 65
5.3.4 Parameter evaluation . 67

5.4 Summary . 67

6 Conclusions and Discussion 69
6.1 Conclusions . 69
6.2 Proposals for a system design and applications 69

6.2.1 The proposed navigation system 70
6.2.2 Applications . 70

6.3 Limitations and future research directions 71

A Details of the network structure 73

B Analysis of the prediction distributions 75

C Policy of manual annotation on the test images 77

D Qualitative evaluation on Greenhouse B and C 79

CONTENTS v

E Details of experimental settings 81
E.1 Implementation details of the baseline methods 81

E.1.1 Description of the feature for SP-SVM 81
E.1.2 Training details of the UDA baselines 81

E.2 Results of the baseline methods . 82
E.2.1 Qualitative evaluation of the UDA methods 82
E.2.2 Effect of GAN-based image style transfer 83

Bibliography 85

Acknowledgements 99

List of Publications 101

List of Figures

1.1 Examples of plant-rich environments . 2

1.2 Overview of the proposed framework . 4

2.1 Network diagram for the ANN models . 11

2.2 Basic operations in CNN . 12

2.3 Network diagram of a residual block [81] . 14

2.4 Dilated convolution . 14

3.1 Data collection . 22

3.2 Overview of the proposed pseudo-label learning for semantic segmentation . . 23

3.3 Examples of output from each source model and resulting pseudo-label 25

3.4 Example of images of the target datasets . 29

3.5 Example of the test images . 30

3.6 Result of the adaptation on Greenhouse A . 32

3.7 Overview of the soft pseudo-label generation 39

3.8 Example of hard and soft pseudo-label . 40

3.9 Results of training with the soft pseudo-labels on TUT Campus dataset . . . 41

4.1 Overview of the proposed method . 44

4.2 Examples of traversability masks . 46

4.3 Precision-Recall curve and IoU-Recall curve of traversability estimation . . . 50

4.4 Prediction results of TEM . 51

4.5 Experiment environment . 53

4.6 Generated 3D maps during the experiment 54

4.7 Costmaps in the baseline and the proposed method 55

5.1 Misclassification in the conventional system 59

5.2 A human interacting with the plant parts . 62

5.3 The process of generating a training mask from a pair of a camera image and
an interaction mask . 63

5.4 Training mask with error due to noise in the depth sensor 64

5.5 Qualitative evaluation of the online learning 66

6.1 System diagram of the proposed navigation system 70

A.1 A detailed diagram of our architecture . 74

D.1 Result of the adaptation on Greenhouse B . 79

D.2 Result of the adaptation on Greenhouse C . 80

vi

LIST OF FIGURES vii

E.1 Result of the baseline methods . 83
E.2 Results of image style transfer by CycleGAN in MADAN 84

List of Tables

3.1 Label conversion from the source datasets to the target sets 28
3.2 Result of the adaptation in IoU . 31
3.3 Results of the baseline methods . 34
3.4 Comparison of multi-source merging strategies 35
3.5 Results of the training with and without pseudo-label update 35
3.6 Ablation on the pseudo-label noise suppression strategies 36
3.7 Results of the training with different values of threshold α 36
3.8 Comparison of training with the hard and soft pseudo-labels 41
3.9 Quantitative results on TUT Campus dataset 42

4.1 Greenhouse datasets used in the training . 49
4.2 Performance of TEM . 51
4.3 Result of the navigation experiment using move base 55

5.1 Per-class and mean IoU before and after the training 66
5.2 Recall and precision before and after the training 66
5.3 Mean IoU depending on different angular margin m 67

B.1 Prediction distribution . 76

E.1 Description of the feature for SP-SVM . 81

viii

Chapter 1

Introduction

1.1 Background

Techniques for mobile robotics have been rapidly developed in last few decades. The
theory of probabilistic robotics was established as a fundamental component to build
autonomous robots that are robust to various kinds of uncertainty in systems, environ-
ments, and observations [1]. Recently, some mobile robot systems have been commer-
cialized. An example is service robots operating in public places such as airports and
stores [2, 3]. Autonomous vehicles are also tested and even launched in public areas
[4, 5]. Those applications mainly target structured environments such as the inside of
buildings and urban areas, which are dominated by drivable ground and rigid obstacles.

Compared to the structured scenes, there are far fewer examples of real world ap-
plications of fully autonomous mobile robots in unstructured scenes. Despite the sit-
uation, there is a high demand for mobile robots in such environments. Agricultural
mobile robots are one of the examples of highly demanded robotic applications. Due to
population growth throughout the world and population aging of agricultural workers,
increasing productivity is an urgent challenge [6]. Moreover, the tasks in agriculture are
often repetitive and labor-intensive. Automating such tasks by means of robotic tech-
niques will make better and safer working environments. The robotic systems including
mobile robots are thus deemed to be an enabler of transformation of food production [6].
Japan is promoting “Smart agriculture” [7], where robotics and ICT (information and
communication technologies) are employed to various agricultural tasks such as planting,
monitoring, and harvesting crops etc.

Forests are another example of plant-rich environments. The mobile robot applica-
tions in forest environments are even fewer than the agricultural robots, as the forest
environments are more complex than an agricultural environment [8] due to grown veg-
etation on the ground, highly unstructured and steep slope terrains, etc. The tasks
of the forest robots include forest preservation and monitoring, wildfire fighting, forest
inventory, forest sensing etc. [8, 9, 10, 11]. Forest sensing is a task to measure the at-
tributes of forest trees using sensors such as LiDARs for forest management [9]. Mobile
Laser Scanning (MLS) is attracting attention for faster data acquisition than traditional
Terrestrial Laser Scanning (TLS), and better precision of scanning than Aerial Laser
Scanning (ALS). In current MLS, the robot is controlled manually. Automating the
robot navigation will be beneficial for the application.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Examples of plant-rich environments. In such environments, the traversable paths
may be covered by plant parts such as foliage and branches. They may be detected as obstacle
by conventional mobile robots with range sensors though they are flexible, and a robot can move
through them.

1.2 Limitations of the existing work

Despite the demands on mobile robots in plant-rich unstructured environments, there is
still a gap between current research work and real-world applications. Navigation in such
environments is hindered by multiple factors. One of them is presence of plant parts such
as foliage and branches growing out to the paths. Fig. 1.1 shows examples of the plant-
rich environments. Human can recognize a traversable region covered by plants and walk
through it by pushing the plants aside under such situations. Most of the conventional
mobile robots, however, are not able to deal with such plant parts because they rely
on range sensors to detect the obstacles, and thus consider only presence of objects.
It is crucial to overcome this limitation to apply mobile robot systems to unstructured
environments.

Traditionally in agricultural fields, traversable path detection relies on crop row de-
tection [12, 13, 14, 15, 16]. Those methods assume that paths are straight and open.
They thus do not consider the traversable plant parts appearing in the middle of the
paths, although Mandow et al. [17] mentioned in their work that such plant may disturb
range sensing, and specialized detection is required.

Some researchers have developed path planning and/or autonomous navigation meth-
ods in forest environments [18, 19]. However, they typically use only tree trunks as ob-
stacles, and ignore traversable plants by filtering scattered points induced by vegetation.
Such methods assume clear distinction between tree trunks and vegetation, which does
not hold in not well-maintained environments.

Recent approaches to robot navigation in unstructured environment with vegetation
prefer to train a deep neural network (DNN) using self-labeled training data to predict
future events (successful traversal or collision) given an image and a sequence of control
signals [20], or directly estimate traversability [21, 22] to output the optimal control
signals. They showed an ability to successfully navigate in some unstructured scenes
with obstacles hard to recognize with only geometric information such as tall grass.
However, they require both successful and failure examples of traversal experiences to
train the network. It limits the applicability of the methods to environments with objects
that the robot must not collide with.

1.3. RESEARCH GOAL 3

1.3 Research goal

The primary purpose of our research is to develop a scene recognition method for nav-
igation of mobile robots considering traversable plants covering their path. For this,
we claim that estimation of semantic information is necessary. Specifically, we consider
two types of information: 1. General object classes such as plants, artificial object,
and ground, and 2. Traversability indicating how likely an object can be hit by the
robot while moving. Existing traversability estimation methods only consider either
one of them. In reality, they both serve as important information to estimate object
traversability. By considering object classes, we can utilize our prior knowledge that
plants are more likely to be traversable than rigid artificial objects. However, plants also
have part that should not be hit by robots while traversing such as stems, and inflexible
branches. Here, traversability can serve as information that is more directly relevant to
the physical property of the objects allowing robots to traverse through. Traversability
estimation can, however, have some misclassifications which may lead to fatal problems
such as crushing into obstacles. In such case, object class information can refine the
estimation by the prior knowledge about the objects. Those two types of information
are thus complementary to each other.

In addition, we also claim that the training method of the scene recognition should
be as easy as possible. Data-driven estimation methods such as deep neural networks
(DNNs) have two problems. First, they usually require a large amount of data, which
are hard to acquire manually. Second, the performance of a model that is trained on
a specific environment usually degrades on different environments due to gaps of data
distributions between the environments, which stems from difference in appearance in
image data, for example. Due to the second problem, a model should be trained on a
dedicated dataset of the target environment for practical use. However, the first problem
hinders specialized model training on the target dataset. Considering deployment of the
robotic system to end-users, the system should not involve such a cumbersome training
process. To deal with the problem, we also develop a method for scene recognition model
training that does not require manual labeling. It allows for easily adapting the model
to new environments.

To sum up, our goal is to develop a scene recognition method to recognize traversable
plants for mobile robot navigation in plant-rich environments, and its training method
that does not require manual annotation for easy deployment.

1.4 Proposed framework

To achieve our goal, we propose a framework of scene recognition considering semantic
information of the objects, as well as geometric information. Fig. 1.2 outlines the
proposed framework. There are three phases in the system, namely data collection,
model training, and robot operation phases.

In the data collection phase, a robot with an RGB-D sensor is manually controlled
in the target environment while taking a sequence of RGB-D data and optionally the
robot’s wheel odometry, so that 3D map can be built in the following data labeling on
traversable regions in images. During the data collection, the human operator make the
robot traverse through traversable plant parts. The information of the traversals are

4 CHAPTER 1. INTRODUCTION

Segmentation

encoder

S
e

g
m

e
n

ta
ti

o
n

d
e

c
o

d
e

r
T
ra

v
e

rs
a

b
il
it

y

d
e

c
o

d
e

r

Features

1. Data collection

Human operator

Navigation (Chapter 4) Online refinement (Chapter 5)

Robot with

RGB-D sensor

Traversing through the plant parts

Unlabeled data sequence

Stuck

Resume

Interacted

regions

Manual

control

RGB Depth

2. Model training

3. Robot operation

Chapter 3

Chapter 4

Figure 1.2: Overview of the proposed framework. It consists of three phases. 1. Data collection
phase: a robot is controlled by a human operator and moves through the target environment
while collecting RGB-D data. 2. Model training phase: a DNN model is trained using the
data taken in the data collection phase. To mitigate the necessity of manual annotation, we
incorporate publicly available datasets and the robot’s experience of traversals during the data
collection phase. 3. Robot operation phase: The robot autonomously moves using the trained
scene recognition model. In case of getting stuck due to misclassification, the model is refined
online by observing interaction of a human operator with the environment.

1.5. CONTRIBUTIONS OF THE THESIS 5

then utilized to generate label images indicating regions that the robot has traversed,
coined traversability masks.

In the model training phase, a DNN-based scene recognition model is trained using
the data taken in the data collection phase. Specifically, we propose a DNN model
with two decoder branches sharing an encoder, one for semantic segmentation with
general object classes coined Semantic Segmentation Module (SSM), and another for
class-agnostic traversability estimation coined Traversability Estimation Module (TEM).
We train the whole model without any manual annotation on the target images. The
SSM is trained utilizing multiple publicly available datasets as source datasets. The
TEM is trained utilizing the traversability masks.

Finally, in the robot operation, the trained model is used for scene recognition.
The recognized object classes and traversability are projected to the 3D space by the
depth information, and 3D voxel map with the semantic information is built. The robot
navigate through the traversable plants by treating as free spaces the voxels with plant
class and traversability greater than a certain threshold.

During the robot operation, the robot may get stuck due to misclassification of
traversable objects. To refine the misclassification, we introduce an online model refine-
ment method so that the robot will correctly classify previously misclassified regions and
successfully navigate through them. Specifically, we propose a data acquisition method
by observing human interacting with regions that the robot should recognize as plants,
and few-shot learning-based model refinement using the data.

1.5 Contributions of the thesis

The main contributions of the thesis are as follows:

1. A novel scene recognition framework for navigation in plant-rich envi-
ronments

We propose a framework that employs a deep neural network (DNN) for image-
based semantic segmentation on general object classes, and pixel-wise estimation
of traversability. Navigation through the traversable plants is realized by treating
as free spaces the regions that are classified as plant and traversable by the model.

2. Manual annotation-free training of the scene recognition model

We propose methods to train the DNN-based scene recognition model without any
manual annotation on the target dataset.

a) For the training of semantic segmentation, we utilize publicly available image
datasets. We propose a method to effectively transfer knowledge from those
source datasets to the target dataset without manually annotated labels.

b) The traversability estimation is trained using the robot’s experience of traver-
sals. While recent existing methods [20, 21, 22, 23] require negative experience
of navigation, which can be dangerous to acquire, we train the traversability
estimation model only with positive traversability labels using Positive and
Unlabeled (PU) learning framework [24].

6 CHAPTER 1. INTRODUCTION

c) We propose a method to refine the model on the fly during the robot’s oper-
ation utilizing observation of a human’s interaction with the environment to
deal with misclassification.

1.6 Thesis outline

The remainder of this thesis is as follows. In Chapter 2, we review the literature of the
related work. Chapter 3 describes a method to train a semantic segmentation model
utilizing publicly available datasets with full pixel-wise labels which are not relevant to
the target environments. Chapter 4 describes a method of scene recognition considering
both general object classes and class agnostic traversability, and its manual annotation-
free training. Chapter 5 describes a method of online refinement of the scene recognition
model utilizing label data collected by observing a human’s interaction with the envi-
ronment. Finally, we conclude the thesis and discuss a future direction of the research
in Chapter 6.

Chapter 2

Literature Review

2.1 Scene understanding for mobile robots

2.1.1 Obstacle detection and terrain analysis

In structured environments, the structure around the robot is measured by sensors such
as sonar sensors, laser range finders, stereo cameras and so on [25, 26, 27]. Those methods
assume only rigid obstacles in the environments, which is a reasonable assumption in
structural environments such as indoor scenes.

In unstructured environments, however, there exist much more variety of obstacles
including tall vegetation, slippery terrains such as sand and snow, negative obstacles like
steps and ditches, and so on. It is difficult for the geometry-based obstacle detection to
deal with those types of obstacles and terrains. To estimate the complex traversability
information of the scenes, various types of sensors are used such as exteroceptive sensors
to measure the state of the external world like a camera and a LiDAR, and proprioceptive
exteroceptive sensors to measure the state of the robot itself like a vibration sensor and
an inertial sensor [28].

Geometry-based terrain analysis

In geometry-based traversability estimation methods, a robot estimates obstacles, terrain
elevation, slopes, and roughness.

Obstacles are classified into positive and negative ones. The former means obstacles
above the ground, and the latter indicates terrestrial spots below the ground that hinder
robots’ navigation such as ditches and cliffs [28].

In earlier work of obstacle detection simply set criteria of the height and size to
distinguish obstacles from the ground plane [29]. Nordin et al. [30] proposed a method to
build traversability map using 2D LiDARs and conducted robot navigation in a forested
environment with relatively flat terrain.

Santamaria-Navarro et al. [31] employed a 3D LiDAR for terrain classification con-
sidering positive and negative obstacles, and roughness of the terrain. Suger et al. [32]
also used a 3D LiDAR to extract structural features. For classification, they compared
Naive Bayes and PU learning by Elkan and Noto [24]. Frey et al. [33] utilized a DNN
to estimate traversability on a 3D voxel map with traing data automatically collected in
a simulator.

7

8 CHAPTER 2. LITERATURE REVIEW

Vision-based terrain analysis

As visual information has rich information about the object texture and semantics,
cameras are often used in traversability estimation. Kim et al. [34] proposed a machine
learning-based traversability classification on superpixels using hand-crafted features
using color and texture information. Hadsell et al. [35] used a pre-trained Deep belief
network (DBN) [36] for estimating traversability from an image. Khan et al. [37]
proposed a terrain classification method based on multiple texture features and random
forest (RF) classifier [38]. Lee et al. [39] applied Bayesian clustering-based classification
on color and texture features per superpixel.

Recent progress of semantic segmentation techniques driven by DNNs has enabled
fine-grained terrain classification on each image pixel. Chavez-Garcia et al. [40] em-
ployed an image-based CNN to estimate traversability in pixel-wise binary classification.
Matunara et al. [41] proposed a semantic segmentation-based terrain classification for
estimating preferable regions for driving. Suryamurthy [42] employed DNN on RGB im-
ages for terrain segmentation as well as roughness estimation. Guan et al. [43] proposed
a terrain classification method based on semantic segmentation by DNN for controlling
an excavator.

Proprioceptive terrain analysis

Brooks et al. [44] proposed a terrain analysis method using a vibration sensor. Sebastian
et al. [45] proposed a unique method to classify the terrain type based on the state
transition information coupled with a support vector machine (SVM). This method uses
only global positioning and a wheel encoder to estimate odometry, and do not require
any further dedicated external sensors. Haddeler et al. [46] proposed a method to
build a traversability map by estimating collapsibility metric, which is the risk of terrain
collapsing when the robot steps over it, with a tactile sensor.

Terrain analysis using sensors of multiple modalities

Using sensors with multiple modalities provides richer information about terrain charac-
teristics. Rasmussen [47] proposed a method to traversable road regions using structural
and color features and a neural network. Kelly et al. [48] employed a terrain classification
using two separated terrain classifier trained with geometric features and multi-spectral
images, respectively. Kim et al. [23] used appearance and geometric features acquired
by a stereo camera for traversability classification. Happold et al. [49] trained a neural
network on geometric features, and propagate the estimated traversability to further re-
gions using a camera image. Sock et al. [50] proposed a method to build a probabilistic
traversability map by fusing classification results from image-based and LiDAR-based
traversability classifiers.

Miki et al. [51] recently proposed a method for control a legged robot adaptively to
varying terrain features by integrating 3D LiDAR-based terrain analysis and proprio-
ceptive observations such as body orientation, body velocity etc.

Self-supervised learning for terrain analysis

Self-supervised learning in this context means a type of methods where the system is
able to collect labels for training an estimation model by itself, and does not involve

2.1. SCENE UNDERSTANDING FOR MOBILE ROBOTS 9

human in data annotation.
Especially in the 2000s, many studies have adopted an approach called near-to-far

learning, which uses a reliable sensor readings in a limited scope for automatic labeling,
and propagate the learned information to a wider range. The approach is effective to
broaden the range of perception beyond that of range sensors such as stereo cameras
and LiDARs. In near-to-far learning, various combinations of sensors are used, such as
from a LiDAR or a stereo camera to RGB camera [49, 52, 53], from RGB camera (near
range) to RGB camera (far range), proprioceptive sensors to exteroceptive sensors, and
hybrid use of multiple sensors for labeling [54].

Lieb et al. [55] proposed a method of segmenting the traversable road region in a
self-supervised manner, under an assumption that the terrain in front of the vehicle is
traversable. Wellhausen et al. [56] proposed to automatically label images utilizing the
footprints of legged robots. To automatically determine the class of the terrain, they
use signals from a force-torque sensor. Some studies such as Onozuka et al. [57] and
Matsuzaki et al. [58] train a recognition model for traversable area segmentation using
a limited amount of self-labeled data. Schmid et al. [59] proposed a similar method as
[57] which uses projections of the vehicle trajectory on images as labels of traversable
regions.

2.1.2 Traversability estimation considering vegetation

In unstructured scenes, deformable vegetation can obstruct robot navigation [28]. Such
vegetation can be traversed by the robots, but is hard to distinguish by geometric infor-
mation. Foroutan et al. [60] investigated the influence of vegetation density on obstacle
detection in the context of off-road vehicle navigation.

Some studies attempted to detect vegetation using a LiDAR sensor [61, 62]. Macedo
et al. [61] statistically analyzed 2D LiDAR scans to distinguish vegetation and solid
obstacles. Hebert et al. [62] proposed a classification method based on local shape
features. Lalonde et al. [63] used 3D LiDAR to classify natural terrains into three
classes, namely surfaces, linear structures, and porous volumes (foliage, grass). Wurm et
al. [64] proposed vegetation classification based on the remission values of a laser sensor.
Bradley et al. [65] used a multi-spectral camera to distinguish vegetation from other
types of objects. Bradley et al. [66] also proposed vegetation detection by measuring
chlorophyll content using a near-infrared (NIR) sensor.

Some studies estimate terrain elevation under occlusion by vegetation cover. Welling-
ton et al. [67] proposed a method to adaptively predict the ground height in rough-terrain
with vegetation. They used multiple sensors such as a stereo camera, an NIR camera,
and two LiDARs to online learn the mapping from the sensor readings to the ground
surface through experience.

Kim et al. [23] proposed scene recognition for mobile robots that considers traversable
plants using visual and geometric information. In [23], a feature on an image patch is
formed by color, texture, and structural information taken from a stereo camera. At the
same time, the image patches are automatically labeled through the robot’s experience
of success or failure of navigation. The pairs of a feature and a label associated with the
image patches are then used to train a classifier online. Sivakumar et al. [68] proposed a
monocular camera-based visual navigation method for agricultural mobile robots. This
method employs a convolutional neural network (CNN) to estimate the state of the robot
relative to the crop rows, and navigate a robot by Model Predictive Control (MPC).

10 CHAPTER 2. LITERATURE REVIEW

Kahn et al. [20] introduced a DNN model that takes sequence of images and action
commands to predict future events (successful navigation or collision). Polevoy et al.
[22] employed a similar model, but directory estimated terrain traversability. Gasparino
et al. [21] proposed a method to estimate a robot’s waypoints considering traversability
induced by deformable vegetation, snow, sand, etc. In [21], images are self-labeled
based on a pre-defined kinodynamic model of the robot. Baquero Velasquez et al. [69]
proposed LiDAR-based crop row detection and robot state estimation targeting highly
unstructured agricultural fields where the paths are partially covered by plant parts.

As in the aforementioned terrain analysis methods, self-supervised learning based
on a robot’s experience is also popular among traversability estimation considering de-
formable plants and other complex terrains [20, 21, 22, 23], as it allows them for easier
data collection without tedious manual annotation. Moreover, since it is based on ac-
tual experience of success or failure of traversals, it does not require heuristic criteria on
traversability. For its efficiency and effectiveness in data collection, Self-supervised learn-
ing is considered to be one of the most promising approaches to traversability estimation
[70].

Limitations of current plant-induced traversability estimation

Some earlier attempts to detect vegetation [61, 62] use structural features from 2D
LiDAR sensors. These methods consider vegetation on the ground surface growing
vertically. In contrast, our work aims at recognition of plants that could be hanging over
the path, or growing from the side of the paths, which can appear in some greenhouses
and forest paths. Wurm et al. [64] used characteristics of laser reflection to distinguish
vegetation from flat terrains. Some work use color information to detect vegetation
[65, 66]. We argue that such detection is insufficient for scene recognition considering
traversable plants, since plants have both traversable parts such as foliage and thin
branches, and non-traversable parts such as stems and thick branches.

Kim et al. [23] proposed a pioneering work that explicitly recognizes object traversabil-
ity. This method classifies image grids with a fixed size, and thus precise recognition is
not possible. Moreover, the classification is based on a naive clustering-based method
with hand-crafted features. In our method, we employ a DNN model for pixel-wise es-
timation of object classes and traversability for more precise recognition of traversable
plants.

In the method by Kahn et al. [20], data are collected through a robot’s autonomous
operation and involves failures such as falling to ditches and crashing into obstacles.
The methods by Polevoy et al. [22] and Gasparino et al. [21] require GNSS for robot
state estimation in data collection and self-labeling. This limits the application of the
method to open fields without obstacles that cause the multipath effect. In addition,
[22] and [21] estimates only traversability on image pixels. We argue that object class
information also plays an important role in traversability estimation. In fact, in Chapter
4, we show that jointly estimating object class and traversability can improve the accu-
racy of traversability estimation. Moreover, the aforementioned methods require both
positive and negative experience of navigation to get binary labels to train an estimation
model. Negative experience such as bumping into obstacles is hard and dangerous to
get. In Chapter 4, we seek a possibility of learning the traversability with only positive
experience employing Positive and Unlabeled learning (see Sec. 2.3.3).

2.2. DEEP NEURAL NETWORKS (DNNS) 11

(a) Perceptron (b) A multi-layer perceptron (MLP)

Figure 2.1: Network diagram for the ANN models

2.2 Deep Neural Networks (DNNs)

In a last decade, DNN techniques have brought technical breakthroughs in a broad
range of research fields including computer vision, natural language processing, etc. We
employ a DNN on RGB images to estimate object classes and traversability throughout
the present work. In this section, we briefly review key techniques of DNN that are
relevant to our methods.

2.2.1 Artificial Neural Networks (ANNs)

An ANN is a mathematical model of nonlinear function inspired from the network of
neurons in mammalian brains [71]. It consists of interconnected unit neuron models
shown in Figure 2.1(a). A neuron takes multiple inputs and calculates a weighted sum
of the inputs, and finally apply a nonlinear activation function to yield a single out-
put. Formally, given an M -dimensional input vector x = {xi}

M
i=1, the neuron model is

formulated as follows:

y (x) = f

(

M
∑

i=1

wixi + w0

)

(2.1)

where wi denotes a weight corresponding to xi, w0 denotes a bias, respectively. The
model is called the Perceptron [72] f (·) denotes a nonlinear activation function. Origi-
nally, f(·) is given in the form of step function

f (a) =

{

+1, a ≥ 0

−1, a < 0.
(2.2)

A single perceptron is only applicable to cases where positive and negative data are
linearly separable.

By stacking the perceptrons, a multi-layer perceptron (MLP) is built. Here, we
consider an MLP with one hidden layer as shown in Fig. 2.1(b). From D input variables
x1, · · · , xD, M linear combinations are constructed as follows [73]:

aj =

D
∑

i=1

w
(1)
ji xi + w

(1)
j0 , (2.3)

12 CHAPTER 2. LITERATURE REVIEW

0 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 1 0

0 1 1 0 0 0

0 0 1 0 0 0

0 0 0 0 0 0

1 0 2 0

1 3 1 2

3 1 3 0

1 2 1 0

1 0 1

0 1 0

1 0 1

Stride = 1

*
K

I

S

3 2

3 3Convolution Max pooling

Padding = 1

Figure 2.2: Basic operations in CNN. This example shows operations when stride=1, padding=1,
and using max pooling with the receptive field of 2× 2.

where j = 1, · · · ,M , and wji indicates a weight on i-th input element to calculate j-th
linear combination. The value aj is transformed through a nonlinear function h (·):

zj = h (aj) . (2.4)

These values are then linearly combined to give output values:

ak =

M
∑

j=1

w
(2)
kj zj + w

(2)
k0 , (2.5)

where k = 1, · · · ,K, and K denotes the number of outputs. The output values are
then activated by a nonlinear function σ (·). The choice of σ (·) depends on the assumed
distribution of target values.

Overall, the network function can be written as follows:

yk(x,w) = σ

M
∑

j=1

w
(2)
kj h

(

D
∑

i=1

w
(1)
ji xi + w

(1)
j0

)

+ w
(2)
k0

 , (2.6)

where x denotes a vector of the group of all weight and bias parameters.

2.2.2 Convolutional Neural Networks (CNNs)

CNN is a specialized type of neural network that uses convolution operation with grid-
like kernels [74]. It played a significant role in the drastic improvement in computer
vision tasks in the last decade.

Basic operations in CNN

The overview of the operations in CNN is shown in Fig. 2.2.
Convolution Suppose we have two-dimensional input I ∈ R

Hi×Wi , and a two-
dimensional kernel K ∈ R

Hf×Wf . The convolution operation defined between the input
I and the kernel K is as follows:

S(i, j) = (K ∗ I)(i, j) =

Hf
∑

m=0

Wf
∑

n=0

I(i+m, j + n)K(m,n), (2.7)

2.2. DEEP NEURAL NETWORKS (DNNS) 13

where i and j denotes the indices of a pixel in the row and the column axes, and m and
n denotes the indices of the kernel in the row and the column axes, respectively.

Unlike MLPs where a neuron is densely connected with all downstream neurons,
CNN has sparse connections where each neuron is connected to only a limited number of
next neurons. It contributes to drastically reducing the number of learnable parameters
compared to MLPs and thus reduces the model complexity. In addition, convolution
also enables parameter sharing, that is, the same parameter is applied to for more than
one input values. In contrast, in MLPs, one parameter is assigned to an input value
and never reused elsewhere. It reduces the memory requirement to store the model [74].
Moreover, the shared weights allow for extracting local features with the same filters
over a feature map. Therefore, a convolution kernel can be interpreted as a learnable
image filter. This characteristic is suitable for tasks using images.

Pooling Pooling is an operation to summarize values in a specific local receptive field.
At the same time, the pooling operation downsamples the input feature map. Among
several types of pooling, the most used ones are max pooling and average pooling. Max
pooling returns the maximum value, and average pooling returns the mean value of the
values within the receptive field.

Padding When convolution is applied to the input with the original resolution, the
size is reduced after the operation. To maintain the output size, we often append pixels
with an arbitrary value around the input. Most general way is zero-padding which sets
the values of padded pixels to 0.

History of CNNs

In 1980, Fukushima [75] proposed Neocognitron, which is today considered as the original
deep CNN architecture. The design of Neocognitron was inspired by the structure of
mammalian visual system. It consists of two different cell models, namely S-cell and
C-cell, stacked alternately. The former takes inputs in a fixed size of receptive field from
the previous layer, calculates the weighted sum of them, and outputs a value activated
by a nonlinear function that is now called ReLU. The latter takes inputs from a group
of S-cells, and responds strongly when at least one of the S-cells yields a large value
of input. They are equivalent to convolution and pooling operation used in today’s
CNNs, respectively. After a decade, LeCun et al. [76] proposed a convolutional network
with gradient-based training for a handwritten zip code recognition task. LeCun et al.
also proposed an architecture called LeNet [77] for document recognition. In the 2010s,
CNN-based methods such as AlexNet [78], GoogLeNet [79], VGGNet [80], and ResNet
[81] have brought breakthroughs in ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) [82].

ResNet [81] is one of the most influential techniques in the deep learning research. In
very deep neural networks, vanishing gradient is a critical problem, where error gradient
diminishes during propagation to lower layers as the depth of the network becomes
deeper. This problem hindered development of deeper networks, although it was known
that making deeper networks improve the performance. To resolve this problem, ResNet
introduced residual blocks with a skip connection from the input to the output to improve
error propagation and thus enabled to build deeper networks. ResNet consists of multiple
residual blocks stacked together. The visual illustration of a residual block is shown in
Fig. 2.3. There are two types of residual blocks: regular and bottleneck, shown in
Fig. 2.3(a) and 2.3(b), respectively. The regular residual block maintains the channel

14 CHAPTER 2. LITERATURE REVIEW

3x3, 64

3x3, 64

Channel size = 64

ReLU

ReLU

(a) Regular residual block

1x1, 64

1x1, 256

Channel size = 256

ReLU

3x3, 64
ReLU

ReLU

(b) Bottleneck residual block

Figure 2.3: Network diagram of a residual block [81]

(a) l = 1 (b) l = 2 (c) l = 3

Figure 2.4: Dilated convolution with 3× 3 kernel and different dilation rate l

size during the convolutions. The bottleneck one first reduces the number of channels
by 1 × 1 convolution, applies 3 × 3 convolution, and expand the channels back to the
original size by 1× 1 convolution. The bottleneck block is used to reduce the number of
computations.

Types of convolution operations

Various types of convolution have been proposed to improve the network’s expressive
power and/or computational efficiency.

Dilated convolution or atrous convolution [83, 84] is used to aggregate multi-
scale contextual information without losing resolution of the feature maps. In dilated
convolution, given a parameter called the dilation rate l, l−1 spaces are inserted between
kernel elements. The concept of dilated convolution is shown in Fig. 2.4.

Depthwise separable convolution [85] was proposed as a building block of Mo-
bileNet, an efficient CNN model intended for mobile and embedded vision applications.
The depthwise separable convolution factorize a standard DK ×DK ×C convolution on
a feature map with the chanel size C into a composition of depthwise (i.e., per-channel)
DK ×DK × 1 convolution and a pointwise 1× 1×C convolution. Such factorization can

reduce computation by
(

1
N

+ 1
D2

K

)

, where N denotes the number of output channels.

2.2. DEEP NEURAL NETWORKS (DNNS) 15

Factorized convolution [86, 87], similarly to the depthwise separable convolution,
factorizes a standard DK × DK convolution into a DK × 1 convolution and a 1 × DK

convolution. This factorization reduces the required parameters with insignificant per-
formance degradation.

Group convolution divides a convolution layer into G groups of small filters along
the channel axis. Group convolution was first applied to AlexNet [78, 88] to distribute
training in multiple GPUs. Xie et al. [89] then applied group convolution in their model
ResNeXt and showed that it does not only reduce the parameters but also improve the
accuracy.

2.2.3 DNNs for semantic segmentation

Semantic segmentation is a task to predict an object class on each pixel of an image.
It is one of the most important tasks in the field of computer vision and its application
includes scene recognition for the navigation of self-driving cars and autonomous mobile
robots.

Types of architecture

Long et al. [90] proposed the idea of converting classification networks into a fully
convolutional network to produce a probability map for the input of arbitrary size.
Most of the semantic segmentation models have been developed based on it [91, 92].
Ronneberger et al. [92] proposed the UNet architecture. It consists of symmetric encoder
and decoder, and

Many recent high accuracy models use ResNet proposed by He et al. [81] as a back-
bone network to build very deep networks. Chen et al. [84] proposed DeepLab network
where atrous convolution is used to enlarge the receptive field while maintaining the res-
olution of the feature maps. Atrous Spatial Pyramid Pooling (ASPP) used in DeepLab
applies atrous convolution with multiple dilation rate to extract multi-scale features.
Variants of DeepLab have then been developed [93, 94]. Zhao et al. [95] proposed Pyra-
mid Scene Parsing Network (PSPNet). PSPNet shares a similar idea with [84] to ag-
gregate multi-scale information, but uses multi-scale pooling operations instead. HRNet
[96, 97] extract features in multiple resolutions in parallel while exchanging the infor-
mation among the resolutions. It showed superior performance to the DeepLab family
and PSPNet, which had been considered as de facto standards of semantic segmentation
networks.

While it is proven to be effective to stack many layers to get a high accuracy, the
performance comes at the high computational cost. To tackle this problem, compu-
tationally efficient models have also been studied, targeting the applications such as
robotics and autonomous driving cars where real time recognition is required for the
operation. Badrinarayanan et al. [91] proposed SegNet, which is one of the earliest
semantic segmentation model with an encoder-decoder architecture. Based on a similar
encoder-decoder structure, Paszke et al. [98] proposed ENet. ENet significantly reduces
required operations and memory consumption by aggressively downsampling the input
image in earlier stages, and employing a decoder smaller than the encoder. Although
ENet is still one of the fastest model today, it largely sacrifices preciseness of segmenta-
tion results. ERFNet by Romera et al. [99] adopted replaced convolution operations in
ResNet [81] with factorized convolution [86, 87] to explore a good trade-off between effi-

16 CHAPTER 2. LITERATURE REVIEW

ciency and cost. ESPNet [100] and ESPNetv2 [101] proposed by Mehta et al. employ an
efficient spatial pyramid (ESP) modules to enlarge the receptive field while maintaining
computational efficiency.

Applications

Image segmentation techniques have been applied in various fields. The aforementioned
efficient models for semantic segmentation [91, 98, 99, 100, 101] are mainly intended for
scene recognition of autonomous vehicles.

Some studies applied semantic segmentation in navigation tasks of mobile robots.
Lulio et al. [102] proposed an image segmentation method for robot navigation in or-
chards with a combination of color-based region segmentation and an artificial neural
network. Sharifi et al. [103], Aghi et al. [104], and Lin et al. [105] proposed DNN-based
segmentation methods for the purpose of robot navigation.

Metrics

There are some metrics to evaluate the result of semantic segmentation. The most often
used one is intersection over union (IoU), which compares the similarity between two
arbitrary shapes [106]. Let the number of true positive, false positive, true negative, and
false negative predictions as TP , FP , TN , and FN , respectively. IoU on the predictions
is then calculated as follows:

IoU =
TP

TP + FP + FN
. (2.8)

It is equivalent to calculating the proportion of the area of true positive predictions,
which is the intersection of the ground truth positive regions and the predicted positive
regions, over the union of the ground truth and the prediction, as the name suggests. In
multi-class semantic segmentation tasks, we evaluate IoU on each class, as well as mean
IoU, which is a simple average of the class-wise IoUs. We use IoU as the most basic
metric of semantic segmentation throughout the thesis.

Other than IoU, metrics such as accuracy, precision, and recall are also used. These
are defined as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (2.9)

Precision =
TP

TP + FP
, (2.10)

Recall =
TP

TP + FN
. (2.11)

Accuracy is the proportion of correct predictions on both positive and negative over
all predictions. Precision indicates how much of the positive predictions were correct.
Recall, on the other hand, indicates how much of ground truth positive regions were
predicted correctly. Precision and recall are in a trade-off relationship because when a
model predicts conservatively, precision will increase while recall will decrease, and vice
versa.

2.3. MACHINE LEARNING WITH LIMITED DATA 17

2.3 Machine learning with limited data

In conventional machine learning including DNNs, a model is trained with a dedicated
dataset with a large amount of input data associated with ground truth labels. The
labels are usually given through manual annotation by human annotators, which is an
extremely tedious and time-consuming task. For example, annotation of The Cityscapes
dataset [107], an image dataset of urban scenes, required more than 1.5 hours on average
per image. It is unrealistic to prepare such a dataset for every target task. To mitigate
the need for manual labeling, researchers have proposed various approaches to train a
model with a limited amount and quality of data. Here, we review the approaches that
are relevant to the methods presented in the thesis.

2.3.1 Domain Adaptation (DA)

Domain adaptation (DA) is a type of machine learning task where labeled data in one or
more source domains, to learn a classifier for unseen or unlabeled data in target domain
in the same task [108]. DA is a special case of transfer learning (TL), where knowledge
learned in a source domain in a task is exploited in a target task which is possibly
different from the source task [109, 110]. DA has been attracting attention as a method
to overcome the burden of annotation in ordinary machine learning and deep learning
tasks. Since the range of applicable fields of DA is broad, in the following subsections, we
summarize the existing methods of unsupervised domain adaptation (UDA), an actively
studied subfield of DA where a labeled source dataset and an unlabeled target dataset
are available for training, and especially UDA for image semantic segmentation.

Unsupervised domain adaptation

Semantic segmentation based on deep learning usually requires a large amount of train-
ing data labeled on each pixel and manual labeling is especially time-consuming. One
promising approach is to use a large amount of image-label pairs automatically synthe-
sized by computer graphics. Since the appearance of the synthetic images is different
from real-world images, the model trained on the synthetic data does not perform well
in the real world. Therefore, we need UDA to re-train the model in a different domain
i.e., the real environment. There are two major approaches to UDA methods [111, 112].
One is called “domain alignment” where a model is trained so that the distribution
discrepancy of domains is minimized. The alignment is done in different levels such as
the input space [113, 114], feature space [115, 116], and output label space [117, 118].
Those methods aim to learn domain-invariant features of both domains. Recently, such
training is often realized by adversarial training [119, 116].

The other approach of UDA is pseudo-label-based methods. This type of method
uses outputs from a model pre-trained with a source dataset as true labels. By directly
training the model on the target images with the pseudo-labels, it can fully learn domain-
specific information. However, the pseudo-labels for the target images inevitably contain
misclassification and it may affect the training as noise. To deal with the noise, different
approaches have been proposed, such as thresholding based on the confidence of the
prediction [120, 121], the adaptive weighting of loss values based on the uncertainty of
the prediction [122], and prototype-based pseudo-label denoising [123].

18 CHAPTER 2. LITERATURE REVIEW

Multi-source domain adaptation

Apart from the aforementioned single-source adaptation methods, there are several stud-
ies of multi-source domain adaptation (MDA). Mansour et al. stated that the target
distribution can be represented as a weighted mixture of multiple source distributions.
Following this analysis, Xu et al. [124] implemented an MDA training with deep net-
works. For a detailed survey of MDA, readers are referred to Zhao et al. [125]. Zhao et al.
[126] proposed multi-source Domain Adaptation for Semantic Segmentation (MADAN)
by extending CyCADA [113] to MDA for semantic segmentation. He et al. [127] pro-
posed an unsupervised MDA method for semantic segmentation. In [127], a simple image
translation in LAB color space is used to images from the multiple source datasets to
minimize the domain gap, instead of GAN-based methods. In training, they train a
model for each source dataset by collaborative learning where output distributions of
object class probabilities for an image from the models are matched via Kullback-Leibler
Divergence (KLD) to let them learn domain-invariant semantic contexts across different
domains. One of the major contributions of [127] is that it outperformed existing meth-
ods like MADAN without any adversarial learning or any other sophisticated tricks, and
thus easy to train. Park et al. [128] extended the work of He et al. by introducing a
pseudo-label rectification method using multiple source models.

A work of Nigam et al. [129] utilizes multiple models trained with different source
datasets as feature extractors, and adapt the segmentation layers to a target dataset of
overhead images from a drone. Although their method is similar to ours in a way that
multiple pre-trained networks are exploited, their task is supervised domain adaptation
where they prepare their own labeled dataset, while our method utilizes publicly available
datasets that are not specifically built for greenhouse scenes.

Benchmarks

As a benchmark of semantic segmentation, a task considered de-facto standard is adap-
tation from synthetic datasets such as the GTA5 dataset [130] and the SYNTHIA dataset
[131] to a real dataset, most often Cityscapes dataset [107]. In this task, scenes are lim-
ited to urban scenes in both the source datasets and the target datasets. Besides, the set
of object classes is identical in all the datasets. In Chapter 3, we further investigate the
methodology of transferring knowledge in cases where the structure of the environments
is different, and the source and the target datasets do not share their label space.

2.3.2 Few-shot Learning (FSL)

Few-shot learning is one of machine learning paradigms where limited new samples with
ground truth labels (support set) are given for reference to make inference on data with
object classes unseen in pre-training (query set). For the pre-training of the network,
an external dataset with abundant labeled data is usually used.

The idea of few-shot image classification was first extended to image segmentation by
Shaban et al. [132]. The first one-shot segmentation approach was proposed by Shaban
et al. [132]. In [132], the features of the target objects in support images are aggregated
via masked average pooling within given ground truth masks, and the pooled features
are used to produce classification weights for segmentation of a query image. A major
approach to few-shot segmentation is to aggregate features of support images within

2.3. MACHINE LEARNING WITH LIMITED DATA 19

masks and taking cosine similarity with features of query images [133, 134]. In few-shot
segmentation, a support set with ground truth mask is exploited to aggregate features
and the aggregated features are used to produce classification weights for segmentation
of a query image [132, 133, 134].

Qi et al. [135] proposed a simple method for few-shot image classification coined
weight imprinting, where normalized features of a target object are directly used as
weights of the classifier. They claim that weight imprinting performs well even without
fine-tuning. Based on the weight imprinting approach, Siam et al. [136] proposed the
Adaptive Masked Proxies (AMP) for effective feature aggregation specifically designed
for few-shot image segmentation. Our online learning is inspired by [135] and [136] for
their simplicity.

2.3.3 Positive and Unlabeled Learning (PU Learning)

PU learning is a problem where part of the data is labeled as positive, and the rest is
unlabeled and could be either positive or negative. Unlike the setting where positive
and negative data are assumed, PU setting cannot be solved by just applying a simple
classification of positive and unlabeled data since the unlabeled data include positive
ones. Elkan and Noto [24] showed that it is possible to estimate the label probabilities
by modeling the probability that given samples are labeled under selected completely at
random assumption. Detailed review can be found in Bekker et al. [137].

As a practical application, Yang et al. [138] applied PU learning framework to object
detection task where some objects are not labeled. Suger et al. [32] also introduced PU
learning in traversability estimation based on hand-crafted structural features.

Chapter 3

Multi-source Pseudo-label
Learning of Semantic
Segmentation

3.1 Introduction

Semantic segmentation based on Deep Neural Network (DNN) is widely used in the
scene recognition system of self-driving vehicles and autonomous mobile robots. We
also employ DNN-based semantic segmentation to estimate general object classes on
each image pixel. Usually, DNNs are trained using a large amount of data with hand-
annotated labels to ensure high accuracy and generalization. However, hand-annotation
is time-consuming and physically demanding. In the case of introducing a mobile robot
in new environments, it is not realistic to prepare such a fully labeled dataset for every
environment even though a model should be trained specifically for the environment.

To address this problem, one might consider applying a model trained with exist-
ing publicly available image datasets with ground truth labels. The performance of
pre-trained models, however, often deteriorates on different data domains due to the dif-
ference in data distributions between the training dataset and the target scenes, known
as “domain shifts” [108]. Domain adaptation (DA) is a task to adapt a model trained
on one data domain to another domain with minimal degradation of performance. Un-
supervised domain adaptation (UDA) is a type of DA where labeled source datasets
and unlabeled target datasets are available. UDA can mitigate the burden of hand-
annotation by leveraging information in the source domain and transferring it to the
target.

A major task of UDA is adaptation from labeled synthetic images automatically
acquired in a simulator to unlabeled real images. The adaptation task from GTA 5
[130] or SYNTHIA [131] to Cityscapes [107] is one of the most widely used benchmarks
and many studies have verified their effectiveness on these tasks. However, it is often
difficult to prepare appropriate source datasets with full segmentation labels for target
environments in the wild. In the case of greenhouses, there is no real image dataset of
greenhouses with segmentation labels, and rich simulation environments applicable to
our task.

Instead, we consider utilizing publicly available rich image datasets of the real world
not specifically designed for greenhouses. Fig. 3.1 shows real and synthetic urban scenes

21

22 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

(a) Cityscapes [107] (b) GTA5 [130] (c) Greenhouse

Figure 3.1: Difference of appearance between an urban scene and a greenhouse. The image of
a real urban scene (a) and the image of a simulated urban scene (b) share similar distribution
of objects, and the difference mainly stems from the texture. On the other hand, (a) and the
image of a real greenhouse (c) have a large discrepancy of the structure of the environments.

as well as a greenhouse scene for comparing the difference of appearance. The difference
between real and synthetic urban scenes (Figs. 3.1(a) and 3.1(b)) mainly stems from
the discrepancy of their characteristics of appearance such as textures. However, they
share a similar distribution of the objects in the images, e.g., the majority of areas
are occupied by buildings and roads. On the other hand, the images of real urban
scenes and the greenhouses (Figs. 3.1(a) and 3.1(c)) are both real, but there are instead
structural differences such as the distribution and scales of the objects in the images,
etc. These structural differences of the datasets makes the existing UDA methods less
effective. In fact, as later shown in Sec. 3.3.3, state-of-the-art UDA methods result in
poor performance.

While the outputs of the source models contain a lot of noise, we also observed that all
the models provide accurate classification on large areas of the images (more details are in
Sec. 3.2.3). Based on the observation, we propose to exploit multiple datasets as source
datasets for pseudo-label generation, rather than relying on a single dataset dissimilar to
the target dataset. Our key contribution is the method to generate pseudo-labels using
models trained with multiple publicly available datasets to effectively transfer knowledge
to structurally different target images without ground truth labels. Pseudo-labels for
the target images are generated by merging outputs from multiple models, each of which
is pre-trained with a labeled source dataset. In particular, a pseudo-label is assigned
on a pixel only when all the source models predict the pixel as the same object class.
This method effectively filters out misclassified labels and leads to a better performance
of the trained models. To further suppress the effect of noise in the pseudo-labels, we
also introduce a loss weighting based on the uncertainty of estimation and pseudo-label
denoising inspired by Zheng et al. [122] and Zhang et al. [123], respectively.

We demonstrate the effectiveness of the method in the experiments of adaptation
from three source datasets of urban or outdoor scenes, to multiple greenhouse datasets
as the target.

3.2 Proposed Method

3.2.1 Overview

The purpose of this work is to train a semantic segmentation model that achieves low
error on greenhouses images without hand-annotated labels. To this end, we consider
using multiple publicly available labeled image datasets as source datasets to transfer

3.2. PROPOSED METHOD 23

Source

model 1

Source

model 2

Source

model M

..
.

Source

model 1

Source

model 2

Source

model M

Target

model

..
.

L
a
b
e
l
c
o
n
v
e
rs

io
n

Denoising

P
s
e
u
d
o
-l

a
b
e
l
s
e
le

c
ti

o
n

M
a
in

E
n
c
o
d
e
r

A
u
x

Segmentation

output
Segmentation

output

Uncertainty

Target image

Pseudo-label

Stage 2: Initial pseudo-label generationStage 1: Source model training

Stage 3: Target model trainingPseudo-lable update

Source 1

Source 2

Source M

: Cross-entropy loss (eq. (1))

: Cross-entropy loss rectified with uncertainty (eq. (7))

Figure 3.2: Overview of the proposed pseudo-label learning for semantic segmentation. Stage
1: Train models with the source datasets in supervised training. Stage 2: Pseudo-labels are
generated for the target images using the output from the source models. Stage 3: Train a
target model using the generated pseudo-labels. (Best viewed in color)

knowledge to the target images. Specifically, we use datasets of urban scenes and outdoor
scenes, namely, CamVid dataset [139], Cityscapes dataset [107], and Freiburg Forest
dataset [140], as source datasets. Each source dataset has a different set of object classes.
The target datasets are greenhouse images with the following classes: plant, artificial
object, and ground. The target datasets do not have any label data for supervision.

Formally, we assume M source datasets S1, . . . , SM and an unlabeled dataset ST .
A source dataset Si consists of an image set Xi = {xi,j}

Ni

j=1 and a set of corresponding

segmentation label maps Yi = {yi,j}
Ni

j=1, where Ni denotes the number of images in Si.
The source datasets can have a different number of object classes. The target dataset ST
consists of only an image set XT = {xT,j}

NT

j=1, where NT denotes the number of images
in ST .

Fig. 3.2 shows the overview of the proposed method. It consists of three stages.
The first stage is the training of source models. For each source dataset, a segmentation
model is trained in a supervised manner. In the second stage, the target images are fed
into the source models and pseudo-labels are generated by merging the outputs from
the source models. An output from each source model is first converted to the target
labels using a label conversion function, which is heuristically defined. The pseudo-labels
are then generated by selecting the labels that the models unanimously predict as the
same label. Finally in the third stage, the target model is trained with the pairs of
the target images and corresponding pseudo-labels. The classification loss is adaptively
weighted by the uncertainty of the prediction as proposed in [122]. During the training,
the pseudo-labels are updated using the outputs from the currently trained model for
further leveraging the knowledge learned from the initial pseudo-labels. In the pseudo-

24 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

label update, a denoising method inspired by [123] is used.

In our method, we employ ESPNetv2 [101], a light-weight semantic segmentation
model, as base network architecture for its suitability to real-time scene recognition of
mobile robots. The proposed method, however, is not dependent on a specific network
architecture.

3.2.2 Model pre-training

We first train a segmentation model on each source in a fully supervised manner. In this
step, each model is trained with the original classes in the corresponding source dataset.
A standard cross entropy loss is used as a loss function:

Lce(x, y; θ) = −
∑

h,w

∑

c∈C

y(h,w,c) logF (x; θ)(h,w,c) , (3.1)

where F (x; θ)(h,w,c) denotes the probability of class c at the location (h,w) for an image
x predicted by the segmentation model with weights θ, and y(h,w) denotes a one-hot
label at pixel (h,w). A source model for dataset Si is initialized as follows:

θi = argmin
θ

∑

(x,y)∈Si

Lce(x, y; θ). (3.2)

Usually, in loss calculation, greater weight is set for the loss of rarer classes in order
to deal with class imbalance. For our task, however, we empirically found that a model
provides more accurate pseudo-labels when the model is trained with a weight propor-
tional to the frequency of the label, which is contrary to the usual practice. We suppose
the reason is as follows. The usual loss weighting is mainly for capturing relatively small
objects such as road signs and poles. In our target environment, i.e., greenhouses, such
a fine-grained perception is not necessary because the space of the environment is fixed
and thus the variation of the scale of the objects is limited. Moreover, the object classes
in the target datasets are coarse. Therefore, the usual practice of training may lead to a
model that is overly focused on small objects which is unnecessary for the pseudo-label
generation.

3.2.3 Pseudo-label generation using multiple pre-trained models

Underlying idea

Our intuition behind this method of multi-source pseudo-label generation is that while
the prediction from each source model contains a lot of misclassifications, the models
correctly predict many of the pixels in common. Fig. 3.3 shows outputs for a target
image from different source models trained with the CamVid dataset [139], Cityscapes
dataset [107] and the Freiburg Forest dataset [140] as well as the target image, hand-
labeled ground truth, and the pseudo-label generated from the three outputs. As can
be seen in Fig. 3.3, many of the true regions of “plant” class and “ground” class are
correctly classified in all the models. This implies that getting a consensus of the models
is effective for generating precise pseudo-labels as shown in Fig. 3.3(c). Another thing
worth noting is that each model has its own characteristics of prediction. For example,
the prediction of the model trained with Freiburg Forest dataset on the ground regions

3.2. PROPOSED METHOD 25

Plant Ground OtherArtificial object

(a) Camera image (b) Ground truth (c) Pseudo-label

(d) CamVid (e) Cityscapes (f) Freiburg Forest

Figure 3.3: Examples of output from each source model and resulting pseudo-label. The predic-
tions by the source models (d)-(f) are correct on many of the pixels, though they are not perfect.
By taking consensus of the models on each pixel, we can get fairly precise pseudo-labels as shown
in (c).

better captures the shape of true ground regions than the other two models. However,
the prediction on the plants and artificial objects is not accurate. On the other hand, in
the model trained with Cityscapes, the prediction on the ground region includes a lot of
false positives, while that on the other objects is more accurate than the Freiburg Forest
model. These differences stem from the structural differences of the source datasets. The
proposed method avoids biased training to the structural features of a specific source
dataset dissimilar to the target by getting agreements of multiple source models.

Pseudo-label generation method

In this step, pseudo-labels for the target images are generated using outputs from the
models pre-trained with the source datasets. First, the target images are fed in all the
pre-trained models to yield predicted labels in the label space of each source domain.
The predicted label from the model of source i for the jth target image is given as
follows:

p
(h,w)
i,j = argmax

c
F (xT,j ; θi)

(h,w,c) . (3.3)

The predicted labels are then mapped to the target label space using a label conversion
function ξi : Yi → YT , where Yi and YT denote a set of labels in source Si and target
ST , respectively:

p′i,j
(h,w)

= ξi(p
(h,w)
i,j). (3.4)

Here, we heuristically define the mapping from the source classes to the target classes
for each source domain as shown in Table 3.1. After the label conversion, for each pixel
of the target images, a predicted label is assigned to the pixel if the prediction is the
same among all the source models. Otherwise, “other” label is assigned and not used
for training. Formally, a pseudo-label for the pixel (h,w) of the jth target image xT,j is

26 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

generated as follows:

ŷ
(h,w)
j = ψ

(

p′1,j
(h,w)

, · · · , p′M,j
(h,w)

)

=

{

ck if ∀i ∈ {1, ...,M}, p′i,j = ck

cφ otherwise,
(3.5)

where ck ∈ YT is a class category in the target dataset and cφ is a class label “other”
that is not used for loss calculation during the training and thus does not affect the
training.

3.2.4 Model training on the target data

We train a segmentation model with the target images and the corresponding pseudo-
labels. Although the valid labels in the pseudo-labels generated in Sec. 3.2.3 are unan-
imously predicted by the source models and thus highly likely correct, we introduce
uncertainty-based loss weighting and prototype-based pseudo-label denoising for further
suppressing the effect of noise in the pseudo-labels.

Loss weighting based on the uncertainty of estimation

In standard training of semantic segmentation models, the cross entropy loss is widely
used. In the training with pseudo-labels, however, equally treating all the pseudo-labels
may lead to poor performance due to noise in the pseudo-labels. Zheng et al. [122]
proposed an adaptive loss weighting that decays as the uncertainty of the estimation
increases so that the losses on the pixels with high uncertainty do not affect the training
much. Their method exploits an auxiliary segmentation branch to predict pixel-wise
uncertainty of the label prediction. We attach an auxiliary segmentation branch to
ESPNetv2 for uncertainty estimation. The entire segmentation network is shown in Fig.
A.1 in Appendix A.

Given the output of primary branch F (x; θ) and that of the auxiliary branch Faux(x; θ),
the uncertainty of the prediction is defined as Kullback-Leibler Divergence (KLD) of the
distributions of class probabilities from the two branches:

Dkl (x; θ)
(h,w) =

∑

c∈C

F (x; θ)(h,w,c) log
F (x; θ)(h,w,c)

Faux(x; θ)(h,w,c)
. (3.6)

Using eq. (3.6), the loss function is defined as follows:

Lrect (x, ŷ; θ) =
∑

h,w

(

exp {−Dkl (x; θ)
(h,w)}Lce (x, ŷ; θ)

(h,w) +Dkl (x; θ)
(h,w)

)

. (3.7)

Prototype-based pseudo-label denoising

In the middle of the training, we update the pseudo-labels with the outputs from the
current model to further leverage the knowledge learned from the initial pseudo-labels.
We introduce pseudo-label updating with prototype-based denoising inspired by Zhang
et al. [123].

At first, the prototypes are calculated. The prototype of class c is a mean of the
features that belong to the class c and is calculated using the current pseudo-labels as

3.3. EXPERIMENTS 27

follows:

η(c) =

∑

(x,ŷ)∈ST

∑

h,w f
(h,w) ∗ ✶

(

ŷ(h,w) == c
)

∑

(x,ŷ)∈ST

∑

h,w ✶
(

ŷ(h,w) == c
) , (3.8)

where f (h,w) is an intermediate feature provided by the currently trained model F (·; θ)
at pixel (h,w), and ✶ is the indicator function that returns 1 when its argument is true
and 0 otherwise.

Pseudo-labels for image xT,j are then updated as follows:

ŷ
(h,w)
j =

argmaxc

(

ω(h,w,c)F (xT,j ; θ)
(h,w,c)

)

if maxc

(

ω(h,w,c)p
(h,w,c)
j

µ

)

> α

cφ otherwise,

(3.9)

where µ =
∑

c′ ω
(h,w,c′)p

(h,w,c′)
j is a normalization factor and α is a threshold for pseudo-

label selection, which is set to 0.9 in the experiments. ω is a vector of weight values to
modulate the class probabilities, calculated using the distances between the feature and
each prototype. For each pixel, the weight ω is calculated as follows:

ω(h,w,c) =
exp

(

−
∥

∥f (h,w) − η(c)
∥

∥ /τ
)

∑

c′ exp
(

−
∥

∥f (h,w) − η(c′)
∥

∥ /τ
) , (3.10)

where τ is a temperature parameter that controls the degree of bias of the distribution,
which is set to 1 in [123]. The values of ω indicate the class likelihood of the feature
based on the distance from the feature to each prototype, and the probabilities predicted
by F (·; θ) are rectified by ω.

3.2.5 The overall algorithm

The overall algorithm is shown in Algorithm 1. As already mentioned, our training
pipeline consists of three stages. A segmentation model for each source dataset is trained
in standard supervised learning in the first stage and initial pseudo-labels for the target
images are generated using the pre-trained models in the second stage. In the third
stage, the target model is trained using the target images and the pseudo-labels. The
training is done in several “rounds”, each of which consists of several epochs. Here, the
number of epochs per round is set to 5, and the maximum number of rounds is set to
10.

During training, the pseudo-labels are updated using the target model currently
being trained. In this work, we update the pseudo-labels once after the third round of
training with the initial pseudo-labels because the training with the initial pseudo-labels
converges by the third round. We compare the different pseudo-label update strategies
in Sec. 3.3.5.

3.3 Experiments

3.3.1 Experimental setup

Training conditions

We use PyTorch implementation of ESPNetv2 [101]. For estimating uncertainty, an
auxiliary segmentation branch is attached. The architecture is shown in Fig. A.1 in

28 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

Algorithm 1 Multi-source pseudo-label learning

Input: Source dataset Si, label conversion functions ξi with i ∈ {1, · · · ,M}, Target
dataset ST = {XT }

Output: The target model F (·; θT)
1: # Step 1: Source model pre-training
2: Train the source model F (·; θi) with Si = {Xi, Yi} and Lce

3:

4: # Step 2: Generating initial pseudo-labels
5: Get outputs for the target images: pi ← F (xT ; θi)
6: Label conversion: p′i ← ξi (pi)
7: Generate pseudo-labels: ŷ ← ψ (p′1, · · · , p

′
M)

8:

9: # Step 3: Target model training
10: for round← 0 to max round do
11: if is round to update pseudo labels then
12: Calculate the prototypes by eq. (3.8)
13: Update the pseudo-labels by eq. (3.9)
14: end if
15:

16: for k ← 0 to epoch per round do
17: for j ← 0 to len(XT) do
18: Train the model with {XT , Ŷ } and Lrect

19: end for
20: end for
21: end for

Appendix A. The processing time was about 44 [msec/image], or 23 [fps]. The number
of floating point operations (FLOPs) is 0.79 [GFLOPs] while that of the original ESP-
Netv2 for semantic segmentation is 0.76 [GFLOPs] [101], indicating that attatching the

Table 3.1: Label conversion from the source datasets to the target sets

CamVid Cityscapes Forest Greenhouse A, B, C

Tree Vegetation Grass, Tree Plant

Building, Pole,
SignSymbol, Fence,
Car, Road marking

Building, Wall
Fence, Pole,
Traffic light,
Traffic sign,
Car, Truck,
Bus, Train,
Motorcycle,
Bicycle

Obstacle Artificial object

Road, Pavement
Road, Sidewalk,

Terrain
Road Ground

Sky, Pedestrian
Bicyclist, Unlabeled

(Not used in the training)

Sky, Person,
Rider,

Background
Sky Other

3.3. EXPERIMENTS 29

(a) Greenhouse A (b) Greenhouse B (c) Greenhouse C

Figure 3.4: Example of images of the target datasets. Greenhouse A and B are the same
greenhouse that grows tomatoes, but taken in different times and thus the lighting condition and
growth of leaves differ. Greenhouse C is a greenhouse of cucumber that has different appearance
from tomato plants.

auxiliary branch did not affect the computational efficiency. All training of the proposed
method is performed on one NVIDIA Quadro RTX 8000 with 48GB RAM. The numbers
of training rounds and epochs per round are set to 10 and 5, respectively. The learning
rate is fixed to 5 × 10−4 and the batch size is 48. Adam [141] is used as an optimizer.
Weights of the target models are initialized by the supervised training of semantic seg-
mentation on the CamVid dataset [139], except for the last classification layer initialized
with random values. We measure segmentation performance with the Intersection over
Union (IoU) metric.

Datasets

We use CamVid [139], Cityscapes [107] and Freiburg Forest dataset [140] (hereafter
referred to as CV, CS, and FR, respectively) for the training of the source models.
CV, CS, and FR have 367, 2975, and 230 labeled training images, respectively. Label
conversions from the source datasets to the target datasets (ξi) are heuristically defined
as shown in Table 3.1 . A more detailed analysis of the label mapping is in Appendix B.

As target greenhouse datasets for adaptation, we acquired images from three green-
houses; Greenhouse A that grows tomatoes, Greenhouse B that is the same greenhouse
as Greenhouse A but acquired in different date and time, and Greenhouse C that grows
cucumbers. Each target dataset has 6689 unlabeled images. Example images of the
target datasets are shown in Fig. 3.4. For each target dataset, we prepared test images
with manually annotated labels for evaluation. The numbers of the test images are 100
for Greenhouse A, and 50 for B and C. The labels on the test images include the “other”

30 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

Plant GroundArtificial object

(a) Greenhouse A (b) Greenhouse B (c) Greenhouse C

Figure 3.5: Example of the test images. Regions of each object class are roughly labeled, rather
than labeled with pixel-level precision. For example, the plant rows in Greenhouse A are uni-
formly labeled as “plant”

class and the pixels with the class are not considered in the calculation of the metric
(See Fig. 3.5). More detailed annotation policy is described in Appendix C.

3.3.2 Comparison to single-source baselines

We conducted an experiment of adaptation from the source outdoor datasets to each of
the target greenhouse datasets. In the single source baselines (CV, CS, and FR), the
initial pseudo-labels were generated via the pseudo-label update procedure described in
Sec. 3.2.4 in the source label space Y〉, followed by the label conversion by ξi to map the
labels to the target label space. All the models were trained with the initial pseudo-labels
for the first three rounds. After that, the pseudo-labels were updated using the hard
pseudo-labels with the prototype-based denoising and used in the rest of the training.

Table 3.2 shows the result of the training. The results of “no adapt” were provided by
directly feeding the target images to the source models followed by the label conversion.
Before the adaptation, the IoUs of the source models were low and not applicable to
real applications. The performance of single-source training depended on the source
dataset. In some cases, the adaptation resulted in improvement from the model without
adaptation, while in some others the performance deteriorated after the adaptation. The
cause of the degradation is that the training progressed in the wrong direction due to
the noisy pseudo-labels. This indicates that the training with a single source may not
be reliable enough when the source and target datasets have a large domain shift.

With our multi-source adaptation, on the other hand, the accuracy was significantly
improved even though each source model is not reliable on the target data. The results
show the ability of our method to transfer useful common knowledge about the appear-
ance of objects from the source datasets to the target. The two-source training resulted in
comparative or even better performance than the three-source training (CV+CS+FR).
It is worth noting that the combination of different types of environments results in
especially high accuracy, i.e., FR+CV and CS+FR. CV (CamVid) and CS (Cityscapes)
are datasets of urban scenes, while FR (Freiburg Forest) consists of images of outdoor
scenes with rough terrains and vegetation, This implies that we should use datasets with
a high variety of environments as sources.

The most suitable combination, however, depends on the target dataset in the two-

3.3. EXPERIMENTS 31

Table 3.2: Result of the adaptation in IoU (CV: CamVid, CS: Cityscapes, FR: Freiburg Forest.
The best result for each target is shown in bold and the second best result is underlined.)

Target Source
Class IoU

mIoU
Plant Artificial object Ground

Greenhouse A

CV (no adapt) 64.72 56.19 46.34 55.75
CS (no adapt) 63.71 68.71 36.37 56.26
FR (no adapt) 60.24 45.27 30.49 45.33

CV 70.21 68.66 57.10 65.32
CS 60.17 71.47 31.02 54.22
FR 52.73 50.68 40.84 48.11

CV+CS 73.81 73.49 47.55 64.94
CS+FR 79.50 76.35 70.32 75.39
FR+CV 77.40 73.00 63.20 71.20

CV+CS+FR 80.71 78.21 72.68 77.20

Greenhouse B

CV (no adapt) 65.57 65.30 57.65 62.84
CS (no adapt) 83.33 80.09 49.68 71.03
FR (no adapt) 48.47 54.34 19.17 40.66

CV 71.37 77.15 62.73 70.42
CS 83.49 77.39 44.53 68.47
FR 47.04 58.60 42.87 49.50

CV+CS 87.19 87.00 60.96 78.38
CS+FR 82.56 89.44 70.60 80.87
FR+CV 75.99 85.70 60.48 74.06

CV+CS+FR 83.56 89.08 73.37 82.33

Greenhouse C

CV (no adapt) 58.89 58.29 19.82 45.66
CS (no adapt) 79.09 81.10 18.11 59.43
FR (no adapt) 61.65 49.24 25.56 45.48

CV 69.96 70.30 22.52 54.26
CS 85.51 85.30 21.86 64.23
FR 66.00 65.52 0.6549 44.06

CV+CS 88.76 87.20 28.61 68.19
CS+FR 84.99 82.26 29.56 65.61
FR+CV 91.12 90.00 45.12 75.41

CV+CS+FR 91.16 88.84 40.67 73.56

32 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

Plant GroundArtificial object

(a) Image (b) GT (c) CV (d) CS (e) FR (f) CV+CS+FR

Figure 3.6: Result of the adaptation on Greenhouse A. The prediction by the multi-source model
(f) is more precise than those of the single-source models (c)-(e).

source setting. For example, CS+FR resulted in the second-best performance on Green-
house A and B, while it was the worst among the multi-source settings on Greenhouse
C. On the other hand, the three-source training consistently performed the best or the
second-best on all the target datasets. We, therefore, suggest exploiting the three source
datasets for the segmentation task in greenhouse environments.

Fig. 3.6 is the result of the adaptation on Greenhouse A. In Fig. 3.6, while the results
of the single-source training are relatively noisy, the multi-source ones provide smoother
outputs. In particular, the plant regions are classified more accurately. Qualitatively,
we suppose that this level of accuracy is sufficient for the operation of mobile robots.
For Greenhouse B and C, the results are shown in Fig. D.1 and D.2 in Appendix D.
From Figs. D.1 and D.2, we can see that accurate segmentation can be achieved in
other environments, and thus the knowledge that the proposed method transfers from
the source datasets is applicable in a variety of greenhouse environments.

3.3.3 Comparison to existing methods

Baseline methods

To evaluate the relative performance of our proposed method, we conducted training
with existing methods of supervised learning as well as single-source and multi-source
UDA for semantic segmentation. Implementation details of the baseline methods are
described in Appendix E.1.

Supervised learning methods We introduce a supervised support vector machine
(SVM) on superpixel features and a supervised DNN as supervised baselines. The SVM
method is equivalent to some existing segmentation methods such as Sharifi et al. [103]
and Lulio et al. [102], where an image is partitioned into small segments and then
classified based on their hand-crafted features. As a DNN model, we use the architecture
that is the same as the proposed method. We refer to the SVM method as SP-SVM and
the DNN method as SP-DNN. Implementation details of SP-SVM are in Sec. E.1.1.

3.3. EXPERIMENTS 33

For evaluation of the supervised baselines, we conducted 10-fold cross-validation
with the 100 labeled images of Greenhouse A, which are used as the test data in the
experiments of the UDA methods. The reported results are averages of IoUs on the test
fold of each of the 10 training trials. Note that the training setting and the evaluation
condition are different from the UDA training. This is due to the limited amount of
manually labeled greenhouse images available. Nevertheless, we report the results of
the supervised baselines to demonstrate baseline performances that we can expect from
supervised learning.

UDA As existing UDA methods for semantic segmentation, we introduce representative
UDA methods in different generations, i.e., confidence regularized self-training (CRST)
[121] proposed in 2019, Seg-Uncertainty [122] and ProDA [123] proposed in 2021. They
employ self-supervised learning with pseudo-labels, which is a popular approach in cur-
rent UDA methods for semantic segmentation. Seg-Uncertainty and ProDA also involve
GAN-based training based on [117] to further enhance the adaptation. Seg-Uncertainty
and ProDA are the original works of the uncertainty-based loss weighting and the pseudo-
label denoising in our method, respectively.

We used the source code distributed by the authors with modifications to apply them
to our experiments, such as adding the new datasets and converting the source labels
to the target label set defined in Table 3.1. In terms of ProDA, we report the result of
stage 1 proposed in [123]. Although the original method employs knowledge distillation
after stage 1 to boost the performance, they reported the state-of-the-art performance
at the time with only the training of stage 1. We, therefore, suppose the result of stage
1 on our setting is sufficient as a baseline. The rest of the training process follows the
algorithm of each method. Implementation details are in Appendix E.1.2.

Although there are also multi-source UDA methods such as Multi-source Domain
Adaptation for Semantic Segmentation (MADAN) [126], we could not train it due to
limitations of computational resources. In Appendix E.2.2, we show results of image
style transfer between the source dataset and the target greenhouse dataset, which is
the first step of MADAN.

Source datasets

In the comparative studies of single-source UDA methods, we report the results on
Cityscapes (CS) since it provided best results than CV and FR) in all of the single-
source baseline methods. We suppose this may be because CS has a sufficient amount
of images (about 3000) for training models with a large capacity such as DeepLab v2,
while the other source datasets (CV and FR) have only a few hundreds. On CV and FR,
the model may have overfit to the training sets due to the scarcity of the data, and thus
resulted in poorer adaptation performances. As there was no significant difference of
adaptation performance between the source datasets in the single-source setting shown
in Sec. 3.3.2 (see Table 3.2), we believe it is reasonable to use CS to demonstrate the
performance of the baselines on behalf of the three source datasets.

Results

Table 3.3 shows the results. Overall, the proposed method outperformed the baseline
methods except for SP-DNN, and thus exhibited the ability to transfer knowledge from
the datasets dissimilar to the target dataset. Although the performance of the baseline

34 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

Table 3.3: Results of the baseline methods. CS is used in the single-source UDA baselines. Bold
denotes the best performance among the UDA methods

Method
Class IoU

mIoU
Plant Artificial object Ground

SP-SVM* 74.99 54.66 53.54 61.06
SP-DNN* 86.27 78.64 88.49 81.68

CRST [121] 78.89 76.85 65.10 73.62
Seg-Uncertainty [122] 52.17 70.68 27.29 50.04

ProDA [123] 56.15 60.81 28.53 48.50
CV+CS+FR (Proposed) 80.71 78.21 72.68 77.20

*For SP-SVM and SP-DNN, we report averages of 10-fold cross-validation using 100 labeled images.

methods might be improved with extensive hyper-parameter search, the results indicate
that relying on a single source is not effective enough even when using state-of-the-
art UDA methods in our task where the source and target datasets do not share their
structure of the scenes. Qualitative results are shown in Appendix E.2. While SP-
DNN resulted in the best IoUs, it also showed a clear tendency of overfitting due to the
scarcity of training data. Although increasing the training data will resolve the problem,
it requires laborious manual annotation. On the other hand, the proposed method
enables training with a large amount of unlabeled images and provides a comparative
performance.

Among the baseline UDA methods, CRST resulted in better performance than oth-
ers, although they are reported to be better than CRST [122, 123]. We conjecture that
adversarial learning negatively contributed to these results. ProDA and Seg-Uncertainty
involve adversarial learning in the training processes to make the spatial structure in the
output space as close as possible between the source and the target datasets [117]. Ad-
versarial learning, including GANs [119], is effective when the difference between the
source and the target stems mainly from the styles such as texture and color and the
datasets share similar structure. For instance, GANs can be used to transfer the im-
age style of source images closer to the target images without significantly changing the
image contents, i.e., semantic class of corresponding image regions, so that a segmenter
for the target images can be trained on the transferred source images in the target’s
style with the ground truth labels. However, when the structure of the scenes is differ-
ent, adversarial learning does not necessarily convey meaningful information. In fact, as
shown in Appendix E.2.2, the image contents are not preserved between the original and
the translated images after CycleGAN-based image style transfer between CS/FR and
Greenhouse A. For example, some ground regions in CS are transferred to green plant-
like stuff, and some plant regions are transferred to regions with sky-like appearance
(See Fig. E.2). In [126], the authors also pointed out that the structural differences of
objects between the source and the target datasets led the training to poor performances
on those object classes (e.g., the source in target images are much taller than those in
target images). Those facts imply adversarial learning is not as effective for adaptation
under such structural differences between the source and the target scenes.

3.3. EXPERIMENTS 35

Table 3.4: Comparison of multi-source merging strategies

Majority Unanimity (proposed)

70.03 77.20

3.3.4 Comparison of strategies to merge multi-source information

To see the validity of the proposed pseudo-label generation based on unanimity of the
source models, we conducted training with a different strategy, namely majority-based
pseudo-label generation. In the majority-based strategy, a label is assigned to a pixel
when more than two source models of the three predict the pixel as the same object
class.

The results are shown in Table 3.4. The training with the majority-based pseudo-
labels resulted in a significant drop in performance compared to the unanimity-based
method. We suppose that since the majority-based method more aggressively involves
pixels in the pseudo-labels, more noise was included and it affected the training. We can
conclude that the pseudo-labels should be chosen carefully through the strict unanimity
criteria for better training. Although the pseudo-labels generated in such a way become
coarse, the model trained with them provides reasonable predictions as shown in the
aforementioned experiments. The validity of training with coarse labels is also reported
in [142].

3.3.5 Effect of updating the pseudo-labels

We evaluate the effect of pseudo-label update strategies. We compare the strategies as
follows.

• Initial the initial pseudo-labels are used throughout the training.

• Update once the pseudo-labels are updated after three rounds (i.e., 15 epochs).

• Update every round the pseudo-labels are updated every round after the first
three rounds.

The results are shown in Table 3.5. Update once outperformed the other strategies.
We suppose the reason is as follows. The initial pseudo-labels are sparse and many pixels
are ignored in training. Although it plays a crucial role to transfer primary knowledge
from multiple source datasets, using such labels throughout the training leads to a
suboptimal result. Updating the pseudo-labels with Update once strategy enables to
exploit the knowledge learned through the training with the initial pseudo-labels and
involve more pixels in the training to further improve the performance.

Table 3.5: Results of the training with and without pseudo-label update

Initial Update once Update every round

75.44 77.20 74.82

36 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

Table 3.6: Ablation on the pseudo-label noise suppression strategies

Confidence threshold Loss weighting [122] Prototype-based denoising [123] mIoU

73.95
X 74.66
X X 75.89
X X 75.53
X X X 77.20

Table 3.7: Results of the training with different values of threshold α

α 0.7 0.8 0.9 0.95

mIoU 76.87 77.16 77.20 76.63

While the label update improved the performance, updating the labels every round
resulted in the worst IoU. This is an expected result because the pseudo-labels in-
evitably include wrong ones due to misclassifications and the errors are accumulated
as the pseudo-labels are updated by the model trained with them. This problem is also
pointed out in [123]. We, therefore, conclude that the pseudo-labels should be updated
once in the early stage of the training.

3.3.6 Ablation on pseudo-label noise suppression strategies

We conducted an ablation study on the methods for noise suppression. We examined
the methods as follows: confidence thresholding, loss weighting, and prototype-based de-
noising. The confidence thresholding is simply removing outputs with a confidence value
below a predefined threshold from the pseudo-labels. Here, the confidence threshold is
set to 0.9 in all the settings. The loss weighting and the prototype-based denoising are
the methods described in Sec. 3.2.4 and 3.2.4, respectively.

We report the training results on Greenhouse A. The results are shown in Table 3.6.
The strategies for suppressing the effect of noise in pseudo-labels effectively improved the
training performance. The combination of the loss weighting and the prototype-based
pseudo-label denoising on top of the simple confidence thresholding resulted in the best
performance. We, therefore, adopted this setting to all the other training we report in
the following sections.

3.3.7 Parameter sensitivity analysis

We analyze the effect of the confidence threshold in the pseudo-label generation. We
trained models with different thresholds on Greenhouse A dataset. The results are shown
in Table 3.7. α = 0.9 resulted in the best performance. However, the difference among
the parameters is less than one point and thus the method did not show significant
sensitivity to the parameter choice.

3.4. DISCUSSION AND FUTURE WORK 37

3.4 Discussion and future work

3.4.1 Limitations of the hard pseudo-label generation strategy

In the proposed method, pseudo-labels are selected for training only when all the source
models unanimously make predictions on the corresponding pixels. Although such a
conservative strategy contributed to removing noise as shown in Sec. 3.3.4, it also has
some drawbacks. Here, we list the limitations of the proposed method.

1. The limitation of valid labels

The conservative strategy naturally leads to a limited amount of valid labels, which
affects effective training. This problem will be prominent especially when one of
the source model performs badly and does not agree with others. This also hinders
increasing the number of source datasets since the more the source models are, the
harder it becomes to get agreement of all the source models and thus the produced
pseudo-labels become too sparse.

2. The limitation of applicable environments

The current method assumes that all source datasets are close enough to the tar-
get dataset to produce reliable pseudo-labels because, as mentioned above, valid
pseudo-labels are not produced if one of the source models performs badly. Prac-
tically, the pseudo-label generation should adaptavely change the weight on each
source dataset depending on the similarity between each source and the target
dataset to be applicable to a variety of targets, which is not possible in the current
method.

3. The limitation of capability to learn novel object classes

The current method assumes that the label conversion ξi on all source datasets are
surjective. This does not hold in cases where, for example, the target has grass
class and tree class, while a source dataset only has plant class. In such a case,
the current method cannot involve both of those classes in training. There may
also be cases where the target dataset has classes that do not appear in the source
datasets, e.g., objects specific to the environment. The proposed method is not
capable of learning such novel objects.

3.4.2 Attempts to improve the pseudo-label generation and
preliminary results

To overcome the aforementioned limitations, we are working on improving the pseudo-
label generation method. Here, we briefely summarize the possible solution and some
preliminary results.

Basic idea

The aforementioned limitations stem from the conservative nature of the pseudo-label
selection in the current method. On the one hand, it contributes to removing possibly
wrong labels by taking agreement of all source models. On the other hand, however,
it completely ignores information of the pixels that are excluded from the training.

38 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

Moreover, it does not consider the similarity between the source datasets and the target,
and treats their outputs equally. Intuitively, the predictions of a model trained on a
dataset more similar to the target should be prioritized more than others.

Based on the consideration above, we consider exploiting the predicted probability
distribution as well as the one-hot labels. In addition, we also take into account the
information of the domain similarity between each source dataset and the target dataset.
By using the soft pseudo-labels generation considering the domain similarity, we are
expecting improvements as follows:

1. Exploiting information about the prediction confidence, which is ignored in the
hard method

2. Adjusting the contribution weight of each source dataset depending on the simi-
larity to the target

3. Involving object classes that appear in only some of the source datasets in training

Overview of the method

First, a semantic segmentation model F (·; θi) is trained on each training dataset Si in
the same way as the current method (see Sec. 3.2.3).

Second, soft pseudo-labels are generated using the pre-trained source models F (·; θi).
Specifically, the outputs from the source models are weighed with the domain similar-
ity between the target dataset and the corresponding source dataset, summed up, and
normalized to an object probability distribution on each pixel (see Fig. 3.7). To calcu-
late the domain similarity, we employ a method by Liu et al. [143] which evaluates the
domain gap based on the entropy of the prediction of the source models on the target
data. In [143], the domain gap Gi between source dataset Si and target dataset ST is
calculated as follows:

Gi =
1

NT logCi

NT
∑

j

E (pi,j) , (3.11)

where E (·) denotes entropy of the prediction defined as follows:

E (pi,j) = −
∑

h,w

Ci
∑

c=1

p
(h,w,c)
i,j log

(

p
(h,w,c)
i,j

)

. (3.12)

The domain similarity is calculated as inverse of the domain gap. Using the domain
similarity, soft pseudo-labels are generated as follows:

ŷ
(h,w)
T,j = Norm

(

M
∑

i=1

1

Gi
ψi

(

p
(h,w)
i,j

)

)

, (3.13)

where Norm (·) denotes a function to normalize the values so that
∑

c ŷ
(h,w,c)
T,j = 1, and

ψi : R
Ci → R

CT denotes a function to convert a probability distribution in the source
label space to the target label space.

Finally, the target model F (·; θT) is trained using the soft pseudo-labels. Instead of
using the ordinary cross entropy loss (eq. (3.1)) ignoring the background class cφ, we

3.4. DISCUSSION AND FUTURE WORK 39

Source

model 1

Source

model 2

Source

model M

...

Source

model 1

Source

model 2

Source

model M

...

argmax
Input

Entropy

Input

Soft pseudo-label

Hard pseudo-label

Current method

Improved method

Figure 3.7: Overview of the improved pseudo-label generation. Top: Current method to generate
pseudo-labels using multiple source segmentation models. A pixel is assigned with a label only
if all models agree with each other to generate precise labels. If a class is not included in one
dataset, the class never appears in the resulting pseudo-labels. Bottom: Proposed method.
Instead of generating one-hot labels, the proposed method merges predicted object probabilities
by weighing them with the domain similarity, which is calculated as inverse of the domain gap.
It emphasize the prediction of model that is more certain. It can also involve labels that are not
present in part of the source datasets. By using the argmax of the soft pseudo-labels as training
labels and weighing the loss on each pixel with the inverse entropy of the soft pseudo-labels, we
can approximate the training using the hard pseudo-labels.

weigh the cross entropy with the value that decays as the entropy of the soft pseudo-label
increases:

L(h,w)
w ce =W (h,w) logF (x; θT)

(h,w,l̂(h,w)), (3.14)

where W (h,w) = exp
(

−λscale · E
(

ŷ(h,w)
))

is the pixel-wise weight based on the entropy

of the soft pseudo-label, and l̂(h,w) = argmaxc ŷ
(h,w,c) is the label of the class with the

highest score. We replace Lce in eq. (3.7) with eq. (3.14).

Analysis of the soft pseudo-label

Fig. 3.8(b), 3.8(c), and 3.8(d) show an example of hard pseudo-label generated by
our previous method, argmax l̂, and the entropy-based certainty weight Went of the
soft pseudo-label ŷT,j , respectively. The hard pseudo-labels in our previous method are
generated based on unanimous prediction by multiple source models in one-hot label
format. Although this conservative strategy contributes to maintaining the accuracy of
the labels, it still has some wrong ones. In Fig. 3.8(b), for example, part of the wall is

40 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

(a) Input (b) Hard pseudo-label

(c) argmax (d) Certainty

Figure 3.8: Example of hard and soft pseudo-label. (a) Input. (b) Hard pseudo-label generated
by the current method. Precise labels are extracted by merging the outputs from the source
models based on unanimity. Some parts are misclassified (circled in orange). Those misclassified
pixels and correct pixels are treated equally, which will affect training. (c) argmax, and (d)
certainty (inverse of entropy) of the soft pseudo-label. The misclassified pixels in hard pseudo-
label is assigned with a lower weight than the correctly classified pixels. It can suppress the effect
of the misclassified pixels.

misclassified as ground (circled in orange). Once selected as a valid label, the correct
ones and wrong ones are treated equally, which may lead to worse performance.

The advantage of the soft pseudo-label over the hard one is that it can utilize the
information of the prediction certainty of the source models. In Fig. 3.8(d), weight
on the misclassified part is less than correctly classified part. Unlike the hard method
that treats all labels equally, we can expect the soft method to mitigate the effect of
such wrong assignment of the label as misclassification often occurs on pixels with high
prediction uncertainty [123]. We can also see that pixels with a high certainty weight
have a valid pseudo-label. This indicates that weighing the loss with the certainty weight
can be thought as a soft alternative of the previous unanimity-based hard pseudo-label
generation.

In addition, as described in Fig. 3.7, the new method allows for involving object
classes that are present in only some of the source datasets because it does not imme-
diately exclude labels on which the models do not agree with each other, and rather
accumulates predicted probabilities with certainty weights. If some models predict the
class with high certainty, that prediction may be used as the label.

Preliminary results

We conducted training on two target datasets, namely Greenhouse A dataset used in
the experiments of the current method, and TUT Campus dataset, consisting of images
inside the campus of Toyohashi Univerisity of Technology including paved pedestrian
roads and unpaved paths with ground vegetation. As source datasets, we use CamVid
(CV), Cityscapes (CS), and Freiburg Forest (FR) dataset as in the previous experiments.

3.4. DISCUSSION AND FUTURE WORK 41

Table 3.8: Comparison of training with the hard and soft pseudo-labels

Hard (majority) Hard (unanimity) Soft

70.03 77.20 74.08

(a) Input (b) Hard pseudo-label (c) Prediction after training with (b)

(d) Certainty of soft pseudo-label (e) argmax of soft pseudo-label (f) Prediction after training with (d)(e)

Figure 3.9: Results of training with the soft pseudo-labels on TUT Campus dataset

Greenhouse A datasetWe trained a model with the three classes used in the previ-
ous experiments. Table 3.8 shows the comparison with the hard pseudo-label generation
method. The soft pseudo-label generation method did not perform as well as the cur-
rent hard method based on unanimity. However, it surpassed the majority-based hard
pseudo-labels, showing a better potential as a way to exploit information beyond the
unanimously classified labels. Further improvement on training strategy will potentially
provide even better performance.

TUT Campus dataset In this target dataset, we use five object classes that domi-
nate the scenes, namely plant (trees etc.), grass (ground vegetation etc.), artificial object,
road, and sky. CS and FR have a distinction between plant (vegetation in CS, and tree
in FR) and grass (terrain in CS, and grass in FR). CamVid, however, only has tree class
that corresponds to plant in the target dataset (see Table 3.2).

We trained a model with 859 unlabeled images. Fig. 3.9 shows examples of the hard
and soft pseudo-labels, and resulting predictions after training using the two types of
labels. From the figure, we can see a clear limitation of the current method that the
generated pseudo-labels do not include grass class. This is because CV does not have
a corresponding class, and thus the source models can never get agreement with each
other on the class. As a result, most of the grass regions were excluded from the training,
and those regions were misclassified as ground. On the other hand, the soft pseudo-label
involved grass as well, and resulted in more reasonable prediction. The result exhibit a
potential of the method on applicability to a more variety of target scenes.

Future prospect and chellenges

The preliminary results showed a potential of the soft pseudo-label generation method.
Especially the results on TUT Campus dataset showed an advantage of the new method,

42 CHAPTER 3. PSEUDO-LABEL LEARNING OF SEM. SEG.

Table 3.9: Quantitative results on TUT Campus dataset

Method
Class IoU

mIoU
Plant Grass Artificial Ground Sky

Hard 83.97 0.0 51.57 16.39 80.96 46.58
Soft 82.96 44.11 67.68 27.72 81.31 60.76

that is a capability of training a model with object classes not included in some of the
source datasets. It will improve the applicability of the method to a wider variety of
target scenes. However, the training method is still not optimal, and has a large room for
improvement. Particularly, we need to explore a way to exploit the soft pseudo-labels
more effectively. Quantitative evaluation on manually labeled data is also necessary.
In addition, we also need to further investigate how the domain similarity influence the
pseudo-label generation on different kinds of scenes to see the adaptability of the method
to various environments.

3.5 Summary

In this chapter, we tackled a task of unsupervised domain adaptation from multiple
outdoor datasets to greenhouse datasets, to train a model for scene recognition of agri-
cultural mobile robots. We considered using multiple publicly available datasets of
outdoor images as source datasets since it is difficult to prepare synthetic datasets of
greenhouses as done in conventional work. To effectively exploit the knowledge from
the source datasets whose appearance and structure is very different from the target
environment, we proposed a pseudo-label generation method that takes outputs from
each source model and selects only the labels that are unanimously predicted by all the
source models. By the combination of our pseudo-label generation method and conven-
tional methods, training of semantic segmentation on the greenhouse datasets is enabled
without manual labeling of images. This contributes to reducing the burden of applying
a visual scene recognition system of mobile robots in greenhouses.

We also summarized the recent progress on improving the method of pseudo-label
generation to overcome some limitations.

In the next chapter, we describe a method of scene recognition considering traversable
plants. We train a model for predicting general object classes using the method described
here.

Chapter 4

Image-Based Scene Recognition
for Robot Navigation Considering
Traversable Plants

4.1 Introduction

In this chapter, we present a novel framework of scene recognition and robot navigation
that takes into account traversable plants covering the paths. To recognize objects
as traversable, it is not sufficient to just recognize plants because plants have both
traversable parts such as branches and leaves, and non-traversable parts such as stems.
Datasets with such fine-grained classes are not publicly available to the best of our
knowledge. To provide information of traversability of objects, which cannot be acquired
from existing datasets, we use label data indicating the regions with objects that the
robot has traversed during data acquisition phases, coined traversability masks. Since
the traversability masks are generated based on a limited number of the robot’s traversal
experiences, all traversable regions are not labeled but some of them are left unlabeled.
Directly using such masks as labels of traversable plants will confuse the training. To
take full advantage of the incomplete information of the traversability masks, we present
a deep neural network (DNN) architecture and its training method inspired by PU
(positive and unlabeled) learning [24], where a model is trained with labeled positive
examples and unlabeled examples including both positive and negative ones.

The overview of the proposed method is shown in Fig. 4.1. The proposed DNN archi-
tecture consists of Semantic Segmentation Module (SSM) for pixel-wise general object
classification and Traversability Estimation Module (TEM) for estimating traversability
which indicates how likely that each pixel can be traversed by robots. SSM is trained
using the method described in Chapter 3. TEM is then trained using the features from
SSM as inputs and the traversability masks. For the training of TEM, we introduce
a training method inspired by PU learning [24] in order to take full advantage of the
information given by the traversability masks. The overall network is therefore trained
without manual annotation of the training images.

The prediction results (the object class and the traversability of each pixel) are
then projected to the 3D space to build a semantic 3D voxel map used in navigation.
For each data frame, the prediction results (observations) are temporally fused with
the prior probabilities of the object classes and the traversability in each voxel using

43

44 CHAPTER 4. TRAVERSABILITY ESTIMATION

Segmentation

encoder

Segmentation

decoder

Traversability

decoder

Semantic Segmentation Module Traversability Estimation Module

Trained with Pseudo-labels
→ Generated using public datasets

Trained with Traversability masks
→ Generated from robot’s experience

Feature

(a) Network architecture

1. Get RGB-D data 2. Scene recognition

Object classes Traversability

3. Semantic 3D map generation

4. Navigation

(b) Navigation pipeline

Figure 4.1: Overview of the proposed method. (a) Our image-based recognition module consists
of two modules: Semantic Segmentation Module (SSM) for pixel-wise general object classifica-
tion, and Traversability Estimation Module (TEM) for pixel-wise traversability estimation. SSM
is trained by a pseudo-label learning method. TEM is trained with the traversability masks
generated based on the robot’s experience. (b) During the robot navigation, object classes and
the traversability are predicted, fused with depth data and projected in the 3D space to build a
semantic 3D map. The voxels predicted as plants and with high traversability are not considered
as obstacles and thus the robot is able to traverse paths covered by traversable plant parts.

Bayes’ update. By treating as free spaces voxels where the probability of plant is the
highest and the traversability is greater than a threshold, the robot is able to navigate
through traversable plant parts covering the paths. In this work, we conduct navigation
experiments in a real-world greenhouse as an example of plant-rich environments.

The contributions of this work are as follows:

1. A novel framework of scene recognition considering both general object classes and
the traversability of objects for robot navigation in plant-rich environments.

2. A manual annotation-free training method for the scene recognition model.

3. A PU learning-based training for traversability estimation which requires only
positive labels given to a part of traversable regions in images.

4. Applying the scene recognition model to the navigation tasks in a real greenhouse
with plants partially covering the paths.

4.2 Proposed Method

Fig. 4.1 shows the overview of the proposed framework. We employ two network modules
for the scene recognition: Semantic Segmentation Module (SSM) for semantic segmen-
tation, and Traversability Estimation Module (TEM) for traversability estimation. SSM
is trained by an unsupervised domain adaptation method. For the training of TEM, we
generate traversability masks based on the robot’s traversal experience. The network
is then trained with the generated traversability masks (Fig. 4.1(a)). Predictions of

4.2. PROPOSED METHOD 45

the trained network are projected to the 3D space to build semantic local 3D map that
indicates the object classes and traversability of the regions around the robot and the
navigation is operated based on the map (Fig. 4.1(b)).

4.2.1 Traversability mask

The traversability masks are label data that indicate the image regions traversed by the
robot or a human during the data acquisition phase. Using the traversability masks, we
automatically label the regions of images dominated by traversable plant parts to train
a network so that it can distinguish traversable and non-traversable plants based on the
robot’s experience.

We first acquire RGB-D data by manually operating a robot or walking inside the
target greenhouse with an RGB-D sensor moving through the plants. We then build a
3D voxel map using RTAB-Map [144] from the RGB-D data. After that, by utilizing
the robot’s path estimated in the mapping process, the voxels traversed by the robot
or the human are labeled. Here, we approximate the shape of the robot or the human
with a rectangular, and from each observation point of the 3D voxel map, voxels within
the rectangular are labeled as traversed. Finally, traversability masks are generated by
projecting the traversability labels of the voxels on an image plane from each sensor pose
on the map.

Examples of the traversability masks are shown in Fig. 4.2. One may notice that
while much of traversable plant parts such as leaves and branches are labeled, there is also
quite a lot of unlabeled regions of traversable plants. This is because the traversability
masks are based on the limited number of traverses during the data acquisition phase.
This nature of the traversability masks makes it inappropriate to simply treat them
as positive and negative examples. By our training method inspired by PU learning
[24] described in 4.2.2, the traversability masks are effectively exploited to distinguish
traversable and non-traversable plants.

4.2.2 Network architecture

In this section, we describe a network architecture for pixel-wise semantic segmentation
and traversability estimation. The overview of our network is shown in Fig. 4.1(a). The
network consists of Semantic Segmentation Module (SSM) for pixel-wise object label
assignment and Traversability Estimation Module (TEM) for estimating how likely that
each pixel can be traversed by robots. SSM is first trained independently. TEM is then
trained with intermediate features of SSM as inputs and traversability masks as training
labels. The reason for not training them simultaneously is to avoid overfitting of the
entire network to the traversability masks which include unlabeled traversable regions.

Our network is based on ESPNetv2 [101] and we make two modifications. First,
an auxiliary segmentation branch is attached to the middle of the main network of
ESPNetv2. We refer to the segmentation network including the auxiliary branch as
SSM (Semantic Segmentation Module). The auxiliary branch is used to estimate pixel-
wise uncertainty for the training of SSM proposed in Chapter 3. Second, a branch for
estimating traversability, i.e., TEM is attached. The intermediate feature from the SSM
is fed into a 3×3 convolution and the sigmoid function to produce pixel-wise probability
predictions. For the complete network architecture, see Fig. A.1 in the Appendix. The

46 CHAPTER 4. TRAVERSABILITY ESTIMATION

Figure 4.2: Examples of traversability masks. Regions traversed by the robot are superimposed
on the corresponding camera images

additional layers do not affect the computational efficiency and still allows for prediction
at sufficient speed as explained in 4.3.2.

The advantages of our architecture are three-fold. Firstly, the model structure allows
for training of TEM using traversability masks via PU learning. As already mentioned,
ordinary binary classification relying only on traversability masks will fail because the
unlabeled regions also include traversable plant regions, and treating those unlabeled
traversable regions will confuse the training. Instead, we utilize discriminative features
learned through the semantic segmentation task for PU learning. By this way, we can
effectively exploit the incomplete and positive-only traversability masks.

Secondly, by separating the tasks into semantic segmentation and traversability es-
timation, the branches for each task can be trained with the maximum possible number
of data. Because the traversability masks are generated from a map, the number of
available training data for TEM is less than that for SSM, which only requires RGB
images. Thanks to the network structure, the SSM can fully exploit available training
images for a better performance of semantic segmentation individually from the training
of TEM. In fact, as shown later in 4.3.1, the SSM was trained with 6689 images while the
TEM was trained with 889 images with traversability masks in our experiment. Thirdly,

4.2. PROPOSED METHOD 47

the two modules provide complementary information. Misclassifications of TEM can be
refined by a prediction of SSM by utilizing prior knowledge that, e.g., artificial objects
are not traversable. We evaluate this effect in 4.3.1.

Semantic Segmentation Module

Semantic Segmentation Module (SSM) is responsible for pixel-wise general object clas-
sification. Here we use three general object classes: plants, artificial objects, and the
ground. Besides the object classes, the SSM also provides a discriminative feature on
each pixel for the training of the TEM. For training SSM, we use a method described in
Chapter 3.

Traversability Estimation Module

Traversability Estimation Module (TEM) estimates the probabilities that the pixels are
traversable. In the training of TEM with the traversability masks, we introduce the
Positive and Unlabeled (PU) learning framework. The purpose of PU learning is to
model a probability function p(y = 1|x), where x is an input data and y ∈ {0, 1} is
a binary label of the data x, in a situation where a part of the positive data (y = 1)
is labeled as positive, and the rest is unlabeled and can be either positive or negative.
Elkan and Noto [24] state that under the “selected completely at random” assumption,
meaning that the labels are given completely at random, PU learning can be solved
by modeling a classifier g(x) such that g(x) = p(s = 1|x), where s denotes a random
variable indicating that data x is labeled if s = 1. Here, note that y = 1 if s = 1 but
not vice versa. The equation can then be transformed as follows, given the “selected
completely at random” assumption, i.e., p(s = 1|y = 1, x) = p(s = 1|y = 1):

g(x) = p(s = 1|x)

= p(y = 1 ∧ s = 1|x)

= p(y = 1|x)p(s = 1|y = 1, x)

= p(y = 1|x)p(s = 1|y = 1). (4.1)

Therefore, the traversable probability of a pixel p(y = 1|x) can be calculated as follows:

p(y = 1|x) =
g(x)

c
, (4.2)

where c = p(s = 1|y = 1) which denotes the conditional probability that a positive data
is labeled. c is approximated by feeding the training data to the estimated g(x) and
average the probabilities of the labeled features, i.e.,

c = p(s = 1|y = 1) ≈
1

n

∑

x∈P

g(x), (4.3)

where P denotes a set of all labeled pixels in the training dataset and n is the number
of elements in P .

In TEM, we first model the label probability g(x) = p(s = 1|x) by a convolution and
a sigmoid activation. The output is then divided by c calculated by eq. (4.3) to produce
p(y = 1|x). The feature map from the SSM is fed in TEM. The size of the feature map
is (B,C,H,W) where B denotes the batch size, C denotes the channel size, H and W

48 CHAPTER 4. TRAVERSABILITY ESTIMATION

denote the height and the width, respectively. Here we consider a vector of size C as an
input x for the corresponding pixel. 3×3 convolution is applied to the features, followed
by a sigmoid function to scale the output in the range of [0, 1]. We use 3×3 convolution
instead of 1× 1 convolution to take information of adjacent pixels into consideration in
the estimation.

Note that the “selected completely at random” assumption does not strictly hold in
our task. In practice, however, we confirm that this formulation is effective to estimate
pixel-wise traversability.

4.2.3 3D semantic voxel map

Using the results of the recognition explained in section 4.2.2, we build 3D semantic
voxel map around the robot. At first, an RGB image acquired from the RGB-D sensor
is passed to the segmentation network. The predictions from SSM and TEM are then
mapped into the 3D space using the corresponding depth image. The 3D space around
the robot is divided into voxels with a side of 0.1 [m], and the predictions mapped into
the 3D space are assigned to a corresponding voxel that they fall into. For the object
class information, a histogram of the object classes is constructed in each voxel and
the class label with highest frequency within the voxel is used as an observation. For
the traversability information, the traversability values of the points within a voxel are
averaged and treated as an observation.

In each time step, those observations are temporally fused by Bayesian update. The
observation of the object class zot at time t is fused by the following equation:

P (lt|z
o
t) = ηP (zot |lt−1)P (lt−1), (4.4)

where lt denotes an object label of the voxel at time t, η is a normalization term and
P (lt−1) is the prior of label lt−1 at time t − 1. P (zot |l) is the likelihood of label l with
observation zot . The likelihood is calculated using greenhouse images not used in the
training of SSM as follows. Firstly, pseudo-labels are generated for each image. The
same images are then fed in SSM and outputs of pixel-wise class label are produced. For
each object class l, a histogram of predicted object classes over all pixels of the pseudo-
labels with the label l. A conditional probability P (zo|l) is calculated by normalizing
the histogram and used as a likelihood function. The object class with the highest
probability is assigned to the voxel as its label.

Similarly, the observation of traversability is fused by the following equation:

P (τt|z
τ
t) = ηP (zτt |τt−1)P (τt−1), (4.5)

where τt ∈ {0, 1} denotes an event that the voxel is traversable (1) or not traversable (0)
at time t. The likelihood P (zτt |τ) is calculated using the training images with traversabil-
ity masks as follows. The input images are fed in TEM and outputs of traversability
values are yielded. For each label τ ∈ {0, 1} in the traversability masks, a histogram of
estimated traversability values is calculated over all pixels with the traversability label
τ . The histograms are then normalized to calculate a conditional probability P (zτt |τ)
and it is used as a likelihood.

After the integration of observed points to the semantic voxel map, obstacle point
cloud is generated by treating the voxels whose object class is “plant” and the traversabil-
ity is higher than the threshold as free spaces and the others as obstacles. The location

4.3. EXPERIMENTS 49

Table 4.1: Greenhouse datasets used in the training. The type of each set is shown in the brackets

Train Test Date

A 6684 (unlabeled) 33 (true trav. labels) May 25, 2018
B 899 (w/ trav. masks) - July 12, 2019

of a point for a voxel is the centroid of the points that have been accumulated in the
voxel over the frames. By feeding the obstacle point cloud to a conventional navigation
module, the navigation in plant-rich environments is realized. For mitigating the degra-
dation of the processing speed as the number of voxels increases, the voxels where no
point has been observed for a certain number of consecutive frames are removed from
the map. In the experiment below, the number of frames is set to 10.

4.3 Experiments

4.3.1 Evaluation of TEM

Used datasets

For the training of SSM by the UDA method, we used three source datasets: CamVid
[139], Cityscapes [107], and Freiburg Forest [140], for generating pseudo-labels. As target
data, we used 6684 unlabeled greenhouse images from Greenhouse A dataset, taken in
a greenhouse growing tomatoes.

For the training of TEM, we used 899 pairs of an RGB image and the correspond-
ing traversability mask from Greenhouse B dataset, taken in the same greenhouse as
Greenhouse A on a different date. The data were collected through a human opera-
tor’s control of the robot for about 20 minutes in total. During the data collection, the
robot traversed each of the paths with plant rows on both sides only once. The labels
are therefore imbalanced as can be seen in Fig. 4.2. Approximately 40 to 50 % of the
traversable plant regions were actually labeled. Greenhouse A and B have a different
appearance due to a different level of growth of the plants. For the evaluation, we man-
ually gave true labels of traversable regions on 33 images from Greenhouse A. Overview
of the greenhouse datasets is shown in Table 4.1.

Training conditions and hyperparameters

The DNN model is implemented with PyTorch [145] and all of the training is performed
on one NVIDIA Quadro RTX 8000 with 48GB of memory. In the training of SSM, the
training epoch is set to 200 with a fixed learning rate of 5 × 10−5, and the batch size
of 64. TEM is then trained with weights of SSM fixed. The number of epoch is set to
200 and the batch size is 64. We use cyclical learning rate scheduling [146]. The initial
learning rate is 5 × 10−5 and linearly increases by a factor of 10 in 10 epochs and then
decreases to the original value in 20 epochs.

Baselines for traversability estimation

As baseline methods of image-based traversability estimation, we use the following meth-
ods.

50 CHAPTER 4. TRAVERSABILITY ESTIMATION

0.5 0.6 0.7 0.8 0.9 1.0
Recall

0.2

0.3

0.4

0.5

0.6

Pr
ec

isi
on

 /
Io

U

Precision-Recall curve
IoU-Recall curve
Refined Precision-Recall curve
Refined IoU-Recall curve

Figure 4.3: Precision-Recall curve and IoU-Recall curve of traversability estimation

Semantic segmentation We train a semantic segmentation model with “traversable
plant” class as well as the classes used in the training of SSM. A model identical to SSM
is used as a semantic segmentation model. For training, we used the same dataset as the
one used in the training of TEM (899 RGB images with traversability masks). Pseudo-
labels are generated for each image with the three classes. Labels of the pixels with the
“plant” class are then changed to “traversable plant” if the value of the corresponding
traversability mask is 1 (traversable). As a result, the object classes used in the training
are as follows: traversable plant, other plant, artificial object, and ground. We initialize
the network via pre-training with Greenhouse A dataset. A constant learning rate of
1× 10−4 is used and an epoch size is 50.

Kim et al. Out of few studies that explicitly predict the traversability of objects such
as plants, we use Kim et al. [23, 34] as another baseline. They addressed the problem of
training a classifier based on a robot’s experience of successes/failures of traversals, which
shares the research target with ours. To evaluate the baseline method, we conducted
10-fold cross validation using the 33 test images with ground truth labels. We use
those data instead of the training images with traversability masks for two reasons: 1.
the baseline method assumes complete labels of traversable/non-traversable while the
traversability masks are not complete and include unlabeled traversable regions. 2. the
baseline method is for incremental online learning with several image frames instead of
hundreds of training data. In the original work [34], ten consecutive frames of images
are used for training.

Results

We evaluate the binary traversability images generated from the predicted traversability
with different thresholds. Here we compare two types of binary images: raw and refined.
The raw binary images are generated by just binarizing the predicted traversability with
a threshold. The refined binary images are generated by additionally setting all the
pixels predicted as an artificial object or the ground to non-traversable. This refinement
provides the filtering effect of false positive traversability predictions even in the case of
high predicted traversability, which is equivalent to the calculation in the voxel described

4.3. EXPERIMENTS 51

Table 4.2: Performance of TEM

IoU (%) Accuracy (%) Precision (%) Recall (%)

Raw 44.69 82.73 50.39 81.41
Refined 45.03 (+0.34) 83.05 (+0.32) 51.00 (+0.61) 81.04 (-0.37)

Segmentation 2.97 82.76 45.45 3.10
Kim et al. [34] 30.95 80.42 35.87 72.12

In
p
u
t

G
ro

u
n
d

tr
u
th

R
a
w

R
e
fin

e
d

S
e
m

a
n
ti

c

s
e
g
m

e
n
ta

ti
o
n

K
im

 e
t

a
l.

Figure 4.4: Prediction results of TEM. From the top: Camera images, Ground truth, predicted
binary images with threshold 0.75, refined binary images, binary images generated from the
ordinary semantic segmentation method (“traversable plant” pixels are shown in white), and
binary images generated from the probability maps predicted by the baseline method [34]. Note
that the traversable regions are not identical to the plant regions, but plant parts such as stems are
not traversable. TEM is capable of distinguishing the traversable plants from the non-traversable
ones (highlighted in yellow ellipses). The refinement by predicted object classes mainly worked
as noise suppression (highlighted in red rectangles).

in 4.2.3 where the final decision of traversability is given considering both the object class
and the predicted traversability. Fig. 4.3 shows a Precision-Recall curve as well as an
IoU-Recall curve to analyze the performance of TEM. The best IoU was achieved when
the threshold was 0.75. Therefore, we use this traversability threshold in the rest of this
chapter. Table 4.2 shows the accuracy, precision, and recall of the model on the test set
with the threshold of 0.75.

From Fig. 4.3 and Table 4.2, we can see high recall and relatively low precision. The
refined predictions resulted in better precision and IoU. This result indicates that fusing
the predictions of object classes and traversability decreased the false positive rate and
thus is suitable for safe robot operation compared to only predicting the traversability.

Fig. 4.4 is the visualization of the prediction by TEM. Much of the traversable regions

52 CHAPTER 4. TRAVERSABILITY ESTIMATION

are classified as positive. In addition, some non-traversable plants are predicted correctly.
This result shows that our model can learn the differences between traversable and non-
traversable plants. In terms of the refined results, we cannot qualitatively see obvious
improvements, but we confirmed that small prediction noise was suppressed. Note that
these segmentation results are yielded from automatically generated traversability masks,
which are incomplete and noisy. Even from such data, our PU learning-based training
framework effectively learns the features of traversable objects, and provides reasonable
estimation.
Comparison to the semantic segmentation TEM provided better performance than
the segmentation-only method in all the metrics. Especially, the IoU and the recall were
significantly low in the ordinary semantic segmentation. In Fig. 4.4, we can see that
the semantic segmentation method could not capture the traversable plant regions well.
We suppose it is because the labeling of “traversable plant” regions does not cover all
the traversable plant regions as mentioned in 4.2.1 and results in inconsistent labels
with traversable plant regions labeled as non-traversable plant. Such labels confuse the
training. Therefore, the segmentation-only method does not get along with the sparse
traversable masks. On the other hand, our proposed method enables more accurate and
effective training of the model to estimate traversability of image regions.
Comparison to Kim et al. We report the average of the metrics over the 10 different
partitions for the cross-validation in Table 4.2. For each data partition, the threshold of
the probability is determined so that it yields the best mean IoU for the test images. As
a result, our proposed method outperformed the baseline in all the metrics even though
the baseline model is trained with ground truth labels while our method is trained with
noisy and incomplete traversability masks. As can be seen in Fig. 4.4, although the
plant regions are mostly classified correctly, other regions of artificial objects and the
ground are also classified as traversable. Moreover, the traversable leaves and branches
and non-traversable stem parts are not distinguished and almost equally classified as
traversable.

Our method is advantageous over the baseline by Kim et al. in three aspects. First,
our PU learning-based method enables the training without negative labels that are
difficult to acquire. In [23], negative labels are collected using the information of the
robot actually bumping into an obstacle, which is not appropriate in environments such
as greenhouses. Our learning framework allows for safer and more practical way of
training the scene recognition model by utilizing only positive labels acquired via the
control by a human operator. Second, our model provides semantics about object classes
to complement the estimation of traversability. As can be seen in Fig. 4.4, there are a
lot of regions wrongly classified as traversable in the prediction of the baseline method.
There is no way to correct the misclassifications in the baseline, while our method can
amend them using the prediction by SSM as mentioned above. Third, our method can
utilize more discriminative features thanks to the DNN model trained in the task of
semantic segmentation, which led to the better performance of the proposed method
over the baseline even by the raw predictions of TEM.

4.3.2 Navigation in a greenhouse

Finally, we conducted a real-world navigation experiment in a greenhouse. All the
software is processed on a laptop with an Intel Core i7-6700HQ, an NVIDIA GeForce
960M, and 32 GB RAM. Revast Mercury is used as a robot platform (See Fig. 4.5(a)).

4.3. EXPERIMENTS 53

UTM-30LX

Kinect v2

(a) Robot configuration (b) Inside the greenhouse

Figure 4.5: Experiment environment

As sensors, the robot is equipped with a Kinect v2, an RGB-D sensor, and Hokuyo
UTM-30LX, a laser range finder.

An image of a path in the greenhouse is shown in Fig. 4.5(b). The length of the
paths is approximately 7.5 [m]. The software for the DNN prediction is implemented
on Robot Operating System (ROS) [147] with C++ and Libtorch, a C++ library for
PyTorch. The frame rate of the prediction of the network is approximately 8 [fps] and
the 3D mapping runs at approximately 5 [fps]. The frame rate of the original ESPNetv2
is also approximately 8 [fps] on the same computer and thus our modification to the
network does not affect the computational efficiency.

As a baseline for navigation, we also test a system that considers all the voxels as
obstacles. It corresponds to using only geometric information, which is a major approach
in most of the current mobile robots.

Obstacle detection in a simple forward motion

As a primary experiment, we conducted an experiment of obstacle detection using the
proposed 3D semantic map during the robot’s act of moving forward. We assume that
the path is straight and constant control signals of linear velocity are given to the robot
while the robot recognizes the traversability of objects in front. The linear velocity is
set to 0.1 [m/s]. An obstacle point cloud is generated from the 3D semantic voxel map
by outputting only voxels other than “traversable plant” as obstacle points. When an
obstacle point is detected within a range in front of the robot, the control signal is
stopped.

We carried out 5 trials on the same path. The baseline navigation method consis-
tently failed the task due to the part of plants grown out to the path. In contrast,
our system was able to recognize the traversable plants and navigate through the path
between the plant rows in all the trials. This result shows the ability of our scene recogni-
tion method to recognize the traversable plants covering the path. There were, however,

54 CHAPTER 4. TRAVERSABILITY ESTIMATION

Robot

(a)

Obstacles

Robot

(b)

Robot

(c)

Figure 4.6: Generated 3D maps during the experiment. An input image, a predicted segmenta-
tion image, and a predicted pixel-wise traversability are shown on the left side of each figure. In
the segmentation images, blue is the plant, red is the artificial object and yellow is the ground. In
the figures of 3D map, green indicates traversable voxels with the plant class and the traversabil-
ity higher than the threshold. The rest of the colors indicates the same object classes as in the
segmentation images.

some cases where the robot stops for a while and then restarts even though there was no
obstacle. This was due to misclassification of voxels in front of the robots as obstacles.
The misclassification of voxels stems either from the error in the image-based semantic
segmentation or from the registration error between the predicted segmentation images
and the corresponding depth images, which RGB-D sensors inevitably have. Errors
temporarily occurring on a few pixels are suppressed by the voxelization and the Bayes’
update. When the error consistently occurs on a large area, however, the corresponding
voxel can be misclassified.

Fig. 4.6 is the visualization of the semantic 3D maps generated during the experiment
at different times in chronological order. There were a lot of plant parts partially covering
the path. Our proposed method was able to recognize the traversable plants and to
traverse them. Fig. 4.6(b) shows the case where the system wrongly recognized the
regions in a far front of the robot as obstacles shown in the red voxels. The robot
stopped moving in response to the obstacles. After observing a few data frames while
stopping, the obstacle voxels were removed from the map and the robot resumed the
navigation. We suppose the cause of this phenomenon as follows. When the misclassified
regions are far from the robot, the segmentation results and the depth readings can be
more noisy and it results in the misclassification of the voxels or creating voxels on wrong
locations. In the case in Fig. 4.6(b), it is more likely that the voxels were spawned on
wrong locations due to the depth noise. As the robot approaches the voxels, both the
segmentation and the depth values become more accurate and the voxels are updated
with those observations. As a result, in the case in Fig. 4.6(c), the misclassified voxels
were deleted from the voxel map because points in those voxels were not observed for
the pre-defined number of frames (10 frames) when the robot was stopping near them.

Integration with move base

We also conducted an experiment of applying our 3D semantic voxel map to navigation
using move base1, a de facto standard navigation software in ROS [147].

1http://wiki.ros.org/move_base

http://wiki.ros.org/move_base

4.3. EXPERIMENTS 55

Table 4.3: Result of the navigation experiment using move base

Trials Traversed (intervened) Stuck

12 8 (5) 4

(a) Input image (b) Baseline for navigation (c) Ours

Figure 4.7: Costmaps in the baseline and the proposed method. (a) An input image. (b) Semantic
3D voxel map and the costmap of the baseline. All the voxels are considered as obstacles and
thus the path is recognized as blocked. (c) Semantic 3D voxel map and the costmap generated
by the proposed method. The voxels of traversable plant are not considered as obstacles and the
path is recognized as traversable.

The obstacle point cloud is fed in move base as a sensor reading. In addition to the
obstacle point cloud, a 2D laser range finder (LRF) is used to complement the blind spot
of the RGB-D sensor and stabilize the navigation. Because of this purpose, the obstacle
range of the LRF is limited to 1.0 [m]. The configuration of the LRF is the same in
the baseline method. Sub-goals are given manually via Rviz, an interactive GUI tool for
visualization.

Here, we define criteria for judging the success or failure of the trials. In all the trials,
we observed that the accuracy of the SSM consistently degrades about 2.5 [m] before
the end of the paths and the robot fails to detect the traversable path (We discuss this
problem in 4.3.3). We therefore consider a trial in which the robot reached about 2.5 [m]
before the end of the path as “traversed“. When the robot stops due to misclassification,
we allow a human’s intervention by manually restarting move base to clear the costmap
at most once. Trials where the robot gets stuck even after the human intervention are
marked as “stuck”.

The baseline navigation method consistently failed to find a path on three paths
before entering them. An example of a costmap generated with the baseline method
is shown in Fig. 4.7(b). We carried out 12 trials of navigation on the three paths (4
each) with the proposed method. The result is shown in Table 4.3. The robot with
the proposed method succeeded to traverse through the path partially covered by plants
in 8 trials, 5 of which involved a human’s intervention. The costmaps generated with
the proposed method are compared in Fig. 4.7(c). From these results, we can see
that our proposed method enables the robot to recognize the traversable plant parts,
which would otherwise be recognized as obstacles, and traverse through them. However,
misclassifications affected the robot’s motion as can be seen from the number of required
interventions and failures.

56 CHAPTER 4. TRAVERSABILITY ESTIMATION

4.3.3 Discussion

1. Cause of the failures of navigation

We showed that our method enabled navigation through the paths covered by
traversable plant parts in the greenhouse, while the baseline method constantly
failed.

In all the trials, however, the robot with our proposed method consistently failed
to navigate about 2.5 [m] before the end of the paths. In addition, in some of the
successful trials, it required a human’s intervention due to misclassifications. On
the other hand, in the experiment in 4.3.2, all the 5 trials were successful without
any interventions.

We suppose that the difference of the degrees of the success rates stems from the
difference of the density of leaves. In such a case, majority of the regions are
dominated by a single class of “plant” and a few misclassifications are filtered out
in the probability calculation in each voxel. In the experiment in 4.3.2, however,
leaves were sparse and artificial objects behind the plant rows were also visible
through the leaves. This was especially obvious near the end of the path. Since
the SSM is trained with pseudo-labels, which are generated by merging the outputs
from multiple pre-trained models, the model lacks pixel-level accuracy. This is the
current limitation of our method.

For more reliable navigation, the accuracy of the recognition model needs to be
improved. In addition, to deal with the prediction noise in DNN models, a better
filtering and/or refinement methods should be implemented.

2. Adaptability of the proposed system

The success of the training of our scene recognition model depends on the UDA of
semantic segmentation, since TEM takes the intermediate features of the semantic
segmentation network (SSM) for estimation. In terms of the segmentation tasks
in greenhouses, we confirmed in Chapter 3 that our UDA method is applicable to
multiple greenhouses and multiple seasons. The proposed method will thus also
be applicable to various greenhouse environments. When applying the proposed
system in a new environment, in general, the segmentation model will need to
be newly trained to adapt to the environment. Once the segmentation model is
trained, TEM can be trained in the same manner as described in this chapter.
Note that our proposed model and the training method provide advantages of
the training with a little images and incomplete positive labels, which lead to a
minimum burden in deployment.

3. Influence of the sensor setting

In this work, we employed a Kinect v2 for simplicity of implementation of the sensor
system to acquire calibrated RGB and depth images. Although it is sensitive to
disturbance from strong light, we did not observe any severe effect of the sunlight
on the depth readings. in our experiments. We suppose it is because the sunlight
was cut by the translucent roof and walls of the greenhouse and the leaves, and
thus the sensor was able to work in moderate lighting conditions. When we apply
the system to outdoor environments, however, the choice of sensors will influence
the accuracy and reliability of the system. Note that our proposed method is

4.4. SUMMARY 57

compatible with any sensors that can provide registered RGB images and depth
readings and the sensors can be selected based on the lighting condition of the
target environment. Applicable sensor settings include a stereo sensor, and well-
calibrated 3D LiDAR and a monocular camera.

In terms of sensor calibration, Kinect v2 was used out-of-the-box in our experi-
ments. In multi-sensor setting, it will indeed require a precise calibration, although
the Bayes’ update and the voxelization process can to some extent deal with a little
noise due to the misalignment of the sensors.

4.4 Summary

In this chapter, we described a method of estimating the traversability of plants covering
a path and navigating through them in plant-rich environments for mobile robots. We
proposed the following novel methods. 1. A scene recognition model that estimates
general object classes and the traversability of the objects. 2. A manual annotation-
free training of the model using an unsupervised domain adaptation method for the
semantic segmentation module (SSM) and the information of the robot’s traversals,
named Traverasability masks for the traversability estimation module (TEM). 3. A PU
learning-based training method to effectively train TEM with the traversability masks,
which include unlabeled traversable regions. Our proposed method enables easy and
safe deployment of mobile robots with the capability of recognizing traversable plants
with a minimum burden. In the comparative analysis, we confirmed that the proposed
method is able to estimate the traversability of image regions more accurately than a
conventional semantic segmentation and an existing work of image-based traversability
estimation. Moreover, we applied the scene recognition model to the navigation tasks in
a real greenhouse with plants covering the paths and confirmed its ability to recognize
traversable plants and navigate through them.

Chapter 5

Online Refinement of the Scene
Recognition Model by Observing
Human’s Interaction with the
Environment

5.1 Introduction

Although we demonstrated the effectiveness of the scene recognition method through
navigation experiments in a plant-rich greenhouse in the previous chapter, misclassifica-
tions remain to be a critical problem. Fig. 5.1 shows an example of a case where some
voxels of traversable plants are misclassified as other obstacles and the path is consid-
ered blocked. When such a misclassification often occurs, the robot easily gets stuck.

Misclassified voxels

Traversable plant
Non-traversable plant
Artificial object
Ground

Figure 5.1: Misclassification in the conventional system. Since voxels other than traversable plant
class are treated as obstacles in our system, the path is considered as blocked when voxels of
traversable plants on the path are misclassified, which obstructs the robot.

59

60 CHAPTER 5. ONLINE MODEL REFINEMENT

Such misclassifications are inevitable in scene recognition methods including DNNs. A
method to deal with them on the fly is, therefore, needed for practical uses of such a
navigation system.

To this end, we develop a method for online refinement of the recognition model
exploiting a human’s interaction with the misclassified traversable plant regions during
the actual operation of mobile robots. Ideally, the robot should indicate possibly mis-
classified regions to the human with some interfaces to acquire data efficiently. In this
work, however, we consider a situation where the human randomly touches the plant
parts. We propose a framework for refining the semantic segmentation model making
use of the information acquired through such interaction. The proposed method will
be a building block of more advanced system for traversable plant recognition with a
function for online refinement of the recognition model.

In the proposed method, a human first touches regions of plants in the 3D space
to provide the robot with information to correct the recognition of plants. The robot
observes the interaction using a human pose detector such as OpenPose [148] to identify
plant regions indicated by the human. Masks of the interacted regions in images are
generated for the model refinement. The scene recognition model is then refined using
the mask so that next time the robot encounters similar scenes, the robot recognizes
the scenes correctly. More specifically, we introduce a few-shot learning method based
on weight imprinting [135]. Since the masks of interacted regions are generated using
depth images from an RGB-D sensor, we add a modification to the process of weight
imprinting to deal with noise included in the masks.

The contributions of this work are as follows:

1. A novel framework of online refinement of a scene recognition model exploiting
data acquired during the robot’s operation using a human’s interaction with the
environment.

2. A novel weight imprinting-based few-shot segmentation that is robust to noise in
the masks.

5.2 Proposed Method

Our aim is to refine the scene recognition model on the fly with data collected during the
robot’s operation. General fine-tuning is not suitable due to limitations of computational
resources and of the variety of image data acquired during the operation. We, therefore,
adopt a few-shot segmentation method based on weight imprinting [135], which does not
require fine-tuning with costly backpropagation.

5.2.1 Preliminary: Weight imprinting

Weight imprinting [135] was first proposed as a method for few-shot image classification.
Given an embedding extractor φ : RN → R

D which maps an input x ∈ R
N to a D-

dimensional vector φ(x) ∈ R
D, and a softmax classifier f : RD → R

C which produces
probability values for C classes, a probability for class j is given as follows:

fj(φ(x)) =
exp (WT

j φ(x))
∑C

c exp (wT
c φ(x))

, (5.1)

5.2. PROPOSED METHOD 61

where Wj denotes the weight vector for class j. Here, both the embedding φ(x) and the
weight vector wj are assumed to be L2-normalized. Then, the main computation in eq.
(5.1) is taking the inner product, or equivalently the cosine similarity between φ(x) and
wj . Viewing each weight as a template vector of the corresponding class, the authors
argued that the prediction is equivalent to finding the template closest to the embedding
φ(x) based on the cosine similarity in the embedding space. Based on the observation,
they proposed to use the embedding for input data of a novel class as the classification
weight of the class.

Siam et al. [136] applied weight imprinting to few-shot semantic segmentation. Given
the intermediate feature map xi ∈ R

H×W×D, with the height H and the width W , and
a corresponding binary mask Mi ∈ {0, 1}

H×W , they aggregate embeddings over a given
mask via simple averaging followed by L2 normalization (masked average pooling: MAP):

xMAP =

∑N
i=1

∑H
h=1

∑W
w=1M

(h,w)x
(h,w)
i

∑N
i=1

∑H
h=1

∑W
w=1M

(h,w)

x̂MAP =
xMAP

‖xMAP ‖2
,

(5.2)

where (h,w) denotes the coordinate of the image pixel. The normalized average embed-
ding x̂MAP is used as classification weights of the novel class. In [136], they proposed to
apply it to multiple layers to exploit multi-resolution information, which is, in general,
considered important for semantic segmentation. In our method, however, we apply
weight imprinting only on the last classification layer for simplicity of implementation.

5.2.2 Problem setting

We assume that the scene recognition model f(I) is pre-trained with a large amount of
data before deploying the robot in a target environment as described in Chapter 4 with
C classes. We then assume to acquire a few pairs of an RGB image and a corresponding
binary mask S = {(Ii,Mi)}

N
i=1, where N denotes the number of the pairs. The value 1 in

the binary mask Mi ∈ {0, 1}
H×W indicates a pixel that should be learned as plant and

the mask is acquired through interaction by the human with the environment during the
robot operation. The process of generating the mask is described in the next subsection.

Our purpose is to update the model on the fly with the image-mask pairs S so that
the model predicts the plant parts more accurately. As mentioned above, we formulate
the problem of the online learning as a few-shot learning problem where the objects of
the masked regions are learned as a novel C + 1th class unseen in the pre-training.

5.2.3 Data collection

For few-shot learning, a pair of an input image I and a corresponding mask M is gen-
erated based on the human’s interaction. The interaction mask indicates image regions
that should be classified as plant.

Labeling plant regions via a human’s interaction

First, a human interacts with the regions of plant parts as shown in Fig. 5.2. A robot
observes the human’s interaction using an RGB-D camera. The human joints are recog-
nized by OpenPose [148]. The coordinate of the right hand is projected into the 3D space

62 CHAPTER 5. ONLINE MODEL REFINEMENT

Hand location

in 3D

←Pose estimated

by OpenPose

Figure 5.2: A human interacting with the plant parts. The location of the hand is estimated
on the image by a human pose estimator like OpenPose [148], and projected to the 3D space
using the depth from the RGB-D sensor. After that, voxels that are touched by the human are
estimated.

using the depth. Voxels with which the human interacted are identified by searching for
voxels within a sphere with a radius of 5 [cm] centered at the projected hand coordinate.

Generating a training mask

After the map labeling, a mask M for training is generated by the process as follows.

1. Get a pair of RGB and depth images.

2. For each pixel of the depth image, project it in the 3D space and search for a voxel
that the pixel belongs to.

3. Label the pixel as 1 if the corresponding voxel has been interacted, and otherwise
0.

4. Repeat i) to iii) for five consecutive frames and take pixel-wise OR of them to deal
with the depth noise. We call the resulting mask an interaction mask denoted as
M ′.

5. Predict object labels on the RGB image I using the network and set pixels of M ′

to 0 if the predicted object label of the corresponding pixels are other than plant
(see Fig. 5.3).

We call the resulting mask M a training mask. Here we assume that the interacted
regions in M ′ are dominated by plants. The training mask M , therefore, indicates false
negative plant regions.

5.2. PROPOSED METHOD 63

Image Interaction mask M'

Training mask M

Predicted

segmentation

Pixel-wise AND of

the mask and

the non-plant regions

Model

Figure 5.3: The process of generating a training mask from a pair of a camera image and
an interaction mask. The interaction mask indicates the plant regions touched by the human
operator. Since the purpose here is to estimate the plant regions that are misclassified as other
object classes, we take pixel-wise AND operation of the interaction mask and the non-plant
regions.

5.2.4 Network architecture and the loss function

Based on the architecture described in Chapter 4, we make two modifications on the
network architecture for semantic segmentation and the loss function to apply weight
imprinting-based few-shot learning,

First, we apply L2 normalization on the weight vectors of the final classification layer

{Wj}
C
j=1, which is a 1× 1 convolution, and the features {x

(h,w)
i }Ni=1, which is a feature

vector in pixel (h,w) of an intermediate feature map yielded by forwarding an image
Ii through the model f . The score of the features for each class is then evaluated as a
cosine similarity between the features and the weight vector of the class [135].

Second, to formulate the softmax loss on the normalized data in a more natural
way and also to encourage the model to learn discriminative feature representations, we
introduce the Additive Angular Margin Loss (ArcFace) [149] defined as follows:

Larc = −
N
∑

i=1

log
es cos(θyi+m)

es cos(θyi+m) +
∑C

j=1,j 6=yi
es cos θj

, (5.3)

where cos θj = WT
j xi, m denotes an angular margin parameter, yi denotes an object

label of xi, and s denotes a scaling factor that controls smoothness of the predicted
probability distribution. By setting the angular margin m for the score of the correct
class, the network is trained so that the intra-class distances of the feature distributions
become large and thus discriminative features are learned.

Although we adopt the architecture described in Chapter 4 in this work, note that
the proposed method is not dependent on a specific network architecture.

64 CHAPTER 5. ONLINE MODEL REFINEMENT

Figure 5.4: Training mask with error due to noise in the depth sensor. Although the assumption
here is that the mask indicates the region of plants, the mask includes non-plant pixels due to
the sensor noise and registration error. This may lead to poor performance of weight imprinting
with the conventional masked average pooling (MAP).

5.2.5 Online learning by the robust weight imprinting

For online learning of segmentation, we adopt a few-shot learning based on weight im-
printing [135, 136]. Suppose we have N pairs of an input image and a training mask
{(Ii,Mi)}

N
i=1 and an intermediate feature map xi is yielded by passing the image Ii

through the segmentation network.

Here, we point out a problem of the training mask generated by the procedure
described in the previous subsection. Because of the depth noise and registration error
of the RGB-D sensor, the training masks include regions set as 1 and not part of the
plant regions. An example of erroneous mask is shown in Fig. 5.4. MAP described in
Sec. 5.2.1 is prone to those outliers since features are equally averaged, In our method,
we replace it with weighted averaging based on the distance from the center of the feature
distribution within the mask, which we call robust average pooling (RAP):

xRAP =

∑N
i=1

∑H
h=1

∑W
w=1 v

(h,w)
i M (h,w)x

(h,w)
i

∑N
i=1

∑H
h=1

∑W
w=1M

(h,w)
, (5.4)

where v(h,w) denotes the weight on the corresponding feature x(h,w) calculated as follows:

v
(h,w)
i =

{

x
(h,w)
i · xMAP if x

(h,w)
i · xMAP ≥ 0

0 otherwise.
(5.5)

The averaged feature is then L2-normalized to form a convolution weight vector for the
novel class:

x̂RAP =
xRAP

‖xRAP ‖2
. (5.6)

We directly use x̂RAP as a weight vector of the classification layer for the new class
representing false negative plant regions in the model before the training.

5.3. EXPERIMENTS 65

5.3 Experiments

5.3.1 Experimental setup

The DNN model is implemented with PyTorch [145]. The pre-training and inference
are performed on one NVIDIA GeForce GTX 1080Ti with 11GB of memory. Before
the online learning, we pre-train the scene recognition model in a method described in
Chapter 4, with modification of the model and the loss function described in Sec. 5.2.4.
The angular margin m is set to 0.1.

We use five pairs of an image and a mask taken in different scenes for few-shot
learning. For testing, we exploit 15 manually labeled images of scenes where influence of
misclassification can be significant, such as the end of the plant rows in the experiment
in Chapter 4.

5.3.2 Baselines

As baselines, we adopt weight imprinting with the ordinary masked average pooling and
also a fine-tuning approach via model distillation. In the former, the averaged feature
over the mask (eq. (5.2)) is used to calculate the classification weight instead of eq.
(5.4).

In model distillation, we adopt output-level distillation described in [150]. We set a
weight for distillation loss to 0.5 and temperature parameter T for the softmax function
to 1.0. The entire network is optimized. We utilize the full mask of interacted regions
since the task is fine-tuning with the existing plant class, instead of learning a novel
class. The batch size is set to 5 and a constant learning rate of 1 × 10−4 is used. The
model is trained for 15 epochs and we report the results on the epoch with the best
mean IoU.

We hereafter denote the proposed robust weight imprinting as WI-RAP, the weight
imprinting with the ordinary masked average pooling as WI-MAP, and the model dis-
tillation method as MD.

5.3.3 Online model refinement

Table 5.1 shows the comparison of IoU before and after the online learning as well as
the results of model distillation. While WI-MAP resulted in degrading the performance,
the proposed robust pooling led to better IoU. This qualitatively shows the advantage
of our method. MD resulted in better mean IoU and per-class IoU on the artificial
object and ground classes than the proposed method. The proposed method, however,
resulted in better per-class IoU on the plant class than MD. Since our main purpose
is to improve the accuracy on plant regions, this result shows better suitability of the
proposed method to the online refinement.

We further look into the precision and the recall metrics. Table 5.2 shows the pre-
cision and the recall of each method. Our primary purpose is to refine the false neg-
ative plant regions which is relevant to the recall metric. The both few-shot learning
approaches resulted in better recall of plant regions. The improvement of the recall,
however, came at a cost of degradation of the precision. Compared to WI-MAP, the
proposed robust imprinting, WI-RAP, yielded a comparative gain of recall (-0.92 from
WI-MAP) with less degradation of precision (+2.44 from WI-MAP).

66 CHAPTER 5. ONLINE MODEL REFINEMENT

Table 5.1: Per-class and mean IoU before and after the training

Plant Artificial obj. Ground mIoU

Before 80.89 84.06 60.04 75.00

MD 80.88 85.90 63.23 76.67
WI-MAP 79.71 85.04 60.04 74.93

WI-RAP (proposed) 81.19 85.49 60.05 75.57

Bold denotes the best and underline denotes the second best results.

Table 5.2: Recall and precision before and after the training

Plant Artificial obj. Ground

Before 89.02 / 89.86 92.28 / 90.41 93.70 / 62.57

MD 92.21 / 86.80 92.03 / 92.81 94.63 / 65.58
WI-MAP 93.77 / 84.16 89.72 / 94.23 93.70 / 62.57

WI-RAP (proposed) 92.85 / 86.60 91.04 / 93.34 93.70 / 62.57

The results are shown in the order of recall / precision.
Bold denotes the best and underline denotes the second best results.

Plant Ground OtherArtificial object

R
G

B
G

ro
u
n
d

tr
u
th

B
e
fo

re
W

I-
R
A
P
 (

o
u
rs

)
W

I-
M

A
P

M
D

Figure 5.5: Qualitative evaluation of the online learning. After the training, the shapes of plant
parts are better captured especially in the regions in the black circles. Compared to WI-MAP,
there are less false positive predictions as plant class in the predictions of the proposed WI-RAP.
MD provided similar or better predictions. The proposed method, however, resulted in similar
results with only forward pass unlike MD which requires backpropagation.

Fig. 5.5 shows the qualitative results. After the online training by the proposed

5.4. SUMMARY 67

Table 5.3: Mean IoU depending on different angular margin m

m 0.0 0.1 0.2 0.3 0.4 0.5

Before 74.89 75.00 74.46 72.77 74.25 66.61

WI-MAP 41.47 74.93 68.29 72.97 74.55 66.99
WI-RAP 46.80 75.57 74.96 72.76 74.09 67.00

method, false negative plant regions are corrected to the plant class. Especially, the
regions in black circles show obvious improvement of segmentation. In those regions,
detailed shapes of the leaves and the branches are better captured compared to the
segmentation before training. Compared to WI-MAP, there are less false positives of
prediction as plant in the predictions of the proposed WI-RAP. This is because while WI-
MAP aggressively involves outliers in feature aggregation, WI-RAP robustly calculate
the imprinted weights by the weighted averaging.

One may notice that MD resulted in better performance. It, however, required
around 20 [sec] of training (excluding in-training validation) and 5 [GB] of GPU memory
consumption. Although the batch size of 1 decreased the memory consumption to about
1.5 [GB], the results were worse. In contrast, the proposed method took 0.38 [sec] and
consumed approx. 700 [MB] because it requires only one forward calculation for each
training image. It is, therefore, more suitable to on-the-fly model refinement on modern
onboard computers with GPU-acceleration such as NVIDIA Jetson.

5.3.4 Parameter evaluation

Next, we evaluate the effect of the angular margin m in the ArcFace loss. Table 5.3
shows the relationship between m used in model pre-training and the performance of
few-shot learning. When m = 0.0, i.e., no angular margin constraint is imposed, few-
shot learning resulted in significant degradation of mean IoU. This may be because when
the features are learned without the angle margin, inter-class distances of the features
are not encouraged to be larger, and thus the learned features are not discriminative
enough with large overlaps. It will lead to confusion of features to be imprinted and
those not. In contrast, when m = 0.1, the proposed method resulted in improving the
performance, presumably thanks to better feature representations. The effectiveness of
the weight imprinting, however, did not hold with all the parameters. Whenm = 0.3, 0.4,
the weight imprinting resulted in slight degradation. The condition of m for effective
imprinting is not clear yet. We leave further analysis of the parameter setting and the
performance for future work.

5.4 Summary

We proposed a novel framework of online model refinement to deal with misclassification
which may lead the robot to be stuck during navigation. We introduced a few-shot
segmentation method based on weight imprinting, which allows for model refinement on
the fly. Masks for the few-shot training are generated through observation of a human
operator interacting with plant parts in the environment. To mitigate the effect of
inaccurate masks due to depth noise, we proposed robust weight imprinting and showed

68 CHAPTER 5. ONLINE MODEL REFINEMENT

that the proposed method outperformed the ordinary weight imprinting with masked
average pooling in terms of IoU.

Chapter 6

Conclusions and Discussion

6.1 Conclusions

In this thesis, we described a scene recognition framework for navigation of mobile robots
in plant-rich environments. The proposed scene recognition system explicitly considers
traversable plant parts covering the paths, such as plant foliage.

For the scene recognition, we employed an image-based DNN with two decoder
branches, i.e. Semantic Segmentation Module (SSM) for estimating general object
classes, and Traversability Estimation Module (TEM) for estimating class-agnostic traversabil-
ity. The SSM is trained utilizing multiple publicly available rich image datasets with
pixel-wise labels. The proposed pseudo-label generation method effectively transfers
knowledge from the source datasets, which are not necessarily relevant to the target
dataset. The TEM is trained based on the robot’s experience of traversals during data
acquisition. The TEM is trained on the intermediate features from the trained SSM via
PU learning framework exploiting label images where only part of traversable regions are
labeled. The entire network can thus be trained without any manual annotation on the
target images. In addition, additional sensors for data collection are also not required,
unlike some recent work [22, 21]. We conducted navigation experiment in a real-world
greenhouse and showed that the proposed system was able to navigate through the path
between plant rows recognizing traversable plants growing out to the path.

We also proposed an online model refinement method to correct the model’s mis-
classifications. Labels of image regions that should be recognized as plant are acquired
by observing a human operator’s interaction with the regions in the environment. For
network training, we employ a few-shot learning method for semantic segmentation.
Specifically, we introduce a method inspired by Siam et al. [136], which is an extension
of weight imprinting by Brown et al. [135]. To mitigate the influence of noise in the
labels acquired through the human’s interaction, we proposed Robust Average Pooling
(RAP) for aggregating features within a mask while suppressing contributions of out-
liers. As a result, the proposed method realized refinement of misclassified plant regions,
while a conventional counterpart [136] struggled with the noisy labels.

6.2 Proposals for a system design and applications

Here, we elaborate on the possible navigation systems and applications based on our
work.

69

70 CHAPTER 6. CONCLUSIONS AND DISCUSSION

RGB-D
sensor

Traversability / object estimation

3D semantic mapping Local path
planner Controller

Sensing Scene understanding Robot control

Online refinement
Stuck

Depth

RGB

Our contribution

Other functionalities

Model update

Global path
planner

Figure 6.1: System diagram of the proposed navigation system. Our work was focused on the
scene understanding functions.

6.2.1 The proposed navigation system

Fig. 6.1 shows the system diagram of the proposed system. The system consists of three
main functionalities, namely sensing, scene understanding, and robot control. Our work
mainly focused on the scene understanding functionality.

We use an RGB-D sensor for sensing. RGB images taken from the sensor is pro-
cessed by the scene recognition model to estimate the pixel-wise traversability and ob-
ject classes. The prediction results are then passed to the 3D semantic voxel mapping
module. Once the 3D map is built, it is used for local path planning considering the
traversability of the voxels, followed by the controller. When a feasible path cannot be
planned by the local planner, the system triggers the online refinement function. If the
cause of stuck is due to misclassification of traversable plant, a human operator indicate
the part of traversable plant to the robot and the scene recognition model is refined.
After that, the robot resumes the operation with the updated model.

By this framework, the robot is able to navigate in plant-rich environments such as
greenhouses and forests by explicitly estimating the class and traversability of the objects
and moving through traversable plants. Since the proposed scene recognition model is
trained without manual annotation and just by giving unlabeled images of the target
environments collected by a manually controlled robot, it is easy to deploy the system
to a new environment. Thanks to the unique online refinement function, the system
can deal with misclassification on the fly, instead of offline. We believe this feature is
practically important for mobile robots which must continue their operation as long as
possible.

In our work, we developed the traversability and object class estimation, and 3D
semantic mapping as described in Chapter 3 and Chapter 4, as well as the online refine-
ment described in Chapter 5. The robot control functionality remains as future work
and discussed further in Sec 6.3.

6.2.2 Applications

Agricultural mobile robots

Agricultural mobile robots, especially those that work in confined greenhouses where
GNSS cannot be used and plants grows out to the paths, are a possible application
of the proposed system. In such environments, we can assume a prior map of the

6.3. LIMITATIONS AND FUTURE RESEARCH DIRECTIONS 71

entire environment since their layout is known. Nevertheless, traversability estimation
is necessary because regions which are mapped as free spaces are possibly covered by
plant part. In addition, there can be both real obstacles and traversable objects on the
paths, and it is necessary to distinguish them.

The system is suitable to tasks where human and a robot collaboratively work since
it involves human in the loop. One example is harvesting, where farmers harvest crops
and the robot autonomously helps them carry the crops.

Mobile Laser Scanning in forests

Mobile Laser Scanning (MLS) is gaining attention as a method to measure environments
in the field of remote sensing. It enables easier measurement than Terrestrial Laser
Scanning (TLS), which requires manually setting a laser scanner on multiple scanning
points, and provides denser and more precise point cloud than Aerial Laser Scanning
(ALS), which measures from high above the tree canopy. In current MLS systems, a robot
equipped with laser scanners is manually controlled by a human operator. Automating
this task will be beneficial to reduce the burden on the human, and to accelerate the
measurement tasks.

Compared to navigation in greenhouses, MLS in wild forests is more challenging
because there is no prior map and the robot needs to explore the environment. Si-
multaneous Localization and Mapping (SLAM) and view point planning are relevant
techniques in such tasks. Together with them, the proposed framework allows for map-
ping the environment and local path planning to get to a next view point planned by
the view point planner considering traversability of the plants.

6.3 Limitations and future research directions

Despite the possibility of the proposed system described in Sec. 6.2, there are still chal-
lenges in real-world applications. Here, we summarize some limitations of the proposed
framework, and also discuss future research directions.

Analysis of robustness When applying it to the real-world tasks, robustness of
the scene recognition to changes of environmental conditions can be a critical problem.
For example, how often misclassification that may obstruct the robot operation occurs
is an important indicator of the robustness of our system. If it is very often, the system
will not be useful in the real world even with the online refinement. At this moment,
we have not been able to study this aspect. To pave a path to reliable applications, it
is crucial to analyze it in detail. Specifically, the robustness should be analyzed in an
actual navigation task in a long period of time.

Integration with waypoints / control estimation In this work, we have focused
on the scene recognition system and its training methods. The real-world navigation
experiments were limited to a relatively structured greenhouse, and fully autonomous
navigation considering the 3D semantic map is not implemented. In future work, the
proposed scene recognition framework need to be integrated with estimation of optimal
waypoints or controls to realize truly automatic navigation. Compared to data-driven
methods like [20], traditional controllers like Model Predictive Controller used in [21]
considering the traversability map as a cost seem to be a more promising choice.

72 CHAPTER 6. CONCLUSIONS AND DISCUSSION

Navigation in more unstructured environments We conducted real-world nav-
igation in a greenhouse, which has paths with plant leaves growing out, but is relatively
structured. To further examine the applicability of our method, we should conduct
navigation on more unstructured environments with arbitrary shape and width of the
paths.

Navigation in unstructured environments does not only require traversable plant
detection, but also terrain analysis, which has been widely studied [31, 32, 33]. One
way to implement a navigation system considering both traversable plants and terrain
traversability is to simply integrate our method with existing terrain analysis methods.
We could also jointly estimate terrain traversability and plant-induced traversability by
the proposed scene recognition model, similarly to [22, 21].

Extension of PU learning-based traversability learning A recently popular
approach to scene recognition and navigation in unstructured environments with vege-
tation is the DNN-based methods utilizing a robot’s experience of traversals [23, 20, 22,
21]. As we mentioned in Sec. 2.1.2, however, those methods require both positive and
negative experience of traversals. Collecting negative experience involves intentionally
making a robot bump into obstacles, which may not be allowed in some environments.
We thus employed PU learning to enable the traversability estimation model to learn
from only positive experience and showed that the model can be trained in a PU frame-
work with the feature extraction by the semantic segmentation model. We believe that
PU learning will enable more practical training of traversability estimation models. To
realize it, it is crucial to achieve good feature representation. One possible approach
would be combining feature embedding via contrastive learning [151, 152] with the PU
learning framework.

Multi-modal perception Throughout the work in this thesis, we relied on RGB
images for object class and traversability estimation because we presumed that the ap-
pearance is highly informative for the estimation as human estimates them with the eyes.
Nevertheless, using range sensors such as a LiDAR, or a stereo sensor may provide ad-
ditional information about the object class and traversability. In fact, some researchers
have used LiDARs for detecting vegetation [61, 62], though they did not apply it to
actual robot navigation. Recently, deep learning techniques have been applied to 3D
point clouds [153, 154, 155] and shown high classification ability in tasks such as se-
mantic segmentation. Introducing such techniques may be beneficial for improving the
estimation performance in complex environments.

Haptic information can also be used to verify the object traversability. Some legged
robots use torque force information from their legs to estimate whether the terrain that
they are stepping on is rigid or deformable [51]. Such force information from the objects
can be used while traversing through the objects that are recognized as traversable plants
by the proposed method as a verification for safety.

Appendix A

Details of the network structure

Fig. A.1(a) shows a complete structure of our network architecture. Our network is
based on ESPNetv2 [101], a light-weight semantic segmentation network. It consists
of modules such as Extremely Efficient Spatial Pyramid (EESP), Efficient Point-Wise
Convolution (EffPWConv), Efficient Pyramid Pooling (EffPyrPool), which consist of
several convolutions with different types of kernels, batch normalization, and activation
layers. For detailed descriptions of those modules, we refer the readers to [101]. An
auxiliary segmentation branch and a branch for estimating traversability, i.e., TEM are
attached to the middle of the main network of ESPNetv2. The features for TEM are
generated by concatenating the intermediate features from the EffPyrPool layer in each
segmentation branch (See Fig. A.1(b)). The intermediate feature from the SSM is fed
into a 3 × 3 convolution and the sigmoid function to produce pixel-wise probability
predictions.

73

74 APPENDIX A. DETAILS OF THE NETWORK STRUCTURE

Softmax

x 0.5

BN+PReLU

Upsample

BN+PReLU

Upsample

Upsample

3x3 Conv

3x3 Conv

EffPyrPool

EffPyrPool

S.EESP

S.EESP

EESP

EESP

S.EESP

EffPWConv

EffPyrPool

BN+PReLU

BN+PReLU

Upsample

EffPyrPool

Upsample

EffPyrPool

Sigmoid

EffPWConv

EffPWConv

Element-wise summation

1/2, 32

1/2, 32

1/4, 128

1/8, 256

1/8, 256

1/16, 512

1/16, 512

1/16, 64

1/8, 64

1/8, 64

1/8, 64

1/8, 48

1/4, 48

1/4, 48

1/4, 48

1/4, 32

1/4, C

1, C 1, 16

1/4, 16

1, 32

1, 1

1/2, 32

1/2, 32

1/2, 32

1, 161, C

1/2, C 1/2, 16

Tensor concatenation

Output of a layer

Intermediate features of

a layer

EESP:

 Extremely Efficient Spatial Pyramid

S.EESP:

 Strided EESP

EffPWConv:

 Efficient Point-Wise Convolution

EffPyrPool:

 Efficient Pyramid Pooling

BN:

 Batch normalization

Main

branch

Auxiliary

branch

Input image Segmentation Traversability

(a) Network architecture

Channel Shuffle

1x1 Conv

Output (Channel size:)

Input (channel size:)

Intermediate feature

(Channel size: 16)

3x3 Conv

3x3 Conv

3x3 Conv

BN+PReLU

BN+PReLU

BN+PReLU

Resize

Resize

3x3 Conv

Resize

Resize

3x3 Conv

Resize

Resize

...

...
Resize:

 Bilinear interpolation if scale > 0

 Adaptive average pooling if scale < 0

scale1, 16

scale1, 16

scale2, 16

scale2, 16

scaleN, 16

scaleN, 16

1, 16*N

1, 16*N

1, 16*N

1, 16

1, 16

1,

1, 16
1, 16

1, 16

1, 16

1,

1, 16

(b) Efficient Pyramid Pooling (EffPyrPool)

Figure A.1: A detailed diagram of our architecture. The numbers beside each layer shows the
spatial resolution relative to the input image and the channel size of the output of the layer,
respectively. Based on ESPNetv2 [101], an auxiliary segmentation branch is added to estimate
pixel-wise uncertainty for the training of SSM (see 3.2.4). For estimating traversability, the
intermediate features of the two segmentation branches are concatenated and fed into a 3 × 3
convolution followed by the sigmoid function. For the detail of each network layer, refer to [101].

Appendix B

Analysis of the prediction
distributions

In Table B.1 , we show the distributions of the predictions by each of the source models
over the target classes conditioned on the source classes, as well as the target label ID of
the maximum probability for each source class and the actual target label ID used in the
label conversion to see the validity of the heuristic label mappings. The distributions are
calculated using the labeled test images of Greenhouse A. In the majority of the source
classes, the target label of the maximum probability is the same as the one assigned
heuristically. “Fence” in CamVid, “Road” in Cityscapes, and “Tree” in Freiburg Forest
were assigned a target label different from the one with the maximum probability. In
the model trained with Cityscapes, some source classes did not appear in the prediction
on the target images.

Note that these distributions are calculated with the ground truth labels of the target
images, which we do not expect to have in real environments, and thus this information
is unable. In practice, as we show in the experiments, the definition of the mappings
based on the heuristics resulted in good performances.

75

76 APPENDIX B. ANALYSIS OF THE PREDICTION DISTRIBUTIONS

Table B.1: Prediction distribution. 1: Plant, 2: Artificial object, 3: Ground, 4: Other (not
considered in the distribution analysis), in the target label space.

(a) CamVid

S
k
y

B
u
il
d
in
g

P
o
le

R
o
a
d

P
av
em

en
t

T
re
e

S
ig
n
sy
m
b
o
l

F
en

ce

C
a
r

P
ed

es
tr
ia
n

B
ic
y
cl
is
t

R
o
a
d
m
a
rk
in
g

1 1.72 19.6 11.9 0.64 0.98 95.3 26.4 93.07 0.00 0.00 36.00 28.6
2 92.0 80.0 71.3 38.3 37.8 4.70 73.6 6.93 81.0 98.3 61.3 59.3
3 6.27 0.42 16.9 61.0 61.2 0.00 0.00 0.00 19.0 1.70 2.70 12.1

max 2 2 2 3 3 1 2 1 2 2 2 2
ξi 4 2 2 3 3 1 2 2 2 4 4 2

(b) Cityscapes

R
o
a
d

S
id
ew

a
lk

B
u
il
d
in
g

W
a
ll

F
en

ce

P
o
le

T
ra
ffi
c
li
g
h
t

T
ra
ffi
c
si
g
n

V
eg
et
a
ti
o
n

T
er
ra
in

S
k
y

P
er
so
n

R
id
er

C
a
r

T
ru
ck

B
u
s

T
ra
in

M
o
to
rc
y
cl
e

B
ic
y
cl
e

1 0.00 6.20 0.50 0.00 4.55 1.20 0.00 0.00 83.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 28.8
2 54.3 21.1 99.5 0.00 90.0 81.2 0.00 0.00 16.8 0.00 0.00 100.0 0.00 85.6 0.00 100.0 0.00 0.00 69.5
3 45.7 72.7 0.00 0.00 5.45 17.6 0.00 0.00 0.20 0.00 0.00 0.00 0.00 14.4 0.00 0.00 0.00 0.00 1.70

max 2 3 2 - 2 2 - - 1 - - 2 - 2 - 2 - - 2
ξi 3 3 2 2 2 2 2 2 1 3 4 4 4 2 2 2 2 2 2

(c) Prediction distribution (Freiburg Forest)

R
oa
d

G
ra
ss

T
re
e

S
k
y

O
b
st
ac
le

1 1.15 48.73 43.63 0.09 0.00
2 18.83 28.54 50.06 96.63 0.00
3 80.02 22.72 6.30 3.28 0.00

max 3 1 2 2 -
ξi 3 1 1 4 2

Appendix C

Policy of manual annotation on
the test images

For the evaluation of our method, we created test datasets for Greenhouse A, B, and C
with manually annotated labels. All annotation was done by the first author, who did
not have specific experience of pixel-level annotation on image datasets.

We adopted coarse annotation to reduce the time of manual annotation. For example,
small regions of objects other than plants that can be seen through the plant rows are
annotated as plants, rather than the object classes that the regions actually belong to.
The aim our method is to train the model for scene recognition in robot navigation to
identify the object class of the regions in an image, especially regions of plants covering
the paths, and to make a decision whether to traverse the object based on the object
class. For this purpose, we suppose that pixel-level precision is not necessary. The
model should rather be able to recognize the presence of plant etc. We, therefore, gave
region-wise annotation rather than labels with pixel-level precision, so that the ability
of recognizing the object class of image regions can be evaluated.

77

Appendix D

Qualitative evaluation on
Greenhouse B and C

Fig. D.1 and D.2 show the qualitative results of the adaptation to Greenhouse B and C,
respectively. Similar to the results on Greenhouse A shown in 3.3.2, more smooth and
noise-less segmentation is achieved by the proposed method.

Plant GroundArtificial object

(a) Input (b) GT (c) CV (d) CS (e) FR (f) CV+CS+FR

Figure D.1: Result of the adaptation on Greenhouse B

79

80 APPENDIX D. QUALITATIVE EVALUATION ON GREENHOUSE B AND C

Plant GroundArtificial object

(a) Input (b) GT (c) CV (d) CS (e) FR (f) CV+CS+FR

Figure D.2: Result of the adaptation on Greenhouse C

Appendix E

Details of experimental settings

E.1 Implementation details of the baseline methods

E.1.1 Description of the feature for SP-SVM

We used the SVM model implemented in scikit-learn library [156]. The Radial Basis
Function (RBF) kernel was used with the default parameters and one-versus-one decision
function was chosen. For superpixel generation, we used a method by Felzenszwalb et
al. [157] implemented in scikit-image library [158].

The feature design we adopt is based on the one used in a paper [34]. It consists of
color features and texture features. The color features are mean RGB and HSV values,
histograms of hue and saturation values. The texture features are calculated via applying
filters in LM filter bank [159]. The filter responses are summarized by averaging and
taking maximum within the superpixel and concatenated. In addition to the original
feature design in [34], we added location features which are mean of x and y coordinates
to exploit the spatial information.

E.1.2 Training details of the UDA baselines

Network architecture

DeepLab v2 [84] with ResNet101 backbone [81] is used as the semantic segmentation
model in the original work of all the baseline methods of UDA. Although it is different
from our model, we also adopt DeepLab v2 in the baselines to keep their implementation

Table E.1: Description of the feature for SP-SVM

Type Description Dim.

RGB value RGB mean 3
HSV value RGB mean in HSV color space 3

Hue Histogram of hue 8
Saturation Histogram of saturation 5
LM average Average filter responses from LM filter set 18

LM Maximum Histogram of maximum filter responses 18
Location Mean x / y coordinate values normalized by the image width / height 2

Total number of dimension 57

81

82 APPENDIX E. DETAILS OF EXPERIMENTAL SETTINGS

as much as possible. CRST and ProDA are trained on an NVIDIA Quadro RTX 8000,
and Seg-Uncertainty is trained on an NVIDIA GeForce 1080Ti with 11GB memory.

CRST

In CRST [121], the source models are pre-trained by supervised training and we follow
the implementation. We first train a model with a source dataset with its original label
set for 200 epochs. We then replace the final classification layer with C-class classifier
where C denotes the number of object classes in the target dataset. The model with
the replaced classifier is fine-tuned with the source labels converted to the target label
set defined in Table 3.1 for 50 epochs. Initial learning rate is 1 × 10−4 for the final
classification layer and 1× 10−3 for the rest of the layers. The polynomial learning rate
scheduling [160] is used with the power of 0.9. Other hyper-parameters are unchanged
from their source code1.

Seg-Uncertainty

We train Seg-Uncertainty [122] with MRNet [161]. MRNet first trains, as a warm-up,
a segmentation network with both the source and the target datasets via adversarial
training at the segmentation output which was originally proposed in [117]. Other
hyper-parameters are unchanged from their source code2.

ProDA

ProDA [123] follows the same warm-up strategy as Seg-Uncertainty. We, therefore, use
the same warm-up models trained in Seg-Uncertainty in ProDA. Although ProDA and
Seg-Uncertainty both use DeepLabv2 as a segmentation network, the architecture of the
segmentation networks is slightly different between Seg-Uncertainty and ProDA, such as
the number of channels of the intermediate feature map. We modified the source code
of ProDA to adjust to the network. Other hyper-parameters are unchanged from their
source code3.

E.2 Results of the baseline methods

E.2.1 Qualitative evaluation of the UDA methods

Fig. E.1 shows qualitative results of the UDA baseline methods on Greenhouse A dataset.
As shown quantitatively in 3.3.3, the proposed method (CV+CS+FR) outperformed the
baseline methods, especially Seg-Uncertainty [122] and ProDA [123]. In the segmentation
results of Seg-Uncertainty and ProDA, a large part of the bottom of the images are
wrongly classified as ground regions. This is similar to the structural feature of the
images in CS. This tendency was possibly enhanced by the adversarial learning on the
output layer employed in the first stage of those methods.

Compared to Seg-Uncertainty and ProDA, CRST [121] produced better segmentation
results. CRST chooses pseudo-labels simply based on the confidence of the predictions,

1https://github.com/yzou2/CRST
2https://github.com/layumi/Seg-Uncertainty
3https://github.com/microsoft/ProDA

https://github.com/yzou2/CRST
https://github.com/layumi/Seg-Uncertainty
https://github.com/microsoft/ProDA

E.2. RESULTS OF THE BASELINE METHODS 83

Plant GroundArtificial object

(a) Input (b) GT (c) CRST (d) Seg-Unc. (e) ProDA (f) Proposed

Figure E.1: Result of the baseline methods

and resulting pseudo-labels are sparse. In other words, CRST conservatively generates
pseudo-labels with only confidently predicted labels. As a result, the performance was
better than the other two baselines. Our proposed method also generates pseudo-labels
in a conservative way via multiple model’s agreement. It may imply that it is a better
approach to generate pseudo-labels in a conservative way when the source and the target
have a large structural difference. The proposed method provides a natural way of doing
so without relying on a specific dataset, which allows for avoiding biased training.

E.2.2 Effect of GAN-based image style transfer

We trained the CycleGANs using CS and FR as source datasets and Greenhouse A as
a target dataset. It is the first step of MADAN [126], a multi-source UDA method for
semantic segmentation. For each source dataset, we trained a CycleGAN for 200 epochs.

Fig. E.2 shows the results of image style transfer between CS/FR and Greenhouse A
datasets. The style transfer resulted in inconsistency of image contents, e.g., the ground
region in Fig. E.2(a) is transferred to green plant-like objects in Fig. E.2(b), and the
bottom part of the plant row and a large part of an artificial object on the right in Fig.
E.2(c) are transferred to ground in Fig. E.2(d). Similarly, plants on the right in Fig.
E.2(e) are transferred to gray objects like a wall in Fig. E.2(f), and some plant parts
in Fig. E.2(g) are mapped to sky in E.2(h). This may be due to the large domain shift
that stems from the structural differences of the environments.

Although MADAN further employs training procedures to aggregate the data from
multiple domains closer to each other with constraints on the semantic consistency [126],
the inconsistency of the style transfer in the first step shown above will affect the adap-
tation performance.

84 APPENDIX E. DETAILS OF EXPERIMENTAL SETTINGS

(a) Real CS (b) CS → Greenhouse (c) Real Greenhouse (d) Greenhouse → CS

(e) Real FR (f) FR → Greenhouse (g) Real Greenhouse (h) Greenhouse → FR

Figure E.2: Results of image style transfer by CycleGAN in MADAN. The style transfer resulted
in inconsistency of image contents. This may imply that such style transfer is not effective when
the structures of the source and the target have a large discrepancy as in our problem setting.

Bibliography

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. Cambridge, Mass.:
MIT Press, 2005. doi: 10.5555/1121596.

[2] A. K. Pandey and R. Gelin, “A Mass-Produced Sociable Humanoid Robot: Pep-
per: The First Machine of Its Kind,” IEEE Robotics & Automation Magazine,
vol. 25, no. 3, pp. 40–48, 2018. doi: 10.1109/MRA.2018.2833157.

[3] R. Triebel, K. Arras, R. Alami, L. Beyer, S. Breuers, R. Chatila, M. Chetouani, D.
Cremers, V. Evers, M. Fiore, H. Hung, O. A. I. Ramı́rez, M. Joosse, H. Khamb-
haita, T. Kucner, B. Leibe, A. J. Lilienthal, T. Linder, M. Lohse, M. Magnusson,
B. Okal, L. Palmieri, U. Rafi, M. van Rooij, and L. Zhang, “SPENCER: A So-
cially Aware Service Robot for Passenger Guidance and Help in Busy Airports,”
in Field and Service Robotics, New York: Springer International Publishing,
2016, pp. 607–622. doi: 10.1007/978-3-319-27702-8_40.

[4] Waymo, “Waymo Safety Report,” Tech. Rep., 2020. [Online]. Available: https:
//storage.googleapis.com/sdc-prod/v1/safety-report/2020-09-waymo-

safety-report.pdf.

[5] Tier IV, “Tier IV Safety Report,” Tech. Rep., 2020. [Online]. Available:
https://assets.ctfassets.net/rfp71c5fx4wl/3YwptpgxDOmVddje77hxqX/

f9468a13518bee9876ed7270c8ba76de / Safety _ Report _ Eng _ 9 _ 29 _ master _

compressed.pdf.

[6] T. Duckett, S. Pearson, S. Blackmore, B. Grieve, and M. Smith, “Agricultural
Robotics: The Future of Robotic Agriculture,” Tech. Rep., 2018. [Online].
Available: http://arxiv.org/abs/1806.06762.

[7] MAFF, Promotion of Smart Agriculture. [Online]. Available: https://www.
maff.go.jp/e/policies/tech_res/smaagri/attach/pdf/robot- 1.pdf

(visited on 11/08/2022).

[8] L. F. Oliveira, A. P. Moreira, and M. F. Silva, “Advances in forest robotics: A
state-of-the-art survey,” Robotics, vol. 10, no. 2, pp. 1–20, 2021. doi: 10.3390/
robotics10020053.

[9] Y. Qi, N. C. Coops, L. D. Daniels, and C. R. Butson, “Comparing tree attributes
derived from quantitative structure models based on drone and mobile laser
scanning point clouds across varying canopy cover conditions,” ISPRS Jour-
nal of Photogrammetry and Remote Sensing, vol. 192, pp. 49–65, 2022. doi:
10.1016/j.isprsjprs.2022.07.021.

85

https://doi.org/10.5555/1121596
https://doi.org/10.1109/MRA.2018.2833157
https://doi.org/10.1007/978-3-319-27702-8_40
https://storage.googleapis.com/sdc-prod/v1/safety-report/2020-09-waymo-safety-report.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/2020-09-waymo-safety-report.pdf
https://storage.googleapis.com/sdc-prod/v1/safety-report/2020-09-waymo-safety-report.pdf
https://assets.ctfassets.net/rfp71c5fx4wl/3YwptpgxDOmVddje77hxqX/f9468a13518bee9876ed7270c8ba76de/Safety_Report_Eng_9_29_master_compressed.pdf
https://assets.ctfassets.net/rfp71c5fx4wl/3YwptpgxDOmVddje77hxqX/f9468a13518bee9876ed7270c8ba76de/Safety_Report_Eng_9_29_master_compressed.pdf
https://assets.ctfassets.net/rfp71c5fx4wl/3YwptpgxDOmVddje77hxqX/f9468a13518bee9876ed7270c8ba76de/Safety_Report_Eng_9_29_master_compressed.pdf
http://arxiv.org/abs/1806.06762
https://www.maff.go.jp/e/policies/tech_res/smaagri/attach/pdf/robot-1.pdf
https://www.maff.go.jp/e/policies/tech_res/smaagri/attach/pdf/robot-1.pdf
https://doi.org/10.3390/robotics10020053
https://doi.org/10.3390/robotics10020053
https://doi.org/10.1016/j.isprsjprs.2022.07.021

86 BIBLIOGRAPHY

[10] E. Fŕıas, M. Previtali, L. Dı́az-Vilariño, M. Scaioni, and H. Lorenzo, “Optimal
scan planning for surveying large sites with static and mobile mapping systems,”
ISPRS Journal of Photogrammetry and Remote Sensing, vol. 192, pp. 13–32,
2022. doi: 10.1016/j.isprsjprs.2022.07.025.

[11] T. Tsubouchi, A. Asano, T. Mochizuki, S. Kondou, K. Shiozawa, M. Matsumoto,
S. Tomimura, S. Nakanishi, Y. Chiba, and T. Hayami, “Forest 3D mapping and
tree sizes measurement for forest management based on sensing technology for
mobile robots,” Springer Tracts in Advanced Robotics, vol. 92, pp. 357–368, 2014.
doi: 10.1007/978-3-642-40686-7_24.

[12] T. Bakker, H. Wouters, K. van Asselt, J. Bontsema, L. Tang, J. Müller, and G.
van Straten, “A vision based row detection system for sugar beet,” Computers
and Electronics in Agriculture, vol. 60, no. 1, pp. 87–95, 2008. doi: 10.1016/j.
compag.2007.07.006.

[13] J. Xue, L. Zhang, and T. E. Grift, “Variable field-of-view machine vision based
row guidance of an agricultural robot,” Computers and Electronics in Agriculture,
vol. 84, pp. 85–91, 2012. doi: 10.1016/j.compag.2012.02.009.

[14] F. B. Malavazi, R. Guyonneau, J. B. Fasquel, S. Lagrange, and F. Mercier,
“LiDAR-only based navigation algorithm for an autonomous agricultural robot,”
Computers and Electronics in Agriculture, vol. 154, pp. 71–79, 2018. doi: 10.
1016/j.compag.2018.08.034.

[15] W. Winterhalter, F. Fleckenstein, C. Dornhege, and W. Burgard, “Localization
for precision navigation in agricultural fields—Beyond crop row following,” Jour-
nal of Field Robotics, vol. 38, no. 3, pp. 429–451, 2020. doi: 10.1002/rob.21995.

[16] T. D. Le, V. R. Ponnambalam, J. G. O. Gjevestad, and P. J. From, “A low-cost
and efficient autonomous row-following robot for food production in polytunnels,”
Journal of Field Robotics, vol. 37, no. 2, pp. 309–321, 2020. doi: 10.1002/rob.
21878.

[17] A. Mandow, J. Gomez-de-Gabriel, J. Martinez, V. Munoz, A. Ollero, and A.
Garcia-Cerezo, “The autonomous mobile robot AURORA for greenhouse oper-
ation,” IEEE Robotics & Automation Magazine, vol. 3, no. 4, pp. 18–28, 1996.
doi: 10.1109/100.556479.

[18] A. Mowshowitz, A. Tominaga, and E. Hayashi, “Robot Navigation in Forest Man-
agement,” Journal of Robotics and Mechatronics, vol. 30, no. 2, pp. 223–230, 2018.
doi: 10.20965/jrm.2018.p0223.

[19] E. Jelavić, D. Jud, P. Egli, and M. Hutter, “Robotic Precision Harvesting: Map-
ping, Localization, Planning and Control for a Legged Tree Harvester,” Field
Robotics, vol. 2, no. 1, pp. 1386–1431, 2022. doi: 10.55417/fr.2022046.

[20] G. Kahn, P. Abbeel, and S. Levine, “BADGR: An Autonomous Self-Supervised
Learning-Based Navigation System,” IEEE Robotics and Automation Letters,
vol. 6, no. 2, pp. 1312–1319, 2021. doi: 10.1109/LRA.2021.3057023.

[21] M. V. Gasparino, A. N. Sivakumar, Y. Liu, A. E. B. Velasquez, V. A. H. Higuti,
J. Rogers, H. Tran, and G. Chowdhary, “WayFAST: Navigation With Predictive
Traversability in the Field,” IEEE Robotics and Automation Letters, vol. 7, no. 4,
pp. 10 651–10 658, 2022. doi: 10.1109/LRA.2022.3193464.

https://doi.org/10.1016/j.isprsjprs.2022.07.025
https://doi.org/10.1007/978-3-642-40686-7_24
https://doi.org/10.1016/j.compag.2007.07.006
https://doi.org/10.1016/j.compag.2007.07.006
https://doi.org/10.1016/j.compag.2012.02.009
https://doi.org/10.1016/j.compag.2018.08.034
https://doi.org/10.1016/j.compag.2018.08.034
https://doi.org/10.1002/rob.21995
https://doi.org/10.1002/rob.21878
https://doi.org/10.1002/rob.21878
https://doi.org/10.1109/100.556479
https://doi.org/10.20965/jrm.2018.p0223
https://doi.org/10.55417/fr.2022046
https://doi.org/10.1109/LRA.2021.3057023
https://doi.org/10.1109/LRA.2022.3193464

BIBLIOGRAPHY 87

[22] A. Polevoy, C. Knuth, K. M. Popek, and K. D. Katyal, “Complex Terrain
Navigation via Model Error Prediction.” In Proc. of the IEEE International
Conference on Robotics and Automation, IEEE, 2022, pp. 9411–9417. doi:
10.1109/ICRA46639.2022.9811644.

[23] Dongshin Kim, Jie Sun, Sang Min Oh, J. Rehg, and A. Bobick, “Traversability
classification using unsupervised on-line visual learning for outdoor robot naviga-
tion.” In Proc. of the IEEE International Conference on Robotics and Automa-
tion, IEEE, 2006, pp. 518–525. doi: 10.1109/ROBOT.2006.1641763.

[24] C. Elkan and K. Noto, “Learning Classifiers from Only Positive and Unlabeled
Data.” In Proc. of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2008, pp. 213–220.

[25] I. Katramados, S. Crumpler, and T. P. Breckon, “Real-Time Traversable Surface
Detection by Colour Space Fusion and Temporal Analysis.” In Proc. of the In-
ternational Conference on Computer Vision Systems, 2009, pp. 265–274. doi:
10.1007/978-3-642-04667-4_27.

[26] I. Bogoslavskyi, O. Vysotska, J. Serafin, G. Grisetti, and C. Stachniss, “Efficient
traversability analysis for mobile robots using the Kinect sensor.” In Proc. of
the European Conference on Mobile Robots, IEEE, 2013, pp. 158–163. doi:
10.1109/ECMR.2013.6698836.

[27] C. J. Taylor and A. Cowley, “Parsing Indoor Scenes Using RGB-D Imagery,” in
Robotics, The MIT Press, 2013. doi: 10.7551/mitpress/9816.003.0056.

[28] B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2nd, B. Siciliano
and O. Khatib, Eds., ser. Springer Handbooks. Cham: Springer International
Publishing, 2016. doi: 10.1007/978-3-319-32552-1.

[29] T. Chang, S. Legowik, and M. N. Abrams, “Concealment and Obstacle Detection
for Autonomous Driving.” In Proc. of the Science & Technology for Development
- Robotics & Applications, 1999, pp. 1–15.

[30] P. Nordin and J. Nyg̊ards, “Local Navigation using Traversability Maps,” IFAC
Proceedings Volumes, vol. 43, no. 16, pp. 324–329, 2010. doi: 10.3182/20100906-
3-IT-2019.00057.

[31] À. Santamaria-Navarro, E. H. Teniente, M. Morta, and J. Andrade-Cetto, “Ter-
rain Classification in Complex Three-dimensional Outdoor Environments,” Jour-
nal of Field Robotics, vol. 32, no. 1, pp. 42–60, 2015. doi: 10.1002/rob.21521.

[32] B. Suger, B. Steder, and W. Burgard, “Traversability analysis for mobile robots
in outdoor environments: A semi-supervised learning approach based on 3D-lidar
data.” In Proc. of the IEEE International Conference on Robotics and Automa-
tion, IEEE, 2015, pp. 3941–3946. doi: 10.1109/ICRA.2015.7139749.

[33] J. Frey, D. Hoeller, S. Khattak, and M. Hutter, “Locomotion Policy Guided
Traversability Learning using Volumetric Representations of Complex Environ-
ments.” In Proc. of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, 2022, pp. 5722–5729. doi: 10.1109/IROS47612.2022.
9982190.

https://doi.org/10.1109/ICRA46639.2022.9811644
https://doi.org/10.1109/ROBOT.2006.1641763
https://doi.org/10.1007/978-3-642-04667-4_27
https://doi.org/10.1109/ECMR.2013.6698836
https://doi.org/10.7551/mitpress/9816.003.0056
https://doi.org/10.1007/978-3-319-32552-1
https://doi.org/10.3182/20100906-3-IT-2019.00057
https://doi.org/10.3182/20100906-3-IT-2019.00057
https://doi.org/10.1002/rob.21521
https://doi.org/10.1109/ICRA.2015.7139749
https://doi.org/10.1109/IROS47612.2022.9982190
https://doi.org/10.1109/IROS47612.2022.9982190

88 BIBLIOGRAPHY

[34] D. Kim, S. M. Oh, and J. M. Rehg, “Traversability classification for UGV nav-
igation: a comparison of patch and superpixel representations.” In Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE,
2007, pp. 3166–3173. doi: 10.1109/IROS.2007.4399610.

[35] R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier, U. Muller, and Yann LeCun,
“Deep belief net learning in a long-range vision system for autonomous off-road
driving.” In Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, 2008, pp. 628–633. doi: 10.1109/IROS.2008.
4651217.

[36] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A Fast Learning Algorithm for Deep
Belief Nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, 2006. doi:
10.1162/neco.2006.18.7.1527.

[37] Y. N. Khan, P. Komma, and A. Zell, “High resolution visual terrain classification
for outdoor robots.” In Proc. of the IEEE International Conference on Computer
Vision Workshops, IEEE, 2011, pp. 1014–1021. doi: 10.1109/ICCVW.2011.
6130362.

[38] L. Breiman, “Random Forests,” Machine Learning, vol. 45, pp. 5–32, 2001. doi:
10.1023/A:1010933404324.

[39] H. Lee, K. Kwak, and S. Jo, “An incremental nonparametric Bayesian clustering-
based traversable region detection method,” Autonomous Robots, vol. 41, no. 4,
pp. 795–810, 2017. doi: 10.1007/s10514-016-9588-7.

[40] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti, “Image clas-
sification for ground traversability estimation in robotics.” In Proc. of the Inter-
national Conference on Advanced Concepts for Intelligent Vision Systems, 2017,
pp. 325–336. doi: 10.1007/978-3-319-70353-4_28.

[41] D. Maturana, P.-W. Chou, M. Uenoyama, and S. Scherer, “Real-Time Semantic
Mapping for Autonomous Off-Road Navigation,” in Field and Service Robotics,
vol. 5, 2018, pp. 335–350. doi: 10.1007/978-3-319-67361-5_22.

[42] V. Suryamurthy, V. S. Raghavan, A. Laurenzi, N. G. Tsagarakis, and D. Kanoulas,
“Terrain Segmentation and Roughness Estimation using RGB Data: Path Plan-
ning Application on the CENTAURO Robot.” In Proc. of the IEEE-RAS Inter-
national Conference on Humanoid Robots, IEEE, 2019, pp. 1–8. doi: 10.1109/
Humanoids43949.2019.9035009.

[43] T. Guan, Z. He, D. Manocha, and L. Zhang, “TTM: Terrain Traversability
Mapping for Autonomous Excavator Navigation in Unstructured Environments,”
Tech. Rep., 2021. arXiv: 2109.06250. [Online]. Available: http://arxiv.org/
abs/2109.06250.

[44] C. Brooks, K. Iagnemma, and S. Dubowsky, “Vibration-based Terrain Analysis
for Mobile Robots.” In Proc. of the IEEE International Conference on Robotics
and Automation, vol. 2005, IEEE, 2005, pp. 3415–3420. doi: 10.1109/ROBOT.
2005.1570638.

[45] B. Sebastian and P. Ben-Tzvi, “Support vector machine based real-time terrain
estimation for tracked robots,” Mechatronics, vol. 62, no. August, p. 102 260,
2019. doi: 10.1016/j.mechatronics.2019.102260.

https://doi.org/10.1109/IROS.2007.4399610
https://doi.org/10.1109/IROS.2008.4651217
https://doi.org/10.1109/IROS.2008.4651217
https://doi.org/10.1162/neco.2006.18.7.1527
https://doi.org/10.1109/ICCVW.2011.6130362
https://doi.org/10.1109/ICCVW.2011.6130362
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s10514-016-9588-7
https://doi.org/10.1007/978-3-319-70353-4_28
https://doi.org/10.1007/978-3-319-67361-5_22
https://doi.org/10.1109/Humanoids43949.2019.9035009
https://doi.org/10.1109/Humanoids43949.2019.9035009
https://arxiv.org/abs/2109.06250
http://arxiv.org/abs/2109.06250
http://arxiv.org/abs/2109.06250
https://doi.org/10.1109/ROBOT.2005.1570638
https://doi.org/10.1109/ROBOT.2005.1570638
https://doi.org/10.1016/j.mechatronics.2019.102260

BIBLIOGRAPHY 89

[46] G. Haddeler, M. Y. Chuah, Y. You, J. Chan, A. H. Adiwahono, W. Y. Yau, and
C. M. Chew, “Traversability analysis with vision and terrain probing for safe
legged robot navigation,” Frontiers in Robotics and AI, vol. 9, no. August, pp. 1–
14, 2022. doi: 10.3389/frobt.2022.887910.

[47] C. Rasmussen, “Combining laser range, color, and texture cues for autonomous
road following.” In Proc. of the IEEE International Conference on Robotics and
Automation, vol. 4, IEEE, 2002, pp. 4320–4325. doi: 10.1109/ROBOT.2002.
1014439.

[48] A. Kelly, A. Stentz, O. Amidi, M. Bode, D. Bradley, A. Diaz-Calderon, M. Hap-
pold, H. Herman, R. Mandelbaum, T. Pilarski, P. Rander, S. Thayer, N. Vallidis,
and R. Warner, “Toward Reliable Off Road Autonomous Vehicles Operating in
Challenging Environments,” The International Journal of Robotics Research,
vol. 25, no. 5-6, pp. 449–483, 2006. doi: 10.1177/0278364906065543.

[49] M. Happold, M. Ollis, and N. Johnson, “Enhancing Supervised Terrain Classifi-
cation with Predictive Unsupervised Learning.” In Proc. of the Robotics: Science
and Systems, 2006.

[50] J. Sock, J. Kim, J. Min, and K. Kwak, “Probabilistic traversability map genera-
tion using 3D-LIDAR and camera.” In Proc. of the IEEE International Confer-
ence on Robotics and Automation, vol. 2016-June, IEEE, 2016, pp. 5631–5637.
doi: 10.1109/ICRA.2016.7487782.

[51] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter, “Learn-
ing robust perceptive locomotion for quadrupedal robots in the wild,” Science
Robotics, vol. 7, no. 62, 2022. doi: 10.1126/scirobotics.abk2822.

[52] M. Wang, J. Zhou, J. Tu, and C. Liu, “Learning Long-range Terrain Perception
for Autonomous Mobile Robots,” International Journal of Advanced Robotic
Systems, vol. 7, no. 1, p. 5, 2010. doi: 10.5772/7245.

[53] S. Zhou, J. Xi, M. W. McDaniel, T. Nishihata, P. Salesses, and K. Iagnemma,
“Self-supervised learning to visually detect terrain surfaces for autonomous robots
operating in forested terrain,” Journal of Field Robotics, vol. 29, no. 2, pp. 277–
297, 2012. doi: 10.1002/rob.21417.

[54] A. Howard, M. Turmon, L. Matthies, B. Tang, A. Angelova, and E. Mjolsness,
“Towards learned traversability for robot navigation: From underfoot to the far
field,” Journal of Field Robotics, vol. 23, no. 11-12, pp. 1005–1017, 2006. doi:
10.1002/rob.20168.

[55] D. Lieb, A. Lookingbill, and S. Thrun, “Adaptive Road Following using Self-
Supervised Learning and Reverse Optical Flow.” In Proc. of the Robotics: Science
and Systems, vol. 1, Robotics: Science and Systems Foundation, 2005, pp. 273–
280. doi: 10.15607/RSS.2005.I.036.

[56] L. Wellhausen, A. Dosovitskiy, R. Ranftl, K. Walas, C. Cadena, and M. Hutter,
“Where Should I Walk? Predicting Terrain Properties From Images Via Self-
Supervised Learning,” IEEE Robotics and Automation Letters, vol. 4, no. 2,
pp. 1509–1516, 2019. doi: 10.1109/LRA.2019.2895390.

https://doi.org/10.3389/frobt.2022.887910
https://doi.org/10.1109/ROBOT.2002.1014439
https://doi.org/10.1109/ROBOT.2002.1014439
https://doi.org/10.1177/0278364906065543
https://doi.org/10.1109/ICRA.2016.7487782
https://doi.org/10.1126/scirobotics.abk2822
https://doi.org/10.5772/7245
https://doi.org/10.1002/rob.21417
https://doi.org/10.1002/rob.20168
https://doi.org/10.15607/RSS.2005.I.036
https://doi.org/10.1109/LRA.2019.2895390

90 BIBLIOGRAPHY

[57] Y. Onozuka, R. Matsumi, and M. Shino, “Weakly-Supervised Recommended
Traversable Area Segmentation Using Automatically Labeled Images for Au-
tonomous Driving in Pedestrian Environment with No Edges,” Sensors, vol. 21,
no. 2, p. 437, 2021. doi: 10.3390/s21020437.

[58] S. Matsuzaki, K. Yamazaki, Y. Hara, and T. Tsubouchi, “Traversable Region
Estimation for Mobile Robots in an Outdoor Image,” Journal of Intelligent &
Robotic Systems, vol. 92, no. 3-4, pp. 453–463, 2018. doi: 10.1007/s10846-017-
0760-x.

[59] R. Schmid, D. Atha, F. Scholler, S. Dey, S. Fakoorian, K. Otsu, B. Ridge,
M. Bjelonic, L. Wellhausen, M. Hutter, and A.-a. Agha-mohammadi, “Self-
Supervised Traversability Prediction by Learning to Reconstruct Safe Terrain.” In
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, IEEE, 2022, pp. 12 419–12 425. doi: 10.1109/IROS47612.2022.9981368.

[60] M. Foroutan, W. Tian, and C. T. Goodin, “Assessing Impact of Understory Veg-
etation Density on Solid Obstacle Detection for Off-Road Autonomous Ground
Vehicles,” ASME Letters in Dynamic Systems and Control, vol. 1, no. 2, pp. 1–8,
2021. doi: 10.1115/1.4047816.

[61] J. Macedo, R. Manduchi, and L. Matthies, “Ladar-based Discrimination of Grass
from Obstacles for Autonomous Navigation,” in Experimental Robotics VII,
Berlin, Heidelberg: Springer Berlin Heidelberg, 2000, pp. 111–120. doi: 10.
1007/3-540-45118-8_12.

[62] M. Hebert and N. Vandapel, “Terrain classification techniques from ladar data
for autonomous navigation.” In Proc. of the Collaborative Technology Alliances
Conference, 2003.

[63] J.-F. Lalonde, N. Vandapel, D. F. Huber, and M. Hebert, “Natural terrain clas-
sification using three-dimensional ladar data for ground robot mobility,” Journal
of Field Robotics, vol. 23, no. 10, pp. 839–861, 2006. doi: 10.1002/rob.20134.

[64] K. M. Wurm, R. Kummerle, C. Stachniss, and W. Burgard, “Improving robot
navigation in structured outdoor environments by identifying vegetation from
laser data.” In Proc. of the IEEE/RSJ International Conference on Intelligent
Robots and Systems, IEEE, 2009, pp. 1217–1222. doi: 10.1109/IROS.2009.
5354530.

[65] D. M. Bradley, S. M. Thayer, A. Stentz, and P. Rander, “Vegetation detection for
mobile robot navigation,” Robotics Institute, Carnegie Mellon University, Tech.
Rep., 2004. [Online]. Available: http://www.ri.cmu.edu/pub_files/pub4/
bradley_david_2004_2/bradley_david_2004_2.pdf.

[66] D. M. Bradley, R. Unnikrishnan, and J. Bagnell, “Vegetation Detection for Driv-
ing in Complex Environments.” In Proc. of the IEEE International Conference
on Robotics and Automation, IEEE, 2007, pp. 503–508. doi: 10.1109/ROBOT.
2007.363836.

[67] C. Wellington and A. Stentz, “Online adaptive rough-terrain navigation in vege-
tation.” In Proc. of the IEEE International Conference on Robotics and Automa-
tion, IEEE, 2004, pp. 96–101. doi: 10.1109/ROBOT.2004.1307135.

https://doi.org/10.3390/s21020437
https://doi.org/10.1007/s10846-017-0760-x
https://doi.org/10.1007/s10846-017-0760-x
https://doi.org/10.1109/IROS47612.2022.9981368
https://doi.org/10.1115/1.4047816
https://doi.org/10.1007/3-540-45118-8_12
https://doi.org/10.1007/3-540-45118-8_12
https://doi.org/10.1002/rob.20134
https://doi.org/10.1109/IROS.2009.5354530
https://doi.org/10.1109/IROS.2009.5354530
http://www.ri.cmu.edu/pub_files/pub4/bradley_david_2004_2/bradley_david_2004_2.pdf
http://www.ri.cmu.edu/pub_files/pub4/bradley_david_2004_2/bradley_david_2004_2.pdf
https://doi.org/10.1109/ROBOT.2007.363836
https://doi.org/10.1109/ROBOT.2007.363836
https://doi.org/10.1109/ROBOT.2004.1307135

BIBLIOGRAPHY 91

[68] A. Narenthiran Sivakumar, S. Modi, M. Valverde Gasparino, C. Ellis, A. E. Ba-
quero Velasquez, G. Chowdhary, and S. Gupta, “Learned Visual Navigation for
Under-Canopy Agricultural Robots.” In Proc. of the Robotics: Science and Sys-
tems, 2021.

[69] A. E. Baquero Velasquez, V. A. Hisano Higuti, M. Valverde Gasparino, A. Sivaku-
mar, M. Becker, and G. Chowdhary, “Multi-Sensor Fusion based Robust Row Fol-
lowing for Compact Agricultural Robots,” Field Robotics, vol. 2, no. 1, pp. 1291–
1319, 2022. doi: 10.55417/fr.2022043.

[70] C. Sevastopoulos and S. Konstantopoulos, “A Survey of Traversability Estimation
for Mobile Robots,” IEEE Access, vol. 10, no. April, pp. 96 331–96 347, 2022. doi:
10.1109/ACCESS.2022.3202545.

[71] B. Mehlig, Machine Learning with Neural Networks. Cambridge University Press,
2021. doi: 10.1017/9781108860604.

[72] F. Rosenblatt, Principles of Neurodynamics: Perceptrons and the Theory of Brain
Mechanisms, ser. Cornell Aeronautical Laboratory. Report no. VG-1196-G-8.
Spartan Books, 1962.

[73] C. M. Bishop, Pattern Recognition and Machine Learning. Springer, 2006.

[74] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2018.
doi: 10.5555/3086952.

[75] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mech-
anism of pattern recognition unaffected by shift in position,” Biological Cyber-
netics, vol. 36, no. 4, pp. 193–202, 1980. doi: 10.1007/BF00344251.

[76] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and
L. D. Jackel, “Backpropagation Applied to Handwritten Zip Code Recognition,”
Neural Computation, vol. 1, no. 4, pp. 541–551, 1989. doi: 10.1162/neco.1989.
1.4.541.

[77] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied
to document recognition,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–
2324, 1998. doi: 10.1109/5.726791.

[78] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” Communications of the ACM, vol. 60, no. 6,
pp. 84–90, 2017. doi: 10.1145/3065386.

[79] C. Szegedy, Wei Liu, Yangqing Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions.” In Proc. of
the 2015 Computer Vision and Pattern Recognition, IEEE, 2015, pp. 1–9. doi:
10.1109/CVPR.2015.7298594.

[80] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition.” In Proc. of the International Conference on Learning
Representations,, 2015, pp. 1–14.

[81] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning for Image Recog-
nition.” In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, IEEE, 2016, pp. 770–778. doi: 10.1109/CVPR.2016.90.

https://doi.org/10.55417/fr.2022043
https://doi.org/10.1109/ACCESS.2022.3202545
https://doi.org/10.1017/9781108860604
https://doi.org/10.5555/3086952
https://doi.org/10.1007/BF00344251
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1162/neco.1989.1.4.541
https://doi.org/10.1109/5.726791
https://doi.org/10.1145/3065386
https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2016.90

92 BIBLIOGRAPHY

[82] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A.
Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “ImageNet Large
Scale Visual Recognition Challenge,” International Journal of Computer Vision,
vol. 115, no. 3, pp. 211–252, 2015. doi: 10.1007/s11263-015-0816-y.

[83] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolutions.”
In Proc. of the International Conference on Learning Representations, 2016.

[84] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab:
Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolu-
tion, and Fully Connected CRFs,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 4, pp. 834–848, 2018. doi: 10.1109/TPAMI.
2017.2699184.

[85] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, and
M. Andreetto, “MobileNets: Efficient Convolutional Neural Networks for Mobile
Vision Applications,” Tech. Rep., 2017. arXiv: 1704.04861v1.

[86] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua, “Learning Separable Filters.”
In Proc. of the IEEE Conference on Computer Vision and Pattern Recognition,
IEEE, 2013, pp. 2754–2761. doi: 10.1109/CVPR.2013.355.

[87] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “Efficient ConvNet
for real-time semantic segmentation.” In Proc. of the IEEE Intelligent Vehicles
Symposium, IEEE, 2017, pp. 1789–1794. doi: 10.1109/IVS.2017.7995966.

[88] Z. Li, F. Liu, W. Yang, S. Peng, and J. Zhou, “A Survey of Convolutional Neural
Networks: Analysis, Applications, and Prospects,” IEEE Transactions on Neural
Networks and Learning Systems, pp. 1–21, 2021. doi: 10.1109/TNNLS.2021.
3084827.

[89] S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, “Aggregated Residual Trans-
formations for Deep Neural Networks.” In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, IEEE, 2017, pp. 5987–5995. doi:
10.1109/CVPR.2017.634.

[90] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic
segmentation.” In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, IEEE, 2015, pp. 3431–3440. doi: 10.1109/CVPR.2015.7298965.

[91] V. Badrinarayanan, A. Kendall, and R. Cipolla, “SegNet: A Deep Convolutional
Encoder-Decoder Architecture for Image Segmentation,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481–2495, 2017.
doi: 10.1109/TPAMI.2016.2644615.

[92] H. Su, F. Xing, X. Kong, Y. Xie, S. Zhang, and L. Yang, “Robust Cell Detection
and Segmentation in Histopathological Images Using Sparse Reconstruction and
Stacked Denoising Autoencoders,” in Medical Image Computing and Computer-
Assisted Intervention, vol. 9351, 2017, pp. 257–278. doi: 10.1007/978-3-319-
42999-1_15.

[93] L.-C. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking Atrous Convo-
lution for Semantic Image Segmentation,” Tech. Rep., 2017. arXiv: 1706.05587.
[Online]. Available: http://arxiv.org/abs/1706.05587.

https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TPAMI.2017.2699184
https://doi.org/10.1109/TPAMI.2017.2699184
https://arxiv.org/abs/1704.04861v1
https://doi.org/10.1109/CVPR.2013.355
https://doi.org/10.1109/IVS.2017.7995966
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/TNNLS.2021.3084827
https://doi.org/10.1109/CVPR.2017.634
https://doi.org/10.1109/CVPR.2015.7298965
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1007/978-3-319-42999-1_15
https://doi.org/10.1007/978-3-319-42999-1_15
https://arxiv.org/abs/1706.05587
http://arxiv.org/abs/1706.05587

BIBLIOGRAPHY 93

[94] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-Decoder
with Atrous Separable Convolution for Semantic Image Segmentation.” In Proc.
of the European Conference on Computer Vision, 2018, pp. 833–851. doi:
10.1007/978-3-030-01234-2_49.

[95] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid Scene Parsing Network.”
In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, IEEE, 2017, pp. 6230–6239. doi: 10.1109/CVPR.2017.660.

[96] J. Wang, K. Sun, T. Cheng, B. Jiang, C. Deng, Y. Zhao, D. Liu, Y. Mu, M. Tan,
X. Wang, W. Liu, and B. Xiao, “Deep High-Resolution Representation Learning
for Visual Recognition,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 43, no. 10, pp. 3349–3364, 2021. doi: 10.1109/TPAMI.2020.
2983686.

[97] Y. Yuan, X. Chen, and J. Wang, “Object-Contextual Representations for Seman-
tic Segmentation.” In Proc. of the European Conference on Computer Vision,
vol. 12351 LNCS, 2020, pp. 173–190. doi: 10.1007/978-3-030-58539-6_11.

[98] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello, “ENet: A Deep Neural
Network Architecture for Real-Time Semantic Segmentation,” Tech. Rep., 2016.
arXiv: 1606.02147v1. [Online]. Available: https://arxiv.org/pdf/1606.
02147.pdf.

[99] E. Romera, J. M. Alvarez, L. M. Bergasa, and R. Arroyo, “ERFNet: Efficient
Residual Factorized ConvNet for Real-Time Semantic Segmentation,” IEEE
Transactions on Intelligent Transportation Systems, vol. 19, no. 1, pp. 263–272,
2018. doi: 10.1109/TITS.2017.2750080.

[100] S. Mehta, M. Rastegari, A. Caspi, L. Shapiro, and H. Hajishirzi, “ESPNet:
Efficient Spatial Pyramid of Dilated Convolutions for Semantic Segmentation,”
in European Conference on Computer Vision, 2018, pp. 561–580. doi: 10.1007/
978-3-030-01249-6_34.

[101] S. Mehta, M. Rastegari, L. Shapiro, and H. Hajishirzi, “ESPNetv2: A Light-
Weight, Power Efficient, and General Purpose Convolutional Neural Network.”
In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, IEEE, 2019, pp. 9182–9192. doi: 10.1109/CVPR.2019.00941.

[102] L. C. Lulio, M. L. Tronco, and A. J. V. Porto, “JSEG-based image segmentation
in computer vision for agricultural mobile robot navigation.” In Proc. of the
IEEE International Symposium on Computational Intelligence in Robotics and
Automation, IEEE, 2009, pp. 240–245. doi: 10.1109/CIRA.2009.5423201.

[103] M. Sharifi and XiaoQi Chen, “A novel vision based row guidance approach for
navigation of agricultural mobile robots in orchards.” In Proc. of the International
Conference on Automation, Robotics and Applications, IEEE, 2015, pp. 251–255.
doi: 10.1109/ICARA.2015.7081155.

[104] D. Aghi, S. Cerrato, V. Mazzia, and M. Chiaberge, “Deep Semantic Segmentation
at the Edge for Autonomous Navigation in Vineyard Rows,” Tech. Rep., 2021.
arXiv: 2107.00700. [Online]. Available: http://arxiv.org/abs/2107.00700.

https://doi.org/10.1007/978-3-030-01234-2_49
https://doi.org/10.1109/CVPR.2017.660
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1109/TPAMI.2020.2983686
https://doi.org/10.1007/978-3-030-58539-6_11
https://arxiv.org/abs/1606.02147v1
https://arxiv.org/pdf/1606.02147.pdf
https://arxiv.org/pdf/1606.02147.pdf
https://doi.org/10.1109/TITS.2017.2750080
https://doi.org/10.1007/978-3-030-01249-6_34
https://doi.org/10.1007/978-3-030-01249-6_34
https://doi.org/10.1109/CVPR.2019.00941
https://doi.org/10.1109/CIRA.2009.5423201
https://doi.org/10.1109/ICARA.2015.7081155
https://arxiv.org/abs/2107.00700
http://arxiv.org/abs/2107.00700

94 BIBLIOGRAPHY

[105] Y.-K. Lin and S.-F. Chen, “Development of Navigation System for Tea Field
Machine Using Semantic Segmentation,” IFAC-PapersOnLine, vol. 52, no. 30,
pp. 108–113, 2019. doi: 10.1016/j.ifacol.2019.12.506.

[106] H. Rezatofighi, N. Tsoi, J. Gwak, A. Sadeghian, I. Reid, and S. Savarese, “Gen-
eralized Intersection Over Union: A Metric and a Loss for Bounding Box Regres-
sion.” In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, vol. 2019-June, IEEE, 2019, pp. 658–666. doi: 10.1109/CVPR.
2019.00075.

[107] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler, R. Benenson, U.
Franke, S. Roth, and B. Schiele, “The Cityscapes Dataset for Semantic Urban
Scene Understanding.” In Proc. of the IEEE Conference on Computer Vision and
Pattern Recognition, IEEE, 2016, pp. 3213–3223. doi: 10.1109/CVPR.2016.350.

[108] G. Csurka, Domain Adaptation in Computer Vision Applications, G. Csurka,
Ed., ser. Advances in Computer Vision and Pattern Recognition. Cham: Springer
International Publishing, 2017. doi: 10.1007/978-3-319-58347-1.

[109] S. J. Pan and Q. Yang, “A Survey on Transfer Learning,” IEEE Transactions
on Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, 2010. doi:
10.1109/TKDE.2009.191.

[110] K. Weiss, T. M. Khoshgoftaar, and D. Wang, “A survey of transfer learning,”
Journal of Big Data, vol. 3, no. 1, p. 9, 2016. doi: 10.1186/s40537-016-0043-
6.

[111] S. Zhao, X. Yue, S. Zhang, B. Li, H. Zhao, B. Wu, R. Krishna, J. E. Gonzalez,
A. L. Sangiovanni-Vincentelli, S. A. Seshia, and K. Keutzer, “A Review of Single-
Source Deep Unsupervised Visual Domain Adaptation,” Tech. Rep., 2020, pp. 1–
21. arXiv: 2009.00155. [Online]. Available: http://arxiv.org/abs/2009.
00155.

[112] G. Wilson and D. J. Cook, “A Survey of Unsupervised Deep Domain Adaptation,”
ACM Transactions on Intelligent Systems and Technology, vol. 11, no. 5, pp. 1–
46, 2020. doi: 10.1145/3400066.

[113] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. A. Efros, and T.
Darrell, “CyCADA: Cycle-Consistent Adversarial Domain Adaptation.” In Proc.
of the International Conference on Machine Learning, 2018, pp. 1989–1998.

[114] T.-H. Vu, H. Jain, M. Bucher, M. Cord, and P. Perez, “ADVENT: Adversar-
ial Entropy Minimization for Domain Adaptation in Semantic Segmentation.” In
Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, IEEE, 2019, pp. 2512–2521. doi: 10.1109/CVPR.2019.00262.

[115] K. Saito, Y. Ushiku, and T. Harada, “Asymmetric tri-training for unsupervised
domain adaptation.” In Proc. of the International Conference on Machine Learn-
ing, 2017, pp. 2988–2997.

[116] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette,
M. Marchand, and V. Lempitsky, “Domain-Adversarial Training of Neural Net-
works,” in The Journal of Machine Learning Research, 1, vol. 17, 2017, pp. 189–
209. doi: 10.1007/978-3-319-58347-1_10.

https://doi.org/10.1016/j.ifacol.2019.12.506
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1109/CVPR.2019.00075
https://doi.org/10.1109/CVPR.2016.350
https://doi.org/10.1007/978-3-319-58347-1
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1186/s40537-016-0043-6
https://arxiv.org/abs/2009.00155
http://arxiv.org/abs/2009.00155
http://arxiv.org/abs/2009.00155
https://doi.org/10.1145/3400066
https://doi.org/10.1109/CVPR.2019.00262
https://doi.org/10.1007/978-3-319-58347-1_10

BIBLIOGRAPHY 95

[117] Y.-H. Tsai, W.-C. Hung, S. Schulter, K. Sohn, M.-H. Yang, and M. Chandraker,
“Learning to Adapt Structured Output Space for Semantic Segmentation.” In
Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, IEEE, 2018, pp. 7472–7481. doi: 10.1109/CVPR.2018.00780.

[118] M. Biasetton, U. Michieli, G. Agresti, and P. Zanuttigh, “Unsupervised Do-
main Adaptation for Semantic Segmentation of Urban Scenes.” In Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops,
IEEE, 2019, pp. 1211–1220. doi: 10.1109/CVPRW.2019.00160.

[119] I. J. Goodfellow, P.-A. Jean, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A.
Courville, and Y. Bengio, “Generative Adversarial Nets.” In Proc. of the Con-
ference on Neural Information Processing Systems, 2014, pp. 2672–2680. doi:
10.5555/2969033.2969125.

[120] Y. Zou, Z. Yu, B. V. K. Vijaya Kumar, and J. Wang, “Unsupervised Domain
Adaptation for Semantic Segmentation via Class-Balanced Self-training,” in Eu-
ropean Conference on Computer Vision, 2018, pp. 297–313. doi: 10.1007/978-
3-030-01219-9_18.

[121] Y. Zou, Z. Yu, X. Liu, B. V. K. V. Kumar, and J. Wang, “Confidence Regularized
Self-Training.” In Proc. of the IEEE/CVF International Conference on Computer
Vision, IEEE, 2019, pp. 5981–5990. doi: 10.1109/ICCV.2019.00608.

[122] Z. Zheng and Y. Yang, “Rectifying Pseudo Label Learning via Uncertainty Esti-
mation for Domain Adaptive Semantic Segmentation,” International Journal of
Computer Vision, vol. 129, no. 4, pp. 1106–1120, 2021. doi: 10.1007/s11263-
020-01395-y.

[123] P. Zhang, B. Zhang, T. Zhang, D. Chen, Y. Wang, and F. Wen, “Prototypical
Pseudo Label Denoising and Target Structure Learning for Domain Adaptive
Semantic Segmentation.” In Proc. of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, IEEE, 2021, pp. 12 409–12 419. doi: 10.1109/
CVPR46437.2021.01223.

[124] R. Xu, Z. Chen, W. Zuo, J. Yan, and L. Lin, “Deep Cocktail Network: Multi-
source Unsupervised Domain Adaptation with Category Shift.” In Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE,
2018, pp. 3964–3973. doi: 10.1109/CVPR.2018.00417.

[125] S. Zhao, B. Li, C. Reed, P. Xu, and K. Keutzer, “Multi-source Domain Adaptation
in the Deep Learning Era: A Systematic Survey,” Tech. Rep., 2020. arXiv:
2002.12169. [Online]. Available: http://arxiv.org/abs/2002.12169.

[126] S. Zhao, B. Li, X. Yue, Y. Gu, P. Xu, R. Hu, H. Chai, and K. Keutzer, “Multi-
source Domain Adaptation for Semantic Segmentation.” In Proc. of the Confer-
ence on Neural Information Processing Systems, vol. 32, 2019, pp. 7287–7300.

[127] J. He, X. Jia, S. Chen, and J. Liu, “Multi-Source Domain Adaptation with Collab-
orative Learning for Semantic Segmentation.” In Proc. of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, IEEE, 2021, pp. 11 003–
11 012. doi: 10.1109/CVPR46437.2021.01086.

https://doi.org/10.1109/CVPR.2018.00780
https://doi.org/10.1109/CVPRW.2019.00160
https://doi.org/10.5555/2969033.2969125
https://doi.org/10.1007/978-3-030-01219-9_18
https://doi.org/10.1007/978-3-030-01219-9_18
https://doi.org/10.1109/ICCV.2019.00608
https://doi.org/10.1007/s11263-020-01395-y
https://doi.org/10.1007/s11263-020-01395-y
https://doi.org/10.1109/CVPR46437.2021.01223
https://doi.org/10.1109/CVPR46437.2021.01223
https://doi.org/10.1109/CVPR.2018.00417
https://arxiv.org/abs/2002.12169
http://arxiv.org/abs/2002.12169
https://doi.org/10.1109/CVPR46437.2021.01086

96 BIBLIOGRAPHY

[128] S. J. Park, H. J. Park, E. S. Kang, B. H. Ngo, H. S. Lee, and S. I. Cho, “Pseudo La-
bel Rectification via Co-Teaching and Decoupling for Multisource Domain Adap-
tation in Semantic Segmentation,” IEEE Access, vol. 10, no. July, pp. 91 137–
91 149, 2022. doi: 10.1109/ACCESS.2022.3202190.

[129] I. Nigam, C. Huang, and D. Ramanan, “Ensemble Knowledge Transfer for Seman-
tic Segmentation.” In Proc. of the IEEE Winter Conference on Applications of
Computer Vision, IEEE, 2018, pp. 1499–1508. doi: 10.1109/WACV.2018.00168.

[130] S. R. Richter, V. Vineet, S. Roth, and V. Koltun, “Playing for Data: Ground
Truth from Computer Games,” in European Conference on Computer Vision,
vol. 9906, 2016, pp. 102–118. doi: 10.1007/978-3-319-46475-6_7.

[131] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and A. M. Lopez, “The SYNTHIA
Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of
Urban Scenes.” In Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2016, pp. 3234–3243. doi: 10.1109/CVPR.2016.352.

[132] A. Shaban, S. Bansal, Z. Liu, I. Essa, and B. Boots, “One-shot learning for
semantic segmentation.” In Proc. of the British Machine Vision Conference,
2017, pp. 167.1–167.13. doi: 10.5244/c.31.167.

[133] K. Nguyen and S. Todorovic, “Feature weighting and boosting for few-shot seg-
mentation.” In Proc. of the IEEE International Conference on Computer Vision,
2019, pp. 622–631. doi: 10.1109/ICCV.2019.00071.

[134] G. Li, V. Jampani, L. Sevilla-Lara, D. Sun, J. Kim, and J. Kim, “Adaptive
Prototype Learning and Allocation for Few-Shot Segmentation.” In Proc. of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE,
2021, pp. 8330–8339. doi: 10.1109/CVPR46437.2021.00823.

[135] H. Qi, M. Brown, and D. G. Lowe, “Low-Shot Learning with Imprinted Weights.”
In Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, IEEE, 2018, pp. 5822–5830. doi: 10.1109/CVPR.2018.00610.

[136] M. Siam, B. Oreshkin, and M. Jagersand, “AMP: Adaptive masked proxies for
few-shot segmentation.” In Proc. of the IEEE International Conference on Com-
puter Vision, 2019, pp. 5248–5257. doi: 10.1109/ICCV.2019.00535.

[137] J. Bekker and J. Davis, Learning from positive and unlabeled data: a survey, 4.
Springer US, 2020, vol. 109, pp. 719–760. doi: 10.1007/s10994-020-05877-5.

[138] Y. Yang, K. J. Liang, and L. Carin, “Object detection as a positive-unlabeled
problem,” Tech. Rep., 2020. arXiv: 2002.04672. [Online]. Available: https:
//arxiv.org/pdf/2002.04672.pdf.

[139] G. J. Brostow, J. Fauqueur, and R. Cipolla, “Semantic object classes in video:
A high-definition ground truth database,” Pattern Recognition Letters, vol. 30,
no. 2, pp. 88–97, 2009. doi: 10.1016/j.patrec.2008.04.005.

[140] A. Valada, G. L. Oliveira, T. Brox, and W. Burgard, “Deep Multispectral Seman-
tic Scene Understanding of Forested Environments Using Multimodal Fusion,”
in International Symposium for Experimental Robotics, 2017, pp. 465–477. doi:
10.1007/978-3-319-50115-4_41.

[141] D. P. Kingma and J. Lei Ba, “Adam: A Method for Stochastic Optimization.”
In Proc. of the International Conference on Learning Representations, 2015.

https://doi.org/10.1109/ACCESS.2022.3202190
https://doi.org/10.1109/WACV.2018.00168
https://doi.org/10.1007/978-3-319-46475-6_7
https://doi.org/10.1109/CVPR.2016.352
https://doi.org/10.5244/c.31.167
https://doi.org/10.1109/ICCV.2019.00071
https://doi.org/10.1109/CVPR46437.2021.00823
https://doi.org/10.1109/CVPR.2018.00610
https://doi.org/10.1109/ICCV.2019.00535
https://doi.org/10.1007/s10994-020-05877-5
https://arxiv.org/abs/2002.04672
https://arxiv.org/pdf/2002.04672.pdf
https://arxiv.org/pdf/2002.04672.pdf
https://doi.org/10.1016/j.patrec.2008.04.005
https://doi.org/10.1007/978-3-319-50115-4_41

BIBLIOGRAPHY 97

[142] A. Zlateski, R. Jaroensri, P. Sharma, and F. Durand, “On the Importance of Label
Quality for Semantic Segmentation.” In Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, IEEE, 2018, pp. 1479–1487. doi:
10.1109/CVPR.2018.00160.

[143] X. Liu and S. Zhang, “Who is closer: A computational method for domain gap
evaluation,” Pattern Recognition, vol. 122, p. 108 293, 2022. doi: 10.1016/j.
patcog.2021.108293.

[144] M. Labbé and F. Michaud, “RTAB-Map as an open-source lidar and visual si-
multaneous localization and mapping library for large-scale and long-term online
operation,” Journal of Field Robotics, vol. 36, no. 2, pp. 416–446, 2019. doi:
10.1002/rob.21831.

[145] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury Google, G. Chanan, T.
Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. K. Xamla, E. Yang,
Z. Devito, M. Raison Nabla, A. Tejani, S. Chilamkurthy, Q. Ai, B. Steiner, L. F.
Facebook, J. B. Facebook, and S. Chintala, “PyTorch: An Imperative Style,
High-Performance Deep Learning Library.” In Proc. of the Conference on Neural
Information Processing Systems, 2019, pp. 8024–8035.

[146] L. N. Smith, “Cyclical Learning Rates for Training Neural Networks.” In Proc. of
the IEEE Winter Conference on Applications of Computer Vision, IEEE, 2017,
pp. 464–472. doi: 10.1109/WACV.2017.58.

[147] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R.
Wheeler, and A. Ng, “ROS: an open-source Robot Operating System.” In Proc.
of the IEEE International Conference on Robotics and Automation Workshop on
Open Source Robotics, 2009.

[148] Z. Cao, G. Hidalgo, T. Simon, S. E. Wei, and Y. Sheikh, “OpenPose: Realtime
Multi-Person 2D Pose Estimation Using Part Affinity Fields,” IEEE Transactions
on Pattern Analysis and Machine Intelligence, vol. 43, no. 1, pp. 172–186, 2021.
doi: 10.1109/TPAMI.2019.2929257.

[149] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “ArcFace: Additive Angular Margin
Loss for Deep Face Recognition.” In Proc. of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, IEEE, 2019, pp. 4685–4694. doi:
10.1109/CVPR.2019.00482.

[150] U. Michieli and P. Zanuttigh, “Knowledge distillation for incremental learning in
semantic segmentation,” Computer Vision and Image Understanding, vol. 205,
p. 103 167, 2021. doi: 10.1016/j.cviu.2021.103167.

[151] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework for
contrastive learning of visual representations.” In Proc. of the International Con-
ference on Machine Learning, vol. PartF16814, 2020, pp. 1575–1585.

[152] X. Lai, Z. Tian, L. Jiang, S. Liu, H. Zhao, L. Wang, and J. Jia, “Semi-supervised
Semantic Segmentation with Directional Context-aware Consistency.” In Proc. of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition, IEEE,
2021, pp. 1205–1214. doi: 10.1109/CVPR46437.2021.00126.

https://doi.org/10.1109/CVPR.2018.00160
https://doi.org/10.1016/j.patcog.2021.108293
https://doi.org/10.1016/j.patcog.2021.108293
https://doi.org/10.1002/rob.21831
https://doi.org/10.1109/WACV.2017.58
https://doi.org/10.1109/TPAMI.2019.2929257
https://doi.org/10.1109/CVPR.2019.00482
https://doi.org/10.1016/j.cviu.2021.103167
https://doi.org/10.1109/CVPR46437.2021.00126

98 BIBLIOGRAPHY

[153] R. C. Qi, H. Su, K. Mo, and L. J. Guibas, “PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation.” In Proc. of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, IEEE, 2017, pp. 77–85. doi:
10.1109/CVPR.2017.16.

[154] Q. Hu, B. Yang, L. Xie, S. Rosa, Y. Guo, Z. Wang, N. Trigoni, and A. Markham,
“RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds.” In
Proc. of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, IEEE, 2020, pp. 11 105–11 114. doi: 10.1109/CVPR42600.2020.01112.

[155] Y. Zhang, Z. Zhou, P. David, X. Yue, Z. Xi, B. Gong, and H. Foroosh, “Polar-
Net: An Improved Grid Representation for Online LiDAR Point Clouds Semantic
Segmentation.” In Proc. of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, IEEE, 2020, pp. 9598–9607. doi: 10.1109/CVPR42600.
2020.00962.

[156] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D.
Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay, “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[157] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient Graph-Based Image Seg-
mentation,” International Journal of Computer Vision, vol. 59, no. 2, pp. 167–
181, 2004. doi: 10.1023/B:VISI.0000022288.19776.77.

[158] S. van der Walt, J. L. Schönberger, J. Nunez-Iglesias, F. Boulogne, J. D. Warner,
N. Yager, E. Gouillart, and T. Yu, “scikit-image: image processing in Python,”
PeerJ, vol. 2, no. 1, e453, 2014. doi: 10.7717/peerj.453.

[159] T. Leung and J. Malik, “Representing and recognizing the visual appearance of
materials using three-dimensional textons,” International Journal of Computer
Vision, vol. 43, no. 1, pp. 29–44, 2001. doi: 10.1023/A:1011126920638.

[160] P. Mishra and K. Sarawadekar, “Polynomial Learning Rate Policy with Warm
Restart for Deep Neural Network.” In Proc. of the IEEE Region 10 Conference,
IEEE, 2019, pp. 2087–2092. doi: 10.1109/TENCON.2019.8929465.

[161] Z. Zheng and Y. Yang, “Unsupervised Scene Adaptation with Memory Regu-
larization in vivo.” In Proc. of the International Joint Conference on Artificial
Intelligence, California: International Joint Conferences on Artificial Intelligence
Organization, 2020, pp. 1076–1082. doi: 10.24963/ijcai.2020/150.

https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR42600.2020.01112
https://doi.org/10.1109/CVPR42600.2020.00962
https://doi.org/10.1109/CVPR42600.2020.00962
https://doi.org/10.1023/B:VISI.0000022288.19776.77
https://doi.org/10.7717/peerj.453
https://doi.org/10.1023/A:1011126920638
https://doi.org/10.1109/TENCON.2019.8929465
https://doi.org/10.24963/ijcai.2020/150

Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof. Jun Miura for his
support throughout my BSc, MSc, and Ph.D study. I would like to thank him for giving
me a lot of advices and suggestions about the research, and for not telling me what to
do, which encouraged me to proactively carry out the research. Without his support
and patience, I would not be able to continue my research and submit this thesis today.

I would like to express my gratitude to Prof. Shigeru Kuriyama, an examiner of the
dissertation, for the fruitful discussion and suggestions.

I also express my gratitude to Prof. Naoki Uchiyama, Prof. Takashi Tsubouchi
(University of Tsukuba), and Prof. Mikko Vastaranta (University of Eastern Finland:
UEF) for the fruitful discussions, suggestions, and advices. In addition, I would like to
thank Prof. Vastaranta also for giving me the chance to study in UEF. The experience
of studying in a different field gave me a new perspective and knowledge, which will help
me in the future research life.

I would like to express my gratitude to Specially Appointed Assoc. Prof. Takahiro
Yamauchi for his cooperation in conducting data collection and the robot navigation
experiments in the greenhouse.

Special thanks go to Mr. Hiroaki Masuzawa, who co-authored all my publications.
He did not only support my research and gave me advice as a researcher, but also gave
me a lot of advices about the life and career as a senior in the lab. I would also like to
thank Assist. Prof. Kotaro Hayashi for giving me advice about the research career and
also sometimes talking together. My gratitude also goes to the secretaries of the Active
Intelligent Systems Laboratory (AISL): Ms. Mikiko Kobayashi, Ms. Asaha Murai, and
a former secretary Ms. Akiko Yamamoto for their support in my research activities, and
for talking with me about random things.

I thank all members and alumni of AISL for their cooperation, discussion, and fun
we have had. Especially, I am grateful to the members of the Agri group: Chuo Nakano,
Yoshinobu Uzawa, Tomohiko Sano, David Pich, and Hiroto Kakinoki for the discussion
in the weekly meetings, and being good kouhai (junior students). I would also like to
thank Kazuki Mano who has been a good friend and a research mate since B4. Besides,
thanks also go to the staffs and students in the Leading Program: Prof. Hiromu Ishii,
Mr. Hajime Tsukada, Ms. Chiharu Iwase, Yuma Taniyama, Ryuto Shinozaki, junior
students, and alumni.

Dr. Shuji Oishi and Dr. Kenji Koide (National Institute of Advanced Industrial
Science and Technology: AIST) have been and will be my role models since they were
members of AISL, and were a motivation of my crazy decision to go to the Ph.D course.
Together with them, I would like to thank Dr. Masashi Yokozuka and Dr. Atsuhiko
Banno for the opportunity of the research internship at AIST, and for the discussion

99

100 ACKNOWLEDGEMENTS

and the advices during the internship. I would also like to thank the Ph.D students who
have influenced, motivated, and sometimes demotivated me by showing their strong
progresses and abilities: Dr. Liliana Villamar Gomez, Dr. Chandra Kusuma Dewa, Dr.
Yubao Liu, Oskar Natan, Mahmood Hassan, Kohei Honda, and friends on Twitter.

Last but not least, I would like to thank my family for their kind support. I would
like to express sincere gratitude to my beloved wife, Ms. Min Matsuzaki, for her love
and patience.

The work in this thesis was supported in part by the Leading Graduate School
Program: “the Innovative Program for Training Brain-Science-Information-Architects
by Analysis of Massive Quantities of Highly Technical Information About the Brain” by
the Ministry of Education, Culture, Sports, Science and Technology, Japan.

List of Publications

Publications relevant to this thesis

• Shigemichi Matsuzaki, Jun Miura, and Hiroaki Masuzawa, ”Multi-source Pseudo-
label Learning of Semantic Segmentation for the Scene Recognition of Agricultural
Mobile Robots”, Advanced Robotics, pp. 1011-1029, vol. 36, issue 19, 2022, DOI:
10.1080/01691864.2022.2109427

• Shigemichi Matsuzaki, Hiroaki Masuzawa, and Jun Miura, ”Image-based scene
recognition for robot navigation considering traversable plants and its manual
annotation-free training”, IEEE Access, pp. 5115-5128, vol. 10, 2022, DOI:
10.1109/ACCESS.2022.3141594

• Shigemichi Matsuzaki, Hiroaki Masuzawa, and Jun Miura, ”Online refine-
ment of a scene recognition model for mobile robots by observing human’s in-
teraction with environments”, IEEE International Conference on Systems, Man,
and Cybernetics, pp. 216-222, Prague, the Czech Republic, Oct. 2022, DOI:
10.1109/SMC53654.2022.9945283

• Shigemichi Matsuzaki, Hiroaki Masuzawa, Jun Miura, and Shuji Oishi, ”3D
Semantic Mapping in Greehouses for Agricultural Robots with Robust Object
Recognition using Robots’ Trajectory”, IEEE International Conference on Sys-
tems, Man, and Cybernetics, pp. 357-362, Miyazaki, Japan, Oct. 2018, DOI:
10.1109/SMC.2018.00070

Publications not forming this thesis

• Yoshinobu Uzawa, Shigemichi Matsuzaki, Hiroaki Masuzawa, and Jun Miura,
”End-to-end path estimation and automatic dataset generation for robot naviga-
tion in plant-rich environments”, 17th International Conference on Autonomous
Systems, Zagreb, Croatia, June 2022.

101

https://doi.org/10.1080/01691864.2022.2109427
https://doi.org/10.1109/ACCESS.2022.3141594
https://doi.org/10.1109/SMC53654.2022.9945283
https://doi.org/10.1109/SMC.2018.00070

	Introduction
	Background
	Limitations of the existing work
	Research goal
	Proposed framework
	Contributions of the thesis
	Thesis outline

	Literature Review
	Scene understanding for mobile robots
	Obstacle detection and terrain analysis
	Traversability estimation considering vegetation

	Deep Neural Networks (DNNs)
	Artificial Neural Networks (ANNs)
	Convolutional Neural Networks (CNNs)
	DNNs for semantic segmentation

	Machine learning with limited data
	Domain Adaptation (DA)
	Few-shot Learning (FSL)
	Positive and Unlabeled Learning (PU Learning)

	Multi-source Pseudo-label Learning of Semantic Segmentation
	Introduction
	Proposed Method
	Overview
	Model pre-training
	Pseudo-label generation using multiple pre-trained models
	Model training on the target data
	The overall algorithm

	Experiments
	Experimental setup
	Comparison to single-source baselines
	Comparison to existing methods
	Comparison of strategies to merge multi-source information
	Effect of updating the pseudo-labels
	Ablation on pseudo-label noise suppression strategies
	Parameter sensitivity analysis

	Discussion and future work
	Limitations of the hard pseudo-label generation strategy
	Attempts to improve the pseudo-label generation and preliminary results

	Summary

	Image-Based Scene Recognition for Robot Navigation Considering Traversable Plants
	Introduction
	Proposed Method
	Traversability mask
	Network architecture
	3D semantic voxel map

	Experiments
	Evaluation of TEM
	Navigation in a greenhouse
	Discussion

	Summary

	Online Refinement of the Scene Recognition Model by Observing Human's Interaction with the Environment
	Introduction
	Proposed Method
	Preliminary: Weight imprinting
	Problem setting
	Data collection
	Network architecture and the loss function
	Online learning by the robust weight imprinting

	Experiments
	Experimental setup
	Baselines
	Online model refinement
	Parameter evaluation

	Summary

	Conclusions and Discussion
	Conclusions
	Proposals for a system design and applications
	The proposed navigation system
	Applications

	Limitations and future research directions

	Details of the network structure
	Analysis of the prediction distributions
	Policy of manual annotation on the test images
	Qualitative evaluation on Greenhouse B and C
	Details of experimental settings
	Implementation details of the baseline methods
	Description of the feature for SP-SVM
	Training details of the UDA baselines

	Results of the baseline methods
	Qualitative evaluation of the UDA methods
	Effect of GAN-based image style transfer

	Bibliography
	Acknowledgements
	List of Publications

