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Abstract Technological developments lead to substantial changes in train drivers' tasks. The effect of 

automation as well as changing task and environmental characteristics impose new challenges on train drivers. 

One of the expected effects is a rise in the underload of train drivers which in turn might affect their 

performance. In this study, scientific literature from various safety-critical domains is reviewed to identify the 

factors that have the potential to lead to cognitive underload. Experimental studies on train driving are extracted 

to conduct a simple meta-analysis on the effects of monotony and low task demand in train drivers. The 

findings point to impaired cognitive state in train drivers under monotonous and low task demand conditions. 

Prolonged performance under such conditions might impair vigilance task performance. Literature review 

reveals several good practices and potential techniques that can be used to avoid or delay the occurrence of 

underloading situations or to mitigate the arising effects. 
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1. INTRODUCTION 

In the future the main task of the train driver will be shifting from active controlling to passive 

monitoring [1]. The concept of grades of automation describes the main responsibilities of train 

drivers and automation systems [2]. For example, while in the GoA-1 train driver manually drives 

the train with the assistance of an automatic train protection, in the GoA-2 the speed control is 

automated, and the main tasks of the train driver is to monitor the tracks and the speed adherence. 

With the increase of automation levels, the main cognitive demands of train drivers become 

continuous routine information acquisition and processing. The effect of automation as well as 

changing task and environmental characteristics should be addressed for safe operation of rail 

systems. There is a large body of research on the effects of automation on human operators. It is 

expected that various aspects such as situation awareness, workload and complacency are negatively 

affected due to a changed cognitive state.  

In the following, we focus on the relationship between workload and automation. There is no 

universally accepted definition of workload. However, the following definition contains widely 

accepted aspects of workload: workload is not an inherent property, but rather it is determined by the 

interaction between the requirements of a task, the circumstances under which it is performed and 

the skills, behaviors and perceptions of the operator [3].  

Multiple Resources Theory states that people have different cognitive resources that they can use 

simultaneously to process task relevant information [4]. Mental workload reflects the level of 

attentional resources required to meet objective and subjective performance criteria, which is 

mediated by the characteristics of the task (e.g., demands), of the operator (e.g., skills), and the 
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environmental context [5]. The Malleable Attentional Resources Theory (MART) suggest that in a 

situation with low task demand, the mental capacity of the operator decreases to meet the demand 

level of the task [6]. Therefore, when a sudden increase in the task demand occurs (i.e., response to 

an unexpected event), the operator fails to cope with the issue.  

A model of cognitive task load includes three main load factors: the percentage of time occupied, the 

level of information processing (i.e., the percentage knowledge-based actions), and the number of 

task-set switches [7]. 

There are also efforts to distinguish between task load and workload. A study in air traffic control 

domain states the distinction between -task load- the objective demand of a task and -workload- the 

subjective demand experienced by the operator performing the task [8]. 

On the other hand, workload alone is not a sufficient indicator of performance. For example, a train 

simulator study was unable to detect any differences in objective performance measures (i.e., speed 

control and response to critical events) despite the two different workload and fatigue levels reported 

by the participants [9]. For this reason, mediating effects and performance consequences of 

underloading situations need to be investigated. For example, prolonged and high-workload task 

conditions might generate active fatigue and continuously low workload situations might lead to 

passive fatigue [10]. A car driving study found that monotony could lead to fatigue symptoms which 

may cause vigilance performance decrements [11]. 

2. FACTORS ASSOCIATED WITH UNDERLOAD 

To find the most relevant literature on workload and factors associated with it, several key search 

terms were searched in academic databases such as Web of Science, ScienceDirect, PubMed, Sage 

Journals and Google Scholar. Some of the search terms and their related terms include Workload-

Underload, Time-on-task; Vigilance-Attention; Fatigue-Passive fatigue; Automation-Performance 

decrement. Domain-breakdown of the publications include rail, road, and air transport as well as other 

safety-critical domains and domain-independent literature such as theoretical studies on cognitive 

psychology. The differences between the domains need to be considered for a more detailed analysis 

as they can have an influence on workload.  

The factors that are associated with workload, particularly with underload, are identified for the rail 

domain (see Table 1). The factors are presented under three categories based on how they influence 

the performance. These are the factors that are related to the task characteristics, the external factors 

that are related to the environment the tasks are being performed in, and the personal factors that 

influence the performance individually. These factors are extracted from experimental studies and 

qualitative studies of observations, surveys, or interviews. Additionally, factors that are adapted from 

car driving studies are indicated with an asterisk symbol (*). 
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Table 1. Factors that are associated with underload in railway domain. 

Task-related Factors Situational (external) factors Individual factors 

Monotony (task) [12] In-cab environment* Personality traits [13] 

Objective task demand [14] 
Driver-machine-interface design 

[15] 
Route/rollingstock knowledge [15] 

Time-on-task [12] Weather/visibility [16] Motivation* [17] 

 Time of the day [18] Experience [19] 

 Monotony (environment) [20]  

3. UNDERLOAD AS A RESULT OF LOW TASK DEMAND AND MONOTONY 

The present paper mainly focuses on objective task demand and monotony as defining aspects of 

workload. Objective demand of tasks is the part of the demand imposed on the operator by the task 

itself. Interface demand and procedure demand are some of the factors that contribute to the task load 

[8]. According to this view, the intensity of the task (e.g., the number of tasks) also influences the 

work demand operators must handle. 

There is a large amount of overlap in the literature of monotony, fatigue, and vigilance, with all of 

them associated with the states of reduced arousal and alertness. Monotony stems from external 

factors such as repetitive environment or occurs due to the characteristics of a task such as the level 

of simplicity [12]. For example, characteristics of vigilance tasks are usually in the form of prolonged 

and continuous tasks or tasks with critical signals occurring infrequently and irregularly. Vigilance 

studies across different domains show that negative effects of time-on-task manifest itself after a 20-

30 minutes of task performance [21]. Time-on-task effects may occur relatively sooner under 

particular conditions such as monotonous environment [12]. Although simple vigilance tasks are 

typically monotonous, monotonous tasks cannot always be classified as vigilance tasks [22]. 

However, some researchers distinguish the subjective experience of monotony without specifying the 

nature of the task.  

The theoretical derived factors of monotony as stated above can also be found in studies with train 

drivers. There are several survey-based studies conducted on train drivers to obtain information on 

their ability to identify underload and its inducing factors, and countermeasures they use to overcome 

the effects of underload. A workshop with train drivers in the UK revealed that half of the drivers 

think they can realize when they are drifting into a state of underload [23]. A survey with 143 

Australian train drivers showed that more than a third of drivers experience boredom or monotony on 

at least half the shifts they work [12]. Over half the drivers reported that this was more likely to occur 

when they drive the same route a few times in a row. Early morning shifts and sleep deprivation were 

also found to be factors influencing the experience of boredom and monotony. 

In order to analyze the effect of the task load and the environment on monotony, the factors considered 

are limited to those given in Table 2. There are two reasons for this limitation. Firstly, in line with the 

literature review, the factors that could potentially lead to underload are considered under two 

categories, namely environmental and task related factors. Secondly, combining multiple factors with 

different characteristics might compromise the reliability of the meta-analysis. Although there are 

other factors, such as early morning shifts, that could lead to similar performance decrements, there 
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is a limited number of experimental studies that investigate the effect of such factors. Therefore, the 

term monotony in this paper will be used to refer to the situations where one or a combination of 

factors below are present. 

Table 2. Factors that are considered in the meta-analysis. 

Environmental factors Task related factors 

Unchanging environment 
Lower task demand (i.e., reduced number of tasks due 

to automation) 

Environment that changes in repetitive and predictive 

way 
Change in task characteristics (i.e., passive monitoring) 

4. META-ANALYSIS METHOD 

This paper provides a literature review and a simple meta-analysis on the effects of underload and 

monotony on train driver cognitive state and performance.  

The PICO model was selected to determine the search criteria [24]. PICO stands for 

Problem/Population, Intervention, Comparison and Outcome. It was operationalized as follows: 

 Problem/Population: Rail Operator OR Train driver  

 Intervention: Automation OR Task Demand OR Assistance OR Monotony 

 Comparison: Driving OR Manual OR Workload 

 Outcome: Workload OR Situation Awareness OR Performance OR Vigilance 

Total records found were 251 in Web of Science, 177 in PubMed and 25 in additional sources such 

as citation searching. After the filtered search, the duplicate records were eliminated. Remaining 

records were screened through titles and keywords and, secondly, through abstracts. In the next step, 

study methodology and conclusion chapters of the remaining records were screened. The records 

were filtered based on following inclusion criteria to conduct a meta-analysis on experimental train 

driving studies; 

 Railway domain (train driver) 

 Experimental study (simulator or naturalistic) 

 Level of automation or task demand is manipulated, or monotony is induced  

 Measurements of driving performance and/or operator`s cognitive state are collected 

13 studies were included in the first meta-analysis step. Four of these studies were later excluded 

either due to incomplete data or unsuitable variables. The final list of studies with the reference 

numbers can be found in the Table 4 (Annex-1). Literature was reviewed to find out if a meta-analysis 

in this area had already been conducted. A study conducted a meta-analysis of human- automation 

interaction studies focusing on workload and vigilance task performance [22]. The analysis 

considered the studies with a manual only group and the analysis were made by comparing the 

automation against the manual only group. Unlike the present study, the analysis was not limited to 



 

http://ieti.net/TES/ 

2022, Volume 6, Issue 2, 15-30, DOI: 10.6722/TES.202212_6(2).0003. 

 

19 

 

any domain. Employing an analysis only on train driver studies decreases the differences between 

task characteristics amongst studies. 

A data table with relevant information from each study was created. The shortened version of this 

table includes study information and characteristics such as publication year, study design, number 

of subjects, dependent and independent variables (See Table 4 in the Annex 1). Additionally, a simple 

task analysis was employed to group the independent variables (task demand, level of automation or 

monotony) within each study. Due to the limited information provided by each paper, only a 

conceptual task analysis could be conducted. Alternatively, a task factor rating method to estimate 

objective task demand and mental workload levels as suggested in another paper was considered [22]. 

However, this method is not suitable here, because it is not possible to collect the information on the 

number of executed sub-tasks during manual and automation levels in each study.  

Underloading conditions in this analysis differ in two ways; task and environment related factors 

(Table 2). Environmental factors include monotonous environment (i.e., unchanging landscape), and 

task related factors could be related to objective task demand (i.e., automation aids or additional 

secondary tasks). For this reason, the relation between automation levels and the objective task 

demand should be addressed. It was proposed that automation can be applied to four broad classes of 

functions: information acquisition, information analysis, action selection and action implementation 

[25]. A meta-analysis study applied this model of automation stages to define relative automation 

levels of two systems [26]. According to this approach, higher automation can be represented by the 

total number of stages with higher levels, or higher levels in later stages. A similar approach was used 

in this study to group the task demand levels of studies that manipulated either the automation levels 

or task demand levels. The tasks of the human operator and the automated system were identified 

using the information given in each study. Besides the number of tasks that human operator executes, 

the stages of information processing for each level were used to ordinally rank these levels relative 

to each other. The system with the higher number of manual tasks imposes greater task demand on 

the operator, and the system that has the highest automation level imposes lowest demand on the 

operator. Thus, the lowest task demand creates a task-related underload condition. Analysis levels 

were coded as M1, M2, M3 and M4 in the order of increased underload (or monotony). The level M4 

exists in three studies and represents the Autopilot level (monitoring-only) with vigilance tasks. This 

methodology was applied to all studies in the same manner to enable comparison between groups in 

different studies (i.e., experiment groups with similar task numbers and characteristics). However, as 

a limitation it should be noted that this ordinal presentation of task underload does not constitute the 

absolute levels of task demand. This is due to the differences in task characteristics and examined 

system of each study. 

Performance measures and measurement methods of each study are identified. Performance measures 

with similar properties are grouped into four categories as dependent variables. Secondary task 

performance refers to tasks with vigilance characteristics such as response time to critical events. 

Parameters related to operator`s cognitive and perceptual state are grouped together.  Finally, 

subjectively measured workload results are combined in one category. Only one study included 

physiological workload measurements, which is explained further later in the results section. 
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The following list contains the three categories of dependent variables; 

 Secondary task performance: Reaction time to failures or critical events, reaction distance (i.e.,  

distance to the point of the safety-critical event at the time of the action), accuracy of responses. 

 Operator state: Situation awareness, fatigue, sleepiness, boredom, arousal. 

 Mental workload: subjectively reported mental workload. 

The approach used in this paper for data aggregation differs from classic meta-analysis methods with 

an effect size analysis (e.g., Hedge`s g or Cohen`s d). This is due to the lack of information in most 

of the studies in terms of effect size and other statistical data. The data aggregation method of three 

earlier studies are adapted to our analysis [22, 26, 27]. However, the way each variable is weighted 

differs from these studies. 

A meta-analysis on the effect of automation on mental workload employed a scoring method to assign 

the mental workload outcomes (such as Manual>Automated) [22]. However, the study used only two 

comparison groups, and a rank order was set according to the mental workload outcome (i.e., higher 

workload in automated condition receiving the highest score). Additionally, if multiple measures of 

mental workload were used, the outcome was assigned to the majority finding or only one type of 

measure according to a priority order set by the authors. In our analysis, each comparison condition 

received a performance score, and multiple measures of a dependent variable are integrated as one 

overall outcome. This approach was used in a meta-analysis of the effects of automation on human 

performance earlier by researchers [26]. The performance ranking was made based on the lowest 

performing group, which always gets the score 0. Other groups then are scored based on their 

performance relative to each other (0 to 2). When the groups showed no performance differences, the 

same ranks were assigned to these groups.  

If a dependent variable group was measured by more than one variable, the rankings of individual 

variables are integrated as one overall ranking. For example, if the subjective mental workload was 

measured by two different methods (e.g., NASA-Taskload Index and Subjective Work Underload 

Checklist), these measurements were combined as one overall mental workload result. On the other 

hand, when the mental workload is measured by both subjective and objective measurement tools 

(e.g., NASA-TLX and heart rate), these measurements are combined as one overall mental workload 

ranking. This condition happened only in one study. If these two measures conflict with each other, 

the overall rank is considered as zero effect, meaning no change is observed between these groups. 

For example, this situation occurred in study number 10 [28]. For the two driving conditions, 

measurements of objective and subjective situation awareness were conflicting. As both 

measurements failed statistical significance, the overall result was no-change in situation awareness. 

Table 3 below shows two examples of how the conditions were ranked based on the performance 

scores.  
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Table 3. An example of how the performance rankings of experiment groups were determined. 

Study 

Nr 

Experiment 

groups 

Performance 

variables 

Meta 

group 
Measurements Results St. sign. (- or +) 

Overall 

ranking 

10 M2, M3 
Situation 
awareness 

Opertor 
state 

Objective and 
subjective 

Objective: 
M3>M2 

Subjective: 

M2>M3 

Objective: (-) 
Subjective: (-) 

M2=M3 

8 M1, M2 
Mental 

workload 
Workload Subjective M1>M2 

(+) 
 

M1>M2 

5. RESULTS 

Performance results of different experimental groups are presented as performance ranking for each 

category (see Table 3 for an example). Using these rankings, the performance change within meta 

groups is visualized on a graph (Figure 1 to 3, left). 

Additionally, the slopes of these individual lines are combined in order to obtain the performance 

changes with the change in underload levels (Figure 1-3, right). Three statistical significance levels 

were defined; namely, statistically significant, partially significant, not significant. The results with 

multiple measurements that had at least one significant measurement were coded as partially 

significant. Based on the significance levels, the slope of each condition change (e.g., M1 to M2) is 

weighted and combined in a single slope. The slope line always starts with the value of zero and 

indicates the change in performance score with the change in monotony or task demand.  

Figure 1 below shows the workload scores of five studies for each individual study. All studies except 

the study number 5.2 measured the subjective workload. The line for the study number 5.2 shows the 

combination of subjectively and physiologically measured workload. According to the results of this 

study, self-reported mental workload levels were not different amongst all groups.  

There is an overall trend of decreasing workload scores as seen in the graphs. In the study with the 

only exception (7.2), the group that uses a driver assistance system reported higher workload levels. 

The DAS used in the study provides speed advice or timetable information, which are related to 

information acquisition and analysis stages. Participants reported that additional information sources 

made the ride more mentally demanding. The graph on the right shows the combined slopes of 

workload scores from individual studies. The overall trend of decreased workload resulting from the 

increase in monotony can be seen in the graphs. 

Figure 2 represents the change in operator perceptual or cognitive state for various levels of 

monotony. Half of all studies reported statistically significance decrease in performance score under 

increasing underload. All three studies that recorded no difference failed to reach significance. 

Therefore, the overall trend indicates that monotonous conditions could lead to impairment in 

operators` cognitive or perceptual state.   



 

http://ieti.net/TES/ 

2022, Volume 6, Issue 2, 15-30, DOI: 10.6722/TES.202212_6(2).0003. 

 

22 

 

  

Figure 1. (left) Change in workload scores in individual studies, (right) Change in workload through weighted 

average of slopes of each study. 

  

Figure 2. (left) Change in operator cognitive or perceptual state in individual studies, (right) Change in operator 

cognitive or perceptual state through weighted average of slopes of each study. 

Secondary task performance involves vigilance tasks such as response time or distance to critical 

events as well as the accuracy of these responses (figure 3). In study number 5.2, the secondary task 

performance is excluded from the analysis [22]. According to the results of study 5.2, participants 

reported high subjective workload with no difference between the experiment groups (not 

significant). However, when combined with the significant results of SWUC ratings and heart rate 

records, the results suggest that the participants in the group M1 experienced overload. Therefore, the 

change in the performance could be the direct result of the shift from overload to moderate levels of 

workload. Authors of the study 5.2 argue that the participants experience underload in autopilot with 

a classical sensory vigilance task but report high subjective workload in NASA-TLX due to the state 

related effort (i.e., trying to stay alert) during extra-low levels of task demand. The graph in Figure 3 

with the combined slopes of secondary task performance shows the performance decrement is seen 

after moderate levels of cognitive load and remains at similar levels with the further drop in cognitive 

load.     
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Figure 3. (left) Change in secondary (vigilance) performance in individual studies, (right) Change in secondary 

(vigilance) performance through weighted average of slopes of each study. 

6. COUNTERMEASURES 

Literature review and the meta-analysis suggest that low task demand and monotony might lead to 

underload and other cognitive decrements in human operators. Performance consequences of these 

conditions might primarily reveal themselves in vigilance tasks that require sustained attention and 

high situation awareness. Considering the task characteristics of train drivers, the main challenge is 

the detection of and decision making for the non-routine time-critical events. Scientific literature from 

different domains is reviewed to identify the most common countermeasures for preventing underload 

or mitigating its negative effects. Good practices or potential countermeasures that can be transferred 

to rail transport are identified. Key responsibilities of train drivers associated human factors issues 

and potential mitigation techniques are presented in Table 5 of Annex-1. 

7. CONCLUSION 

There is a large body of research on the general effects of increasing automation on operator and 

system performance. Routine system performance generally increases with the implementation of 

automation due to the reliable and efficient execution of various tasks. However, the decrement in 

failure performance emerges as the main issue in systems such as in intermediate automation where 

the human operator performance becomes crucial. In addition to the changes in the number or 

characteristics of the tasks due to automation, monotonous environment and prolonged execution of 

these tasks might cause vigilance performance decrements. This is particularly important for train 

drivers since the nature of their task and the environment is often monotonous. 

The effects of lowered physiological activity under prolonged low task demand conditions were 

presented in earlier chapters. Decrements in cognitive abilities may lead to safety risks when these 

abilities are needed the most, e.g., to respond quickly to an unforeseen event. This overall effect was 

seen in the analysis conducted above. With the train driver`s role becoming more passive observer 

and supervisory, attentional problems may be a bigger issue for the drivers in unexpected or infrequent 

events than it was before. 

The literature review reveals several good practices and other potential techniques that can be used 

to avoid or delay the occurrence of underloading situations or to mitigate the arising effects. Despite 
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most of the countermeasures being tested in specific situations, it could still provide an insight into 

potential techniques to overcome underload for train drivers. More empirical research in the context 

of train driving representing real situations needs to be conducted in order to come up with more 

concrete solutions. 

8. LIMITATIONS 

A limitation of this research is the relatively small number of studies included in this analysis. 

Including more experiments from other safety-critical domains would increase the size of the dataset, 

but at the same time, increase the differences between studies in terms of task characteristics. Some 

of the differences that already exist are task duration or number of task switches.  

Performance scores are assigned to each experiment condition to visualize the performance 

differences between different task demand levels within a study. Using an ordinal ranking system to 

quantify the task demand and performance data makes it difficult to derive conclusive statistical 

results. However, this approach allows for scaling task demands based on limited information. On the 

other hand, this method of scaling might lead to over- or underestimation of trends due to weighted 

averages based on statistical significance. 

Nevertheless, the structured review of literature combined with the overall patterns obtained from the 

analysis provide an extensive summary of knowledge on cognitive underload and its mediating effects 

on train driver performance. 
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ANNEX-1 

Table 4. Train driver studies that are included in the analysis. 

Nr 
Year, First 

Autor 

Independe

nt 

variables 

Subjects 

Age 

(mean 

or 

range) 

Duration

/Distance 
Design 

Performance 

measures 
Significant Results 

1 
2005, 
Lanzilotta [29] 

Level of 
supervisory 
control 

12 
students 

19-35 
3h shifts 

with 
training 

Within-
subject 

 Response time 
to unexpected 
failures 

 Accuracy of 
responses 

 Situation 
awareness 

 Highest variance in response times to the brake and motor failures 
with partial automation 

 The use of partial automation therefore has a negative impact on 
the consistency of response to unexpected brake and motor failures 
because the visual attention of the engineer is biased away from 
the instrument panel. 

 Supervisory control had no significant effect on the response time 
to the grade crossing obstruction failures, (attentive to risks 
occurring at fixed locations) 

4 
2012, Spring 
[30] 

Level of 
automation 

40 
students 

22 1h 15 min 

Between 
and 
within-
subject 

 Overall 
vigilance 

 Vigilance 
decrement over 
time 

 

 Infrequent safety critical event detection was poorer at the High 
LOA compared to the Nil LOA (insignificant for low and 

intermediate) 

 High LOA (autopilot) had worse vigilance performance than those 
who had train control tasks in the lower LOA groups 

5.2 
2011, Spring 
[22] 

Task 
demand 

40 
students 

22 1h 15 min 

Between 
and 
within-
subject 

 Workload 
(groups and 
sessions) 

 Driving score 
error 

 Accurate math 
quiz responses 

 

 Performance on the Cognitive Vigilance Device secondary task 
was worse when driving the train, compared to supervising the 

autopilot 

 Heart rate measures and SWUC: mental underload was 
experienced while supervising the train autopilot and operating the 

Sensory Vigilance Device (SVD). Mental underload was no longer 
experienced when supervising the train autopilot and operating the 
CVD. No differences in subjective workload 

6 
2011, Dunn 
[14] 

Task 
demand 

28 train 
driver, 28 
control 

40 
driver 
32,1 

control 

3h 
Between-
subject 

 Experience of 
monotony 

 Fatigue 

 Subj. Workload 

 Speed error 

 Reaction time 

 All groups rated high and low task demands as equally high on 
scales of monotony, boredom and tiredness, and low in stimulation 
and engagement 

 The high demand scenario rated the task significantly higher on 
the NASA-TLX subscale of mental demands and the task rating 
scale of effort required 
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 Participants in the low demand task committed a greater number 
of errors than those in the high demand task 

 The performance deteriorates significantly in block 5 for both the 
low and high demand 

7 
2014, Large 
[31] 

Task 
demand 

20 
control, 7 
train 
drivers 

N.A. 

10-15min 
route (2,5h 

with 
training) 

Between-
groups 

 Subj. Workload 

 Overspeed 

 No significant difference between drivers and non-drivers in terms 
of workload and performance 

 More overspeeds were recorded during the low demand condition 
compared to the high demand condition 

7.2 
2014, Large 
[30] 

Task 
demand 
(DAS) 

20 
control, 7 
train 
drivers 

N.A. 

10-15min 
route (2,5h 

with 
training) 

Between-
groups 

 Subj. Workload 
 Using a speed or timetable DAS increased driver workload 

compared to a control (no DAS) condition for both the low and 
high demand scenarios. 

8 
2015, 
Robinson [9]  

Task 
demand 

9 train 
drivers 

51.4 76,3km 
Repeated 
measure 

 Reaction time to 
safety critical 

events, 
unexpected 
AWS 
irregularities, 
operational 
events 

 Speed choice 

 Frequency of 
safety device 
activations 

 Subj. workload 

 Stress arousal 
(SACL) 

 Sleepiness 
(KSS) 

 

 The perceived workload after the mitigation drive was 
considerably higher than after the baseline drive. 

 Mean sleepiness ratings increased throughout both drives, but 
were lower in the mitigation condition both during and after the 
drive. 

 There was a main effect of time on task on reported sleepiness. 

 There was a difference in high arousal scores between both 
conditions. 

9 
2016, 

Stein[20] 
Monotony 

11 train 

drivers 
39,36 4h 

Within-

subject 

 Reaction time 
and SPADs 
(level crossing 
and stop 
signals) 

 Micro-sleep 
episodes 

 The reaction times of in the monotonous condition were higher for 
the insufficiently secured level crossing task and the stop signals 

 Sleepiness was higher after the monotonous drive than after the 
first drive. The KSS ratings after the first half of the monotonous 
drive are significantly higher than the ratings of KSS after the first 

drive 
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 Physiological measures (ECG) showed a decrease of the heart rate 
(HR) and an increase of the heart rate variability (HRV) after the 
monotonous ride 

10 
2016, 
Brandenburger 
[28] 

Automation 
26 train 
drivers 

36,53 
105 min 
(35x3) 

Between-
subject 

 Visual attention 
(fixations) 

 Situation 
awareness 

 Number of fixations on DMI higher in ATO condition, but not 
significant 

 Number of fixations on DMI higher when the track side view 
small 

11 
2017, 
Brandenburger 

[32] 

Automation 
26 train 
drivers 

36,53 
120 min 
(410x3) 

Between-
subject 

 Subjective and 
objective 
fatigue 

 

 Clear effect of time across all dependent variables 

 The heart rate dropped over time and the heart rate variability 
increased 

 The KSS scores representing subjectively perceived fatigue also 
increased significantly over time 

 

Table 5. Key responsibilities of train drivers, associated human factors issues and potential mitigation techniques. 

Tasks Associated issues Potential effects on 

the driver 

Performance risks Good practices/potential countermeasures 

Incident/obstruction detection Attention conflict between 

in-cabin displays and 

outside view, monotony, 

time-on-task 

Impaired situation 

awareness (SA level1: 

perception of relevant 

information through 

visual attention) and 

passive fatigue 

 

Errors of incident detection 

(track obstructions, collisions at 

level crossings, staff on tracks) 

­ Temporal and spatial information on important 

future points of the route [15] 

­ Onboard assistance systems or obstruction detection 

technologies at level crossings (does not address 

underload issues) 

­ System reliability feedback (e.g., assistance 

systems) [33] 

­ Added cognitive load via secondary tasks during 

low demand periods (without causing distractions) 

[9] 

­ Frequent training for cognitive and technical skills 

[34] 
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Monitoring system disparities Low task demand, 

monotony, time-on-task, 

complacency 

 

Degraded mental model, 

passive fatigue, lowered 

task engagement 

 

Errors in detecting disparities 

between train behaviour and 

display information 

 

­ System feedback and transparency:  Information on 

important future decision points (braking points, 

speed limit changes etc.) to verify the correct 

execution [35] 

­ Promoting anticipatory and proactive driving [13] 

­ System reliability feedback 

­ Commentary driving [23] 

­ Occasional in-cab drills [23] 

­ Frequent training for cognitive and technical skills 

Infrequent manual control (e.g., after a 

system failure) 

Under-mobilization of 

effort after an underloading 

situation 

Lowered task 

engagement, passive 

fatigue, de-skilling 

Low performance on failure 

recovery 

­ Adaptive systems that keep the driver in the control 

loop instead of as a fallback system [36] 

­ Secondary tasks during low demand periods [37] 

­ Driver performance monitoring [38] 

­ Commentary driving 

­ Frequent simulator training 

Operational supervision Low task demand, 

complacency  

Degraded mental model 

of the situation 

Errors in detecting disparities 

between train behaviour and 

operational context. Errors in 

detecting hazardous situations at 

station entry/exit 

­ System feedback and transparency:  Information on 

important future decision points and schedule 

­ Regular and informal communication [39] 

­ Frequent re-training 
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