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Abstract: Utilizing the stability characterizations of generalized inverses, we investigate the
generalized resolvent of linear operators in Banach spaces. We first prove that the local analyticity
of the generalized resolvent is equivalent to the continuity and the local boundedness of generalized
inverse functions. We also prove that several properties of the classical spectrum remain true in the
case of the generalized one. Finally, we elaborate on the reason why we use the generalized inverse
rather than the Moore-Penrose inverse or the group inverse to define the generalized resolvent.
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1. Introduction and preliminaries

Let X be a Banach space and B(X) denote the Banach space of all bounded linear operators from X
into itself. The identity operator will be denoted by I. For any T ∈ B(X), we denote by N(T ) and R(T )
the null space and the range of T , respectively.

The resolvent set ρ(T ) of T ∈ B(X) is, by definition,

ρ(T ) = {λ ∈ C : Tλ = T − λI is invertible in B(X).}.

And, its resolvent R(λ) = (T − λI)−1 is an analytic function on ρ(T ) since it satisfies the resolvent
identity:

R(λ) − R(µ) = (λ − µ)R(λ)R(µ), ∀λ, µ ∈ ρ(T ).

The spectrum σ(T ) is the complement of ρ(T ) in C. As we all know, the spectral theory plays a
fundamental role in functional analysis. If Tλ is not invertible in B(X), we can consider its generalized
inverse. Recall that T ∈ B(X) is generalized invertible if there exists an operator S ∈ B(X) such that
TS T = T and S TS = S . We also say that such S is a generalized inverse of T , which is always
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denoted by T +. If T has a bounded generalized inverse T +, then, from [1], we know that both TT + and
T +T are projectors on X and

X = N(T ) ⊕ R(T +) = N(T +) ⊕ R(T ). (1.1)

If X is a Hilbert space and the direct sum decompositions in (1.1) are orthogonal, the corresponding
generalized inverse is the Moore-Penrose inverse. Recall that the operator T † ∈ B(X) is said to be the
Moore-Penrose inverse of T if T † satisfies

TT †T = T, T †TT † = T †, (TT †)∗ = TT † and (T †T )∗ = T †T,

where T ∗ denotes the adjoint operator of T .
If the operator T ] ∈ B(X) satisfies

TT ]T = T, T ]TT ] = T ] and TT ] = T ]T,

then T ] is called the group inverse of T . If T ] is the group inverse of T , then N(T ]) = N(T ), R(T ]) =

R(T ) and X = N(T ]) ⊕ R(T ]) [1].
If, as the definition of ρ(T ), the generalized resolvent set is defined by

ρg(T ) = {λ ∈ C : Tλ = T − λI is generalized invertible in B(X).},

we can find that such ρg(T ) is meaningless in the case of matrices, since every matrix is generalized
invertible and ρg(T ) = C. To define reasonably the generalized resolvent set, we should add some
additional conditions.

Definition 1.1. Let U be an open set in the complex plane C; the function

U 3 λ→ Rg(λ) ∈ B(X)

is said to be a generalized resolvent of Tλ = T − λI on U if
(1) for all λ ∈ U,

(T − λI)Rg(λ)(T − λI) = T − λI;

(2) for all λ ∈ U,
Rg(λ)(T − λI)Rg(λ) = Rg(λ);

(3) for all λ and µ in U,
Rg(λ) − Rg(µ) = (λ − µ)Rg(λ)Rg(µ).

The conditions (1) and (2) say that Rg(λ) is a generalized inverse of Tλ. While the equality in (3)
is an analogue of the classical resolvent identity, we refer to it as the generalized resolvent identity,
which assures that Rg(λ) is locally analytic. In [2], Shubin points out that there exists a continuous
generalized inverse function (satisfying (1) and (2) but not possibly (3)) meromorphic in the Fredholm
domain ρφ(T ) = {λ ∈ C : T − λI is Fredholm}. And, it remains an open problem whether or not this
can be done while also satisfying (3), i.e., it is not known whether generalized resolvents always exist.
Many authors have been interested in the existence of the generalized resolvents and the property of
the corresponding spectrum in [3–13].
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Definition 1.2. The generalized resolvent set is

ρg(T ) = {λ ∈ C : There exists an open set U ⊂ C, λ ∈ U and

Tλ has a generalized resolvent on U.}

and the generalized spectrum σg(T ) is the complement of ρg(T ) in C; the generalized spectral radius
is

rσg(T ) = sup{|λ| : λ ∈ σg(T )}.

In this paper, we utilize the stability characterization of generalized inverses to investigate the
properties of the generalized resolvent set in Banach spaces. We also introduce two sets

ρ1
g(T ) = {λ ∈ C : There is a δ > 0, such that for all µ satisfying |µ − λ| < δ,

(T − µI)+ exists and (T − µI)+ → (T − λI)+ as µ→ λ. }

and

ρ2
g(T ) = {λ ∈ C : There are M > 0 and δ > 0, such that for all µ satisfying

|µ − λ| < δ, (T − µI)+ exists and ‖(T − µI)+‖ ≤ M. },

and prove that they are identical to ρg(T ). Based on this result, we discuss the relationship between the
resolvent set and the generalized resolvent set, as well as the spectrum and the generalized spectrum.
We also prove that several properties of the classical spectrum remain true in the case of the generalized
one. Finally, we explain why we use the generalized inverse rather than the Moore-Penrose inverse or
the group inverse to define the generalized resolvent.

2. Main results

We start with the following lemma, which is preparation for the proofs of our main results.

Lemma 2.1. (1) If Rg(λ) and Rg(µ) satisfy the generalized resolvent identity:

Rg(λ) − Rg(µ) = (λ − µ)Rg(λ)Rg(µ),

then
N

(
Rg(λ)

)
= N

(
Rg(µ)

)
and

R
(
Rg(λ)

)
= R

(
Rg(µ)

)
.

(2) Let Pλ = TλRg(λ) and Qλ = Rg(λ)Tλ; then, Pλ and Qλ are projectors with

PλPµ = Pλ and QλQµ = Qµ, λ, µ ∈ U.

(3) The resolvent set is included in the generalized resolvent set, i.e. ρ(T ) ⊂ ρg(T ), the generalized
resolvent set ρg(T ) is open in C and the generalized resolvent Rg(λ) is locally analytic on ρg(T ).
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Proof. (1) We exchange λ with µ in the generalized resolvent identity and obtain

Rg(λ)Rg(µ) = Rg(µ)Rg(λ)

and so

Rg(λ) = Rg(µ) + (λ − µ)Rg(λ)Rg(µ) =
[
I + (λ − µ)Rg(λ)

]
Rg(µ)

= Rg(µ) + (λ − µ)Rg(µ)Rg(λ) = Rg(µ)
[
I + (λ − µ)Rg(λ)

]
.

Then, N
(
Rg(µ)

)
⊂ N

(
Rg(λ)

)
and R

(
Rg(λ)

)
⊂ R

(
Rg(µ)

)
. Thus, exchanging λ with µ again, we can get

N
(
Rg(λ)

)
= N

(
Rg(µ)

)
, R

(
Rg(λ)

)
= R

(
Rg(µ)

)
.

(2) Obviously, Pλ and Qλ are projectors on X. Noting that

R(I − Pµ) = N(Pµ) = N(Rg(µ)) = N(Rg(λ)) = N(Pλ)

and
R(Qµ) = R(Rg(µ)) = R(Rg(λ)) = R(Qλ) = N(I − Qλ),

we have PλPµ = Pλ and QλQµ = Qµ.

(3) Obviously, ρ(T ) ⊂ ρg(T ). It follows from the definition of the generalized resolvent that the set
ρg(T ) is open. Since

Rg(λ) =
[
I + (λ − µ)Rg(λ)

]
Rg(µ),

we can see that the operator I + (λ − µ)Rg(λ) is invertible for all µ satisfying |µ − λ|‖Rg(λ)‖ < 1. So,

Rg(µ) = [I + (λ − µ)Rg(λ)]−1Rg(λ).

Hence, lim
µ→λ

Rg(µ) = Rg(λ) and

lim
µ→λ

Rg(µ) − Rg(λ)
µ − λ

= lim
µ→λ

Rg(λ)Rg(µ) = R2
g(λ).

Therefore, Rg(λ) is locally analytic on ρg(T ) and
[
Rg(λ)

]′
= R2

g(λ). �

Theorem 2.2. Let X be a Banach space and T ∈ B(X); then,

ρg(T ) = ρ1
g(T ) = ρ2

g(T ).

Proof. From Lemma 2.1, we can easily see that ρg(T ) ⊂ ρ1
g(T ) ⊂ ρ2

g(T ). To complete the proof, we
need show that ρ2

g(T ) ⊂ ρg(T ). In fact, for any λ ∈ ρ2
g(T ), we can find M > 0 and δ > 0, such that, for

all µ satisfying |µ − λ| < δ, T +
µ exists and ‖T +

µ ‖ ≤ M.

Step 1. We first prove that there exists δ1 < δ,

R(Tµ) ∩ N(T +
λ ) = {0}
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for all µ ∈ {µ ∈ C : |µ − λ| < δ1}. In fact, if N(T +
λ ) = {0}, obviously, R(Tµ) ∩ N(T +

λ ) = {0}. We can
assume N(T +

λ ) , {0}; then, I − TλT +
λ , 0. Let

δ1 = min{(M‖I − TλT +
λ ‖)
−1, ‖T +

λ ‖
−1,

1
2
δ} < δ,

and consider µ ∈ C such that |µ − λ| < δ1, Then, for any yµ ∈ R(Tµ) ∩ N(T +
λ ), we can get

|µ − λ|M‖I − TλT +
λ ‖‖yµ‖

≥ |µ − λ|‖I − TλT +
λ ‖‖T

+
µ ‖‖yµ‖

≥ ‖(I − TλT +
λ )(Tλ − Tµ)T +

µ yµ‖

= ‖(I − TλT +
λ )TµT +

µ yµ‖

= ‖(I − TλT +
λ )yµ‖

= ‖yµ‖.

Hence yµ = 0. This implies R(Tµ) ∩ N(T +
λ ) = {0}.

Step 2. We shall prove that
Bµ = [I + (µ − λ)T +

λ ]−1T +
λ : X → X

is the generalized resolvent of Tλ on U = {µ ∈ C : |µ − λ| < δ1}. First, by ‖(µ − λ)T +
λ ‖ < 1 and the

Banach theorem, we can see that I + (µ − λ)T +
λ is invertible and so Bµ is well defined. Second, from

the equivalences between (1) and (3) in [14, Theorem 1.1], it follows that Bµ is a generalized inverse
of Tλ with N(Bµ) = N(T +

λ ) and R(Bµ) = R(T +
λ ). Third, we shall show that

Bµ − Bν = (µ − ν)BµBν, ∀ µ, ν ∈ U.

Define Pµ = TµBµ and Qµ = BµTµ; then, Pµ and Qµ are projectors from X onto R(Tµ) and R(Bµ) =

B(T +
λ ), respectively. Hence

R(I − Pν) = N(Pν) = N(Bν) = N(T +
λ ) = N(Bµ) = N(Pµ)

and
R(Qν) = R(Bν) = R(T +

λ ) = R(Bµ) = R(Qµ) = N(I − Qµ).

Thus, we can conclude
PµPν = Pµ and QµQν = Qν, ∀ µ, ν ∈ U.

Therefore,

(µ − ν)BµBν = Bµ(Tν − Tµ)Bν = BµPν − QµBν

= BµPµPν − QµQνBν = BµPµ − QνBν

= Bµ − Bν.

So, Bµ is the generalized resolvent of Tλ on U, which means λ ∈ ρg(T ). �

Remark 2.3. According to Shubin, there exists a continuous generalized inverse function but not an
analytic generalized resolvent [2]. From Theorem 2.1, we can see that if there exists a continuous
or locally bounded generalized inverse function, then we can find a relevant analytic generalized
resolvent.
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Lemma 2.4. (1) Let U and V be two open sets in C such that the generalized resolvent identity holds
on U and V. If U ∩ V , ∅, then the generalized resolvent identity holds on U ∪ V, i.e.,

Rg(λ) − Rg(µ) = (λ − µ)Rg(λ)Rg(µ), ∀λ, µ ∈ U ∪ V.

(2) Let U be a convex open set in ρg(T ); then,

Rg(λ) − Rg(µ) = (λ − µ)Rg(λ)Rg(µ), ∀λ, µ ∈ U.

(3) If U is a convex open set in ρg(T ) and ρ(T ) ∩ U , ∅, then

U ⊂ ρ(T ).

Proof. (1) For all λ, µ ∈ U ∪V , if λ, µ ∈ U or λ, µ ∈ V , then the generalized resolvent identity holds. It
is sufficient to prove that

Rg(λ) − Rg(µ) = (λ − µ)Rg(λ)Rg(µ)

holds for λ ∈ U and µ ∈ V . Let ν ∈ U ∩ V; then,

Rg(λ) − Rg(ν) = (λ − ν)Rg(λ)Rg(ν)

and
Rg(µ) − Rg(ν) = (µ − ν)Rg(µ)Rg(ν).

By Lemma 2.1, PλPν = Pλ, QλQν = Qν, PνPµ = Pν and QνQµ = Qµ. Hence,

(λ − µ)Rg(λ)Rg(µ) = Rg(λ)(Tµ − Tλ)Rg(µ)
= Rg(λ)Pµ − QλRg(µ)
= Rg(λ)PλPµ − QλQµRg(µ)
= Rg(λ)PλPνPµ − QλQνQµRg(µ)
= Rg(λ)PλPν − QνQµRg(µ)
= Rg(λ)Pλ − QµRg(µ)
= Rg(λ) − Rg(µ).

(2) For all λ, µ ∈ U, the segment [λ, µ] ⊂ U. Then for any ω ∈ [λ, µ], there exists a neighborhood
U(ω) ⊂ ρg(T ) such that the generalized resolvent identity holds on U(ω). It follows from the finite

covering theorem that we can find ω1, ω2, · · · , ωn ∈ [λ, µ], n ∈ N, such that [λ, µ] ⊂
n⋃

i=1
U (ωi). Hence,

by (1), we have
Rg(λ) − Rg(µ) = (λ − µ)Rg(λ)Rg(µ).

(3) Let µ ∈ ρ(T ) ∩ U; then, for all λ ∈ U, by Lemma 2.1,

N
(
Rg(λ)

)
= N (R(µ)) = {0} and R

(
Rg(λ)

)
= R (R(µ)) = X.

This implies that Rg(λ) is invertible, and so λ ∈ ρ(T ). �
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Theorem 2.5. Let X be a Banach space and T ∈ B(X); then, the generalized spectrum σg(T ) is a
nonempty bounded closed subset in C.

Proof. Since ρg(T ) is open, σg(T ) = C\ρg(T ) is closed. If |λ| > ‖T‖, then, by the Banach’s theorem,
T − λI = λ

(
1
λ
T − I

)
is invertible and its inverse (T − λI)−1 is bounded. Hence

{λ ∈ C : |λ| > ‖T‖} ⊂ ρ(T ) ⊂ ρg(T ).

So σg(T ) ⊂ {λ ∈ C : |λ| ≤ ‖T‖} and σg(T ) is bounded. Finally, we prove that σg(T ) is nonempty. In
fact, if σg(T ) = ∅, then ρg(T ) = C. By (3) in Lemma 2.2 and {λ ∈ C : |λ| > ‖T‖} ⊂ ρ(T ), we can get
ρ(T ) = C. This is a contradiction with σ(T ) , ∅. �

Proposition 2.6. Let X be a Banach space and T ∈ B(X); then,
(1) ∂σ(T ) ⊂ σg(T ) ⊂ σ(T );
(2) σ(T )\σg(T ) = σ(T ) ∩ ρg(T ) is open in C;
(3) ρg(T ) = ρ(T ) ∪

[
σ(T )\σg(T )

]
.

Proof. (1) It follows from ρ(T ) ⊂ ρg(T ) that σg(T ) ⊂ σ(T ). Now we shall show that ∂σ(T ) ⊂ σg(T ).
If there is a λ ∈ ∂σ(T ) and λ < σg(T ), then λ ∈ ρg(T ) and we can find a neighborhood U(λ) ⊂ ρg(T ).
Noting that λ ∈ ∂σ(T ), we can see that U(λ)∩ ρ(T ) , ∅. It follows from Lemma 2.2 that U(λ) ⊂ ρ(T ),
which is contradictory with λ ∈ ∂σ(T ).

(2) Since ∂σ(T ) ⊂ σg(T ), we have

σ(T )\σg(T ) = σ(T ) ∩ [σg(T )]c = σ(T ) ∩ ρg(T )
= [σ(T )\∂σ(T )] ∩ ρg(T ) = [σ(T )]◦ ∩ ρg(T )

and it is an open set.
(3)

ρg(T ) = ρg(T ) ∩ [ρ(T ) ∪ σ(T )] = [ρg(T ) ∩ ρ(T )] ∪ [ρg(T ) ∩ σ(T )]

= ρ(T ) ∪
[
[σg(T )]c ∩ σ(T )

]
= ρ(T ) ∪

[
σ(T )\σg(T )

]
.

�

Example 2.7. Let T be the right translation operator on l2, i.e.,

T : x = (x1, x2, x3, · · ·, xn, · · ·) 7→ (0, x1, x2, x3, · · ·, xn, · · ·).

Then T is a Fredholm operator with

ρ(T ) = {λ ∈ C : |λ| > 1} and σ(T ) = {λ ∈ C : |λ| ≤ 1}.

Noting that the nullity n(Tλ) = dim N(Tλ) ≡ 0 and the defect d(Tλ) = codimR(Tλ) ≡ 1 on {λ ∈ C :
|λ| < 1}, by Theorem 1.2 in [14] and the proof of Theorem 2.1, we know that {λ ∈ C : |λ| < 1} ⊂ ρg(T ).
Since R(Tλ) is not closed for λ satisfying |λ| = 1, Tλ is not generalized invertible and so

σg(T ) = {λ ∈ C : |λ| = 1}.

Thus
ρg(T ) = {λ ∈ C : |λ| , 1}.
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Corollary 2.8. Let X be a Banach space and T ∈ B(X); then, the generalized spectral radius is just
equal to the spectral radius, i.e.,

rσg(T ) = rσ(T ).

Proof. By σg(T ) ⊂ σ(T ), we have rσg(T ) ≤ rσ(T ). Since σ(T ) is bounded and closed, we can find
λ0 ∈ ∂σ(T ) such that |λ0| = rσ(T ). By Proposition 2.1, λ0 ∈ σg(T ) and then

rσg(T ) = sup
{
|λ| : λ ∈ σg(T )

}
≥ |λ0| .

Hence rσg(T ) ≥ rσ(T ) and so rσg(T ) = rσ(T ). �

At the end, we shall explain why we use the generalized inverse rather than two of the most
important unique generalized inverses (the Moore-Penrose inverse and the group inverse [1, 15]) to
define the generalized resolvent.

Theorem 2.9. Let T ∈ B(X). Then, the Moore-Penrose inverse T †λ or the group inverse T ]
λ of Tλ = T−λI

is the analytic generalized resolvent on U if and only if

N(Tλ) = {0} and R(Tλ) = X.

In this case, Tλ is invertible, the Moore-Penrose inverse or the group inverse is the inverse and the
generalized resolvent is exactly its classical resolvent.

Proof. It suffices to prove the necessity. We first claim that for all λ, µ ∈ U, N(Tλ) = N(Tµ) and
R(Tλ) = R(Tµ). In fact, if the Moore-Penrose inverse T †λ is the generalized resolvent on U, then, by
Lemma 2.1, we have

R(T †λ) = R(T †µ) and N(T †λ) = N(T †µ).

Hence,

N(Tλ) = [R(T †λ)]⊥ = [R(T †µ)]⊥ = N(Tµ) and R(Tλ) = [N(T †λ)]⊥ = [N(T †µ)]⊥ = R(Tµ).

If the group inverse T ]
λ is the generalized resolvent on U, then

N(T ]
λ) = N(T ]

µ) and R(T ]
λ) = R(T ]

µ).

Hence,
N(Tλ) = N(T ]

λ) = N(T ]
µ) = N(Tµ) and R(Tλ) = R(T ]

λ) = R(T ]
µ) = R(Tµ).

Now, we prove that N(Tλ) = {0} and R(Tλ) = X. For all x ∈ N(Tλ), then Tλx = Tµx = 0, i.e.,
T x = λx and T x = µx. So, x = 0. This means that N(Tλ) = {0}. For any y ∈ X, Tµy ∈ R(Tλ) and there
is an x ∈ X, such that Tλx = Tµy. Then,

y =
1

λ − µ
Tλ(x − y) ∈ R(Tλ).

We can conclude that Tλ is invertible and the generalized resolvent is exactly its classical resolvent. �
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3. Conclusions

In this paper, we have proved that the existence of the analytic generalized resolvents of the linear
operators in Banach spaces is equivalent to the continuity and local boundedness of generalized inverse
functions. Based on the properties of generalized resolvents, we have shown that the generalized
spectrum is a nonempty bounded closed subset. Moreover, the relationship between the resolvent set
and the generalized resolvent set, as well as that between the spectrum and the generalized spectrum
has been given. An interesting example is given to illustrate our results. Finally, we explain why we
use the generalized inverse rather than the Moore-Penrose inverse or the group inverse to define the
generalized resolvent.
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