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Abstract: Monkeypox (mpox), a zoonotic viral disease caused by the monkeypox virus (mpoxv), is
endemic in many countries in West Africa and is sometimes exported to other parts of the world. The
recent outbreak of mpoxv in humans, in endemic and non-endemic countries, has created substantial
public health concern worldwide. This research uses a mechanistic model to study the transmission
dynamics of mpoxv epidemics in the USA. Our model describes the interaction between different
categories of individuals represent various infection phases and hospitalization processes. The model
also takes into account the extent of compliance with non-pharmaceutical intervention strategies
(NPIs), such as using condoms during sexual contact, quarantine and avoiding large gatherings. The
model’s equilibria are analyzed, and results on asymptotic stability are obtained. Moreover, the basic
reproductive number and other threshold quantities are used to establish the conditions for a forward
or backward bifurcation. Our model accurately captures the incidence curves from mpox surveillance
data for the USA, indicating that it can be used to explain mpoxv transmission and suggest some
effective ways to enhance control efforts. In addition, numerical simulations are carried out to examine
the influence of some parameters on the overall dynamics of the model. A partial rank correlation
coefficient is adopted for the sensitivity analysis to determine the model most important parameters,
which require close attention for effective mpoxv prevention and control. We conclude that it is
especially important to ensure that NPIs are properly followed to mitigate mpoxv outbreaks effectively.
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1. Introduction

The outbreak of the monkeypox virus (mpoxv) across numerous non-endemic countries since
May 2022 shows some distint clinical and epidemiological features from previous mpoxv outbreaks,
most notably its discerned development and dominance amongst men who have sex with men (MSM)
or those who identify as gay or bisexual [14]. The majority of recent mpoxv cases have no history
of travel to endemic regions or proven contact with infected animals [14]. The geographic dispersion
and rapid increase in cases indicate substantial person-to-person transmission rather than infection
from an animal reservoir [14]. Additionally, this is the first significant outbreak of mpoxv that is
MSM-dominated and has a significant sexually associated transmission route [14,34]. It has also been
discovered in Nigeria that mpoxv is likely more predominant in young males and is also linked to
genital lesions [14, 21, 35].

By March 2023, more than 86,000 people have been infected with mpoxv worldwide, among which
more than 98% of infections have occurred in places that have not experienced transmission of this
disease before. Over 100 people have died since the large outbreak of mpoxv in May 2022 [7]. In the
USA, there have been over 30,000 cases (with 38 death cases), with the largest number of infections
since the beginning of the large epidemics in 2022 [8]. The majority of those infected are MSM [14].

Mpox, a disease caused by mpoxv, spreads from person to person through close contact with
respiratory secretions or skin sores from an infected individual [47]. Transmission via respiratory
droplets requires prolonged face-to-face contact [47], which makes healthcare professionals, household
members, and other close contacts of active cases especially vulnerable [47]. The longest documented
chain of transmission has increased from 6 to 9 person-to-person infections. This could be attributed
to a general decline in immunity due to the cessation of smallpox vaccination. Transmission can also
occur from mother to fetus via the placenta or during close contact during or after birth [47]. The
extent to which mpox can be transmitted via sexual contact is still unclear. More research is required
to understand this risk fully. Mpoxv is a zoonotic virus that spreads to humans by direct contact
with infected animals’ blood, body fluids, or cutaneous or mucosal lesions [47]. The disease has an
incubation period of two to four weeks [14, 21, 47].

A considerable number of epidemic models have been developed and employed to understand
mpoxv transmission; see, for instance, [4, 12, 14, 21, 29, 34–38, 46, 51–53] and the references
therein. In particular, Yuan et al. [51] analyzed the transmission dynamics of mpoxv in metropolitan
municipalities. Vaccination was incorporated into the model to examine its impact on mpoxv
transmission at large gatherings [52]. In addition, Endo et al. [14] fitted a dynamic model to empirical
sexual partnership and mpox data and revealed that the heavy-tailed sexual partnership distribution
could be used to explain the expansion of current mpoxv outbreaks, especially among MSM. An SIR-
based model was used by Peter et al. [36] to explore the transmission behavior of mpox. The model was
extended by incorporating a fractional order approach [37] to gain more detailed insight into mpoxv
transmission. Ward et al. [46] also used a statistical modelling framework taken advantage of contact
tracing data to investigate the mpoxv dynamics in the UK. Their results suggested that the mpoxv
epidemic peaked in the UK in early July and began to decline afterward. A similar technique was
implemented by Musa et al. [29] to investigate the time-varying reproduction number of mpoxv in
Nigeria. They found that mpoxv transmission reached an all-time peak in 2022.

Zumla et al. [56] investigated the dynamics of mpoxv transmission outside of endemic areas. They
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emphasized that effective control of mpoxv requires preventing widespread infection among frontline
healthcare workers and the most vulnerable populations. Using a multi-group dynamic model, Yang
et al. [49] examined the potential for mpox viral transmission from high-risk groups to the general
population. They calculated the effective reproduction number (Re f f ) to be larger than 3, indicating that
mpoxv is highly transmissible in MSM and that exposure to high-risk individuals must be minimized.
They indicated that prevention of community transmission is vital to curb the spread of mpoxv. In
a cross-sectional study, Hernaez et al. [22] discovered high viral loads in the saliva of most mpox
patients using quantitative polymerase chain reaction (PCR), and found that they were associated with
the severity of skin lesions and symptoms of systemic disease. To remove mpoxv particles from
aerosols that can travel a long distance in the air, new nanofiber filters have been developed [22].
Following the discovery of highly viable viral loads in saliva in most mpox patients and mpoxv DNA
in droplets and aerosols, the authors concluded that additional epidemiological studies are required to
determine whether respiratory route of infection is relevant to the mpoxv outbreak in 2022. Americo
et al. [3] studied the virulence variations of mpoxv clades I, IIa, and IIb in a small animal model. They
discovered that the clades in the order clade I > clade IIa > clade IIb in CAST/EiJ mice exhibit highly
significant differences compared to the severity of clinical disease in humans.

Due to the sizable mpoxv outbreaks in non-endemic communities, recommendations from
researchers and public health professionals are urgently required to help identify the primary factors
causing the outbreaks and to formulate policies for effective control.

Epidemiological modeling has been used widely to study the transmission dynamics of reemerging
diseases [1, 2, 13, 15, 17, 19, 20, 24]. To better comprehend the factors behind the recent rapid spread
of mpoxv, we used a dynamic model in this work to imitate the mpoxv outbreaks and analyze the
transmission behaviour. The model extends earlier ones (such as [37]) by taking into account several
stages of transmission, such as different infection phases, hospitalization, and individuals who do (or
do not) adhere to non-pharmaceutical intervention measures (NPIs).

The remainder of this work is organized as follows. In Section 2, an epidemic model is presented.
The model is theoretically analyzed in Section 3. We give numerical results in Section 4, and end the
paper with a brief discussion and conclusions in Section 5.

2. Materials and methods

2.1. Epidemic data

We retrieved the daily epidemiological cases data of the mpoxv epidemic for the USA, as reported
by the Centers for Disease Control Prevention (CDC) [7,8] from May 10 through December 14, 2022,
following laboratory confirmation and case definition of mpoxv. We used the data to calculate the daily
cumulative incidence and examined several mpoxv incidence scenarios for the USA.

2.2. Epidemic model

This study uses a traditional SEIR-based model to examine the transmission dynamics and evaluate
control measures for the mpoxv epidemic. It describes the epidemiological dynamics of mpoxv
transmission. To more accurately analyze the transmission behavior of mpoxv, the proposed model
accounts for both those who adhere to and do not adhere to NPI measures. The model explicitly
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distinguishes between the various susceptible and infectious stages to assess the overall transmission
dynamics of mpoxv outbreaks. The parameter ρ represents the fraction of newly recruited individuals
who comply with NPI measures, while 1 − ρ represents those who do not comply. The model
also considers isolation, which is a critical intervention strategy in mpox prevention and control.
Several modeling studies have investigated the impact of isolation in suppressing disease transmission
(in which infected people are taken into hospitals or isolation centers to prevent large community
outbreaks); see, for example, [32, 40], and the references therein.

Our model has the following notable features: (i) We only consider direct or human-to-human
transmission routes since we aimed to access the mpoxv transmission dynamics in the USA, which
has the highest cases since the re-emergence of mpox on May 2022. (ii) Rodent populations are not
incorporated into the model since it is believed that the mpoxv infections in the USA are due to human-
to-human transmission. However, the situation is different from sub-Saharan Africa, where mpoxv is
endemic, and most of the transmission is zoonotic (i.e., animal-to-human transmission). (iii) Our model
extends earlier ones (such as [37, 53]) by taking into account several stages of transmission, such as
different infection phases and hospitalization, as well as individuals who adhere (or do not adhere) to
basic NPIs (described as high-risk and low-risk populations) to gain a better insight into the overall
mpoxv transmission dynamics in the USA and beyond.

We separate the total population of humans at time t, denoted by N(t), into susceptible persons who
do not comply with NPIs, S n(t); susceptible persons who comply with NPIs, S y(t); exposed persons,
E(t); infectious persons who do not comply with NPIs, In(t); infectious persons who comply with NPIs,
Iy(t); isolated persons, J(t); and recovered persons, R(t), so that N(t) = S n(t) + S y(t) + E(t) + In(t) +

Iy(t) + J(t) + R(t).
Figure 1 shows an overview of the mpoxv model and Table 1 lists the state variables and parameters,

which satisfy the following system of nonlinear ordinary differential equations:

dS n

dt
= (1 − ρ)π − λS n − (θ + µ)S n,

dS y

dt
= ρπ + θS n − ελS y − µS y,

dE
dt

= λ(S n + εS y) − (σn + σy + µ)E,

dIn

dt
= σnE − (η + γn + τn + δn + µ)In,

dIy

dt
= σyE + ηIn − (γy + τy + δy + µ)Iy,

dJ
dt

= γnIn + γyIy − (τJ + δJ + µ)J,

dR
dt

= τnIn + τyIy + τJ J − µR.

(1)

The model’s force of infection is formulated as follows:

λ =
β(In + αIy)

N
. (2)

Note that 0 < α < 1 and 0 < ε < 1 represent alteration parameters for the reduction of infectiousness
and efficacy for compliance of NPIs, respectively.
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Figure 1. Schematic representation of mpoxv transmission model (1).

Table 1. Explanation of model’s variables and parameters.

Variable Description
N Total humans population
S n Susceptible individuals who do not comply with NPIs
S y Susceptible individuals who comply with NPIs
E Exposed individuals
In Symptomatically infectious individuals who do not comply with NPIs
Iy Symptomatically infectious individuals who do comply with NPIs
J Isolated individuals
R Recovered individuals
parameter
π Recruitment rate
ρ Fraction of newly recruited persons to a class of individuals who comply with NPIs measures
µ Natural death rate
β Transmission/contact rate
α Modification parameter for the reduction of infectiousness
θ Rate of NPIs compliance from S n to S y

ε Efficacy of NPIs compliance in preventing mpoxv infection
σn, σy Progression rates
η Rate of NPIs compliance from In to Iy

γn, γy Isolation/hospitalization rates
τn, τy, τJ Recovery rates
δn, δy, δJ Mpoxv induced death rates
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2.3. Basic epidemiological characteristics of the model

Since the model (1) examines the dynamics of mpoxv infection in humans, all of its state variables
and parameters are presumptively positive. To study the fundamental analytic characteristics of
model (1), we must first take into account the rate of change of the entire human population, N (N′(t),
the prime here denotes the derivative with respect to time), which is calculated as follows.

dN
dt

= π − µN − δnIn − δyIy − δJIJ 6 π − µN. (3)

2.3.1. Positivity of model solutions

For the mpoxv model (1) to be biologically reasonable, all state variables must be positive at time
t > 0. In other words, solutions of model (1) with positive initial data will remain positive for all time
t > 0.

Lemma 2.1. Let the initial data Θ(0) ≥ 0, where Θ(t) =
(
S n, S y, E, In, Iy, J,R

)
. Then the solutions Υ(t)

of model (1) are positive for all t > 0.

Proof. Let t1 = sup {t > 0 : Θ(t) > 0 ∈ [0, t]}. Thus, t1 > 0. Since π and 1 − ρ are positive, it follows
from the first equation of the model (1) that

dS n

dt
≥ − (λ(t) + θµ) S n.

Following the comparison theorem in conjunction with the separation of variables method [23,39,50],
we have

S n(t1) ≥ S n(0)exp
[
−

(∫ t1

0
λ(u)du + (θ + µ)t1

)]
> 0.

Hence, S n(t) > 0. Similarly, it can be shown that the remaining components of Θ(t), i.e.,
S y, E, In, Iy, J,R are all positive for all t > 0. Hence, Θ(t) > 0 for all t > 0. �

2.3.2. Invariant region

The following biological feasible region is considered:

Ω =

{
(S n, S y, E, In, Iy, J,R) ∈ R7

+ : N 6
π

µ

}
.

Since N is positive, to ensure that any solutions of the system that start in the region Ω remain in Ω

for all non-negative time t, it is sufficient to look at solutions that are limited to Ω, which is positively-
invariant. Therefore, the results for a normal existence, uniqueness, and continuity will be satisfied for
model (1) per earlier works [23, 39, 50].

3. Analytical results

3.1. Disease-free equilibrium

Disease-free equilibrium (DFE) of model (1), denoted by Γ0, is obtained by setting all the equations
of the right-hand side of model (1) to zero, that is dS n

dt =
dS y

dt = dE
dt = dIn

dt =
dIy

dt = dJ
dt = dR

dt = 0. This
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yields S 0
n =

(1−ρ)π
θ+µ

, S 0
y =

ρπ+θS 0
n

µ
, E0 = I0

n = I0
y = J∗ = R0 = 0. The DFE for model (1) is given by

Γ0 = {S 0
n, S

0
y , E

0, I0
n , I

0
y , J

0,R0} =

{ (1 − ρ)π
θ + µ

,
π(ρµ + θ)
µ(θ + µ)

, 0, 0, 0, 0, 0
}
. (4)

3.2. Basic reproduction number

Here, we use the next-generation matrix (NGM) method, which was introduced by van den
Driessche & Watmough in [45], to calculate model’s basic reproduction number R0, which is the
number of secondary cases that a typical primary case would produce in a fully susceptible population
during the infectious period [10, 32, 44, 45]. Using the NGM technique, the matrices F, which stands
for the new infection terms, and V , which stands for the other transfer terms are calculated and provided
below. Note that the linear stability Γ0 is calculated using (4).

F =


λ0(S 0

n + εS 0
y)

0

0

0


and V =


A1E0

−σnE0 + A2I0
n

−σyE0 − ηI0
n + A3I0

y

−γnI0
n − γyI0

y + A4J0


,

where A1 = σn +σy +µ, A2 = η+γn +τn +δn +µ, A3 = γy +τy +δy +µ, and A4 = τJ +δJ +µ.Consequently,
the mpoxv infection and transition matrices are computed as follows:

F =


0 B1 B2 0

0 0 0 0

0 0 0 0

0 0 0 0


and V =


A1 0 0 0

−σn A2 0 0

−σy −η A3 0

0 −γn −γy A4


.

Therefore, the R0 is now computed as

R0 = ρ(FV−1) =
B1σnA3 + B2

(
ησn + σyA2

)
A1A2A3

, (5)

with ρ characterising the spectral radius of the NGM, B1 =
β(S 0

n+εS 0
y )

N0 , and B2 =
βα(S 0

n+εS 0
y )

N0 .
Therefore, based on the Theorem in [45], we established the following results about local stability

of the DFE of model (1).

Theorem 3.1. The DFE of model (1) is locally-asymptotically stable whenever R0 < 1 and unstable if
R0 > 1.

A value R0 < 1 indicates that a small number of mpoxv cases cannot lead to a large outbreak. For
mpoxv containment measures in the epidemic model (1), making R0 < 1 necessary. Thus, whenever
R0 < 1, mpoxv can be eradicated over time, while mpoxv persistence is continuous for R0 > 1.
Therefore, adequate NPI measures are required to mitigate the disease effectively.
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3.3. Endemic equilibrium

When mpoxv infiltrates a community, at least one infected compartment is not empty. Following
some algebraic manuplulation, we obtain an endemic equilibrium (EE) state by setting the vector field
of the system (1) to zero. Thus, the EE is now given by

Γ∗ = {S ∗n, S
∗
y, E

∗, I∗n, I
∗
y , J

∗,R∗}. (6)

The following equations give the EE points in terms of λ∗.

S ∗∗n =
(1 − ρ)π
λ∗ + µ

,

S ∗∗y =
π (((1 − ρ)) θ + λ∗ ρ + µ ρ)

(ε λ∗ + µ) (λ∗ + µ)
,

E∗∗ =
λ∗ π (((1 − ρ)) ε λ∗ + ((1 − ρ)) ε θ + ε λ∗ ρ + ε µ ρ + ((1 − ρ)) µ)

A1 (λ∗ + µ) (ε λ∗ + µ)
,

I∗n =
λ∗ π (((1 − ρ)) ε λ∗ + ((1 − ρ)) ε θ + ε λ∗ ρ + ε µ ρ + ((1 − ρ)) µ)σn

A1A2 (λ∗ + µ) (ε λ∗ + µ)
,

I∗y =

(
ησn + A2σy

)
λ∗ π (((1 − ρ)) ε λ∗ + ((1 − ρ)) ε θ + ε λ∗ ρ + ε µ ρ + ((1 − ρ)) µ)

A3A1A2 (λ∗ + µ) (ε λ∗ + µ)
,

J∗ =

(
η γyσn + A2γyσy + A3γnσn

)
λ∗ π (((1 − ρ)) ε λ∗ + ((1 − ρ)) ε θ + ε λ∗ ρ + ε µ ρ + ((1 − ρ)) µ)

A4A3A1A2 (λ∗ + µ) (ε λ∗ + µ)
,

R∗ =
[λ∗ π (((1 − ρ)) ε λ∗ + ((1 − ρ)) ε θ + ε λ∗ ρ + ε µ ρ + ((1 − ρ)) µ)

µ A4A3A1A2 (λ∗ + µ) (ε λ∗ + µ)
]

×
(
η A4σnτy + η γyσnτJ + A2A4σyτy + A2γyσyτJ + A3A4σnτn + A3γnσnτJ

)
.

(7)
Epidemiologically, the existence of the EE state indicates that at least one of the infected classes in

the model is not empty, which shows that the mpoxv spreads and persists in the community.

3.4. Stability analysis of the endemic equilibrium

In this section, we examine the model’s interior feasible region, which converges to the singular
EE, denoted by Γ∗ (6), whenever R0 > 1. The mpoxv will spread and remain in a population at Γ∗. By
driving a Lyapunov function for a model, we demonstrate the overall stability of the EE. This method
has been used extensively in earlier works [27, 39, 50].

Theorem 3.2. The EE Γ∗ is globally asymptotically stable (GAS) in the region Ω whenever R0 > 1
under a specific condition (see Appendix A).

Appendix A contains a proof of the aforementioned Theorem 3.2. In addition, in Appendix B, a
bifurcation phenomenon is analyzed to further assess the dynamics of the model with respect to R0.
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4. Numerical results

4.1. Fitting results

We obtained reported mpoxv outbreak data for the USA from the Centers for Disease Prevention
and Control (CDC) [8] and fitted the mpoxv model(1) to the data using Pearson’s Chi-square test and
the least-squares framework, implemented in the R statistical software (version 4.1.1) [23, 54].

In the numerical fitting results, the daily and cumulative numbers of mpoxv cases from
May 10, 2022, through December 14, 2022, were used to fit the mpoxv model. As shown in Figure 2,
the results revealed that the model (1) fitted the cumulative and the daily number of reported cases of
mpoxv well, indicating that the model can be used to explain the transmission behavior of the mpoxv
dynamics, since it reproduces the patterns of real data on the mpox situation in the USA. The parameter
values used to fit the model are given in Table 2, with N(0) = 3.35374570 × 108 million [9, 48],
S n(0) = 2.5 × 108, S y(0) = 0.8 × 108, E = 800, In(0) = 5, Iy(0) = 1, J(0) = 0, R(0) = 0.

Figure 2. Model fitting results to the cumulative and the daily number of mpoxv cases in the
USA for May 10, 2022, through December 14, 2022. In each panel, the grey bars represent
the observed number of mpoxv cases, and the red curves are the model-fitting results. The
left panel denotes the cumulative number of mpoxv instances, and the right panel shows the
daily reported mpoxv cases for the USA for May 10, 2022, through December 14, 2022.
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Table 2. Table of parameter values for system (1).

parameter Baseline (Range) Units Sources
N 3.35374570 × 108 (3 × 108 - 3.5 × 108) persons [48]
π 12, 074 (10, 000 - 14, 000) persons per day [9, 48]
ρ 0.8 (0 - 1) per day estimated [25]
µ 3.6 × 10−5 (1.1 × 10−5 - 5.2 × 10−5) per day [9, 48]
β 0.1565147 (0.01 - 0.5) per day fitted
α 0.75 (0 - 1) per day [51]
θ 0.025 (0.01 - 0.75) per day estimated [26]
ε 0.72 (0 - 1) per day assumed
σn 0.3204619 (0.21 - 0.87) per day fitted
σy 0.6729062 (0.21 - 0.87) per day fitted
η 0.03486687 (0.01 - 0.05) per day fitted
γn 0.2 (0.1 - 0.5) per day [51]
γy 0.04 (0.03 - 0.05) per day [51]
τn 0.048 (0.001 - 0.075) per day [51]
τy 0.05 (0.001 - 0.075) per day [51]
τJ 0.056 (0.001 - 0.075) per day [51]
δn 0.0171 (0.001 - 0.025) per day [51]
δy 0.0011 (0.001 - 0.025) per day [51]
δJ 0.001 (0.001 - 0.025) per day [51]

4.2. Numerical simulations

This section presents various numerical results for the proposed mpoxv model using parameters
from Table 2 and different initial conditions for the model’s state variables. The model (1) was
simulated using the R statistical software to examine its dynamics by varying the values of the
transmission rate parameter, which is one of the most crucial parameters in the model and needs to
be minimized to control the spread of mpoxv effectively [14, 15, 17, 21, 26, 33, 42, 50]. Figure 3(a)–(d)
presents the simulation results. In Figure 3, we used the initial value of β, whereas, in Figure 3(c)
and (d), we simulated the model by decreasing the values of β by 25%, 50%, and 75%, respectively, to
examine the corresponding dynamics of In and Iy in each case.
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Figure 3. Simulations of the model (1) for In and Iy against time (t) with varying transmission
rates represented by the panel (a) to (d). The parameter values are given in Table 2 with
different initial conditions for the model’s state variables.

4.3. Sensitivity analysis

In epidemiological modeling studies, the basic reproduction number R0 is a crucial parameter that
determines whether the disease will continue to spread (persist) or die out in a community when an
epidemic occurs [16]. In the current model, we used R0 and the infection attack rate as response
functions to determine the partial rank correlation coefficient (PRCC) for sensitivity analysis to find the
most sensitive biological parameters in the model that require maximum attention for mitigation and
control [16,32,43,55]. Our sensitivity analysis results show that the parameters β (transmission/contact
rate), α1, and ε are the most sensitive, followed by γn and τy. The PRCC of the basic reproduction
number, R0, and the infection attack rate of the model (1) are presented with the estimated parameters
in Figure 4.
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Figure 4. The Partial Rank Correlation Coefficient of Ro and the rate of infection attack
with respect to the model’s parameters. The 95% confidence interval is demonstrated by the
bars next to the estimated correlation, shown by the dots. The parameter values utilized for
sensitivity analysis are summarized in Table 2.

4.4. Simulations of the global asymptotic stability of the endemic equilibrium

Following the previous approach [17, 33, 39, 42, 50], we provide some numerical examples in this
section to demonstrate the global asymptotic stability of the analytical results for the model (1) as
provided in the appendix A. All the parameters have the same biological meaning as in Table 2.
In Figure 5, we consider the case when the transmission rate parameter β = 0.157, so that
R0=0.78686606 < 1, while the other parameters have the same values as given in Table 2, with
different initial conditions for the model’s state variables. The dynamics of the model (1) with R0 < 1
are presented in Figure 5(a)–(d), which show that the system (1) has an EE, which is GAS whenever
R0 < 1. In Figure 6, we consider the case when the transmission rate parameter β = 0.257, so that
R0 = 1.28805464 > 1, while the other parameters have the same values as given in Table 2, with
different initial conditions for the model’s state variables. The dynamics of the model (1) with R0 > 1
are presented in Figure 6(a)–(d) which show that the system (1) has an EE which is unstable whenever
R0 > 1. These results support the theoretical result stated in Theorem 3.1.
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Figure 5. Time series plot of the model (1) with different initial conditions (represented by
the different colours). The parameters values are given in Table 2 with β = 0.03 and R0 < 1;
(a) E, (b) In, (c) Iy, (d) J.

Figure 6. Time series plot of the model (1) with different initial conditions (represented by
the different colours). The parameters values are given in Table 2 with β = 0.3 and R0 > 1;
(a) E, (b) In, (c) Iy, (d) J.

5. Discussion and conclusions

Mpox is primarily a zoonotic viral disease that has caused recurrent outbreaks in West Africa and
is occasionally transmitted to other regions [47]. It is transmitted to humans through contact with an
infected individual or animal, respiratory droplets, or contaminated materials such as bedding [14].
The recent global outbreaks of mpoxv in non-endemic countries have caused substantial public health
concern [7]. Although the vaccine used for smallpox is currently in use against mpoxv infection, due to
inadequate vaccination levels, the public need to follow basic health precautions to protect themselves
and others from mpoxv infection [47].

In this work, we developed a classical SEIR-based model to assess the transmission dynamics of
mpoxv epidemics in the USA. The model was fitted successfully to the reported mpoxv cases and
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relevant demographic data in the USA. Thus, it can be used to explain the transmission of mpoxv
and provide suggestions for optimal control and prevention of the disease. The theoretical and
epidemiological outcomes of this work are summarized below.

i) Results on the basic reproduction number of the model were determined analytically and were
used to assess the impact of mpoxv control strategies. In addition, subsequent mathematical
analysis revealed that the DFE of the model is GAS whenever the R0 value is below or equal to
unity and is unstable when the R0 is above unity. Further mathematical analysis showed that the
EE is GAS whenever R0 is above unity, indicating the potential for mpoxv to spread and persist in
a population. Moreover, we analyzed the forward bifurcation property of the model, which occurs
under certain conditions (see Appendix B for more detail). Epidemiologically, the existence of
forward bifurcation in the model indicates that the stability of the model exchanges between DFE
and EE at R0 = 1.
Hence, the stability behavior of the model changes (from stable to unstable) around the endemic
equilibrium when the bifurcation parameter βhh changes [11, 17].

ii) The model prediction results provided in Section 4.1 using the daily number of reported mpoxv
cases in the USA for the period from May 10 to December 14, 2022, show that the model fitted
well to the mpoxv case data, highlighting the applicability of the model to the wave of mpoxv
outbreaks.

iii) Numerical results were provided in Section 4.2 to examine the dynamics of the model (1) by
decreasing the value of the transmission rate parameter β by 25%, 50%, and 75%, in turn, for each
of the variables In and Iy. We chose the parameter β since it is one the most crucial parameters in
the model and needs to be minimized to effectively control the spread of mpoxv. The results show
that the transmission of mpoxv can be significantly reduced if the transmission rate parameter
can be decreased as much as possible. This could be achieved if most members of the public
complied with NPIs and if governments and other relevant organizations provided adequate
medical resources, especially to the most vulnerable communities, to respond to epidemics
effectively.

iv) The basic reproduction number and infection attack rates were used as response functions to
perform sensitivity analysis of the model (presented in Section 4.3). Partial rank correlation
coefficients (PRCC) were used for the sensitivity analysis, which showed that the top three PRCC
ranked parameters are the transmission rate, the parameter representing the efficacy of compliance
with NPIs in preventing mpoxv infection, and the modification parameter for the reduction of
infectiousness. Other parameters with high PRCCs suggesting high priority (although not as high
as the top three) include the isolation rate from In and recovery rate from Iy. Hence, this study has
identified the parameters that should be targeted for effective mpoxv control and prevention.

v) Further numerical results were provided in Section 4.4 to investigate the global stability of the EE
for the model (1). The results are illustrated in Figures 5 and 6 and support the theoretical results
obtained in 3.2, which revealed that the EE is GAS when R0 > 1.

In summary, this work employed an SEIR-based model to study and theoretivcally analyze the
mpoxv transmission dynamics in the US to shed light on the transmission of mpoxv epidemics,
taking into account the roles of NPIs on the overall transmission dynamics. We revealed some
vital epidemiological parameters that should be emphasized efforts to mitigate and control of mpoxv.
Based on our results, we also observed that the transmission rate and other relevant parameters are
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crucial in controlling the spread of mpoxv outbreaks. The results in this paper could play an essential
role in developing a long-term plan for controlling mpoxv epidemics, especially for researchers and
policymakers. Moreover, our findings could provide an essential reference for policymakers to contain
the virus’s spread effectively. The model could be extended in the future by incorporating other control
vital factors such as pharmaceuticals, human behavior, and seasonality to gain more insight into the
transmission of mpoxv.
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Appendix A: Proof of global stability analysis

In this section, we prove Theorem 3.2.

Proof. To prove Theorem 3.2, we adopted previous technique [39, 41, 50], and designed a Lyapunov
function given below.
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(A-1)

Therefore, the derivative of the Lyapunov function (A-1) calculated along solutions of the model (1) is
given by

(t)ג̇ =ι1

(
1 −

S ∗n
S n

)
Ṡ n + ι2

(
1 −

S ∗y
S y

)
Ṡ y + ι3

(
1 −

E∗

E

)
Ė + ι4

(
1 −

I∗n
In

)
İn + ι5

(
1 −

I∗y
Iy

)
İy + ι6

(
1 −

J∗

J

)
J̇.

(A-2)
By direct computation from Eq (A-2), we have

ι1

(
1 −

S ∗n
S n

)
Ṡ n = ι1

(
1 −

S ∗n
S n

)(
π(1 − ρ) − λS n − A5S n

)
= ι1

(
1 −

S ∗n
S n

)(
λ∗S ∗n + A5S ∗n − λS n − A5S n

)
= ι1λ

∗S ∗n
(
1 −

S ∗n
S n

)(
1 −

λS n

λ∗S ∗n

)
− ι1A5

(S n − S ∗n)2

S n

≤ ι1λ
∗S ∗n

(
1 −

λS n

λ∗S ∗n
−

S ∗n
S n

+
λ

λ∗

)
,

(A-3)
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and,

ι2

(
1 −

S ∗y
S y

)
Ṡ y = ι2

(
1 −

S ∗y
S y

)(
πρ + θS n − ελS y − µhS y

)
= ι2

(
1 −

S ∗y
S y

)(
ελ∗S ∗y + µhS ∗y − ελS y − µhS y

)
= ι2ελ

∗S ∗y
(
1 −

S ∗y
S y

)(
1 −

λS y

λ∗S ∗y

)
− ι2µh

(S y − S ∗y)2

S y

≤ ι2ελ
∗S ∗y

(
1 −

λS y

λ∗S ∗y
−

S ∗y
S y

+
λ

λ∗

)
,

(A-4)

and,

ι3

(
1 −

E∗

E

)
Ė = ι3

(
1 −

E∗

E

)(
λS n + ελS y − A1E

)
= ι3

(
1 −

E∗

E

)(
λS n + ελS y − (λ∗S ∗n + ελ∗S ∗y)

E
E∗

)
= ι3λ

∗S ∗n
(
1 −

E∗

E

)(
λS n

λ∗S ∗n
−

E
E∗

)
+ ι3ελ

∗S ∗y
(
1 −

E∗

E

)( λS y

λ∗S ∗y
−

E
E∗

)
= ι3λ

∗S ∗n
(
λS n

λ∗S ∗n
−

E
E∗
−
λS nE∗

λ∗S ∗nE
+ 1

)
+ ι3ελ

∗S ∗y
( λS y

λ∗S ∗y
−

E
E∗
−
λS yE∗

λ∗S ∗yE
+ 1

)
,

(A-5)

and,

ι4

(
1 −

I∗n
In

)
İn = ι4

(
1 −

I∗n
In

)(
σnE − A2In

)
= ι4

(
1 −

I∗n
In

)(
σnE − σnE∗

In

I∗n

)
= ι4σnE∗

(
1 −

I∗n
In

)( E
E∗
−

In

I∗n

)
= ι4σnE∗

( E
E∗
−

In

I∗n
−

I∗nE
InE∗

+ 1
)
,

(A-6)

similarly,

ι5

(
1 −

I∗y
Iy

)
İy = = ι5σyE∗

( E
E∗
−

Iy

I∗y
−

E∗Iy

EI∗y
+ 1

)
+ ι5ηI∗n

( In

I∗n
−

Iy

I∗y
−

InI∗y
I∗nIy

+ 1
)
, (A-7)

and,

ι6

(
1 −

J∗

J

)
J̇ = = ι6γnI∗n

( In

I∗n
−

J
J∗
−

InJ∗

I∗n J
+ 1

)
+ ι6γyI∗y

( Iy

I∗y
−

J
J∗
−

IyJ∗

I∗y J
+ 1

)
, (A-8)
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Substituting ι1 = ι2 = ι3 = ι5 = ι6 = 1, ι4 =
λ∗S ∗n+ελ∗S y∗

σnE∗ and Eqs (A-3)–(A-8) into Eq (A-2), we have

(t)ג̇ ≤λ∗S ∗n
(
2 −

S ∗n
S n
−

E
E∗
−
λS nE∗

λ∗S ∗nE
+
λ

λ∗

)
+

ελ∗S ∗y
(
2 −

S ∗y
S y
−

E
E∗
−
λS yE∗

λ∗S ∗yE
+
λ

λ∗

)
+

λ∗S ∗n
( E
E∗
−

In

I∗n
−

I∗nE
InE∗

+ 1
)
+

ελ∗S ∗y
( E
E∗
−

In

I∗n
−

I∗nE
InE∗

+ 1
)
+

σyE∗
( E
E∗
−

Iy

I∗y
−

EI∗y
E∗Iy

+ 1
)
+

ηI∗n
( In

I∗n
−

Iy

I∗y
−

InI∗y
I∗nIy

+ 1
)
+

γnI∗n
( In

I∗n
−

J
J∗
−

InJ∗

I∗n J
+ 1

)
+

γyI∗y
( Iy

I∗y
−

J
J∗
−

IyJ∗

I∗y J
+ 1

)
.

(A-9)

Suppose, a function is define as u(x) = 1 − x + ln x, then, if x > 0 it leads to u(x) ≤ 0. Also, if x = 1,
then u(x) = 0. Implies that x − 1 ≥ ln(x) for any x > 0 [28, 50]. By using the above definition, direct
calculation from Eq (A-8), and conditions (i) and (ii), we have(

2 −
S ∗n
S n
−

E
E∗
−
λS nE∗

λ∗S ∗nE
+
λ

λ∗

)
=

(
− (1 −

λ

λ∗
)(1 −

Inλ
∗

I∗nλ
) + 3 −

S ∗n
S n
−
λS nE∗

λ∗S ∗nE
−

Inλ
∗

I∗nλ
−

E
E∗

+
In

I∗n

)
≤

(
− (

S ∗n
S n
− 1) − (

λS nE∗

λ∗S ∗nE
− 1) − (

Inλ
∗

I∗nλ
− 1) −

E
E∗

+
In

I∗n

)
≤

(
− ln(

S ∗n
S n

λS nE∗

λ∗S ∗nE
Inλ
∗

I∗nλ
) −

E
E∗

+
In

I∗n

)
=

( In

I∗n
− ln(

In

I∗n
) + ln(

E
E∗

) −
E
E∗

)
.

(A-10)

Similarly (
2 −

S ∗y
S y
−

E
E∗
−
λS yE∗

λ∗S ∗yE
+
λ

λ∗

)
≤

( In

I∗n
− ln(

In

I∗n
) + ln(

E
E∗

) −
E
E∗

)
. (A-11)

Also from Eq (A-7), we have

E
E∗
−

In

I∗n
−

I∗nE
InE∗

+ 1 =

(
u
( I∗nE
InE∗

)
+

E
E∗
− ln

( E
E∗

)
−

In

I∗n
+ ln

( In

I∗n

))
≤

E
E∗
− ln

( E
E∗

)
+ ln

( In

I∗n

)
−

In

I∗n
.

(A-12)
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Similarly,
E
E∗

+
Iy

I∗y
−

I∗y E

IyE∗
+ 1 ≤

−Iy

I∗y
+ ln

( Iy

I∗y

)
+ ln

( E
E∗

)
−

E
E∗
. (A-13)

In

I∗n
+

Iy

I∗y
−

I∗y In

IyI∗n
+ 1 ≤

−Iy

I∗y
+ ln

( Iy

I∗y

)
+ ln

( In

I∗n

)
−

In

I∗n
. (A-14)

In

I∗n
+

J
J∗
−

J∗In

JI∗n
+ 1 ≤

−J
J∗

+ ln
( J

J∗

)
+ ln

( In

I∗n

)
−

In

I∗n
. (A-15)

Iy

I∗y
+

J
J∗
−

J∗Iy

JI∗y
+ 1 ≤

−J
J∗

+ ln
( J

J∗

)
+ ln

( Iy

I∗y

)
−

Iy

I∗y
. (A-16)

Hence,

(t)ג̇ ≤λ∗S ∗n
( In

I∗n
− ln

( In

I∗n

)
+ ln

( E
E∗

)
−

E
E∗

)
+

ελ∗S ∗y
( In

I∗n
− ln

( In

I∗n

)
+ ln

( E
E∗

)
−

E
E∗

)
+

λ∗S ∗n
( E
E∗
− ln

( E
E∗

)
+ ln

( In

I∗n

)
−

In

I∗n

)
+

ελ∗S ∗y
( E
E∗
− ln

( E
E∗

)
+ ln

( In

I∗n

)
−

In

I∗n

)
+

σyE∗
(
−Iy

I∗y
+ ln

( Iy

I∗y

)
+ ln

( E
E∗

)
−

E
E∗

)
+

ηI∗n
(
−Iy

I∗y
+ ln

( Iy

I∗y

)
+ ln

( In

I∗n

)
−

In

I∗n

)
+

γ∗nI∗n
(
−J
J∗

+ ln
( J

J∗

)
+ ln

( In

I∗n

)
−

In

I∗n

)
+

γ∗yI∗y
(
−J
J∗

+ ln
( J

J∗

)
+ ln

( Iy

I∗y

)
−

Iy

I∗y

)
.

(A-17)

Equations (A-3)–(A-17) and conditions (i) (1 − λ
λ∗

)(1 − Inλ
∗

I∗nλ
) ≥ 0, (ii) Iy

I∗y
+ E

E∗ ≥ ln
(

Iy

I∗y

)
+ ln

(
E
E∗

)
,

Iy

I∗y
+ In

I∗n
≥ ln

(
Iy

I∗y

)
+ ln

(
In
I∗n

)
, J

J∗ + In
I∗n
≥ ln

(
J
J∗

)
+ ln

(
In
I∗n

)
, and J

J∗ +
Iy

I∗y
≥ ln

(
J
J∗

)
+ ln

(
Iy

I∗y

)
, ensure that (t)ג˙ ≤ 0.

Further, the equality dג
dt = 0 holds only if S n = S ∗n, S y = S ∗y E = E∗, In = I∗n, Iy = I∗y , and J = J∗.

Thus, the EE state (B-1), is the only positive invariant set to the system (1) contained entirely in{
(S n, S y, E, In, Iy, J) ∈ Ω : S n = S ∗n, S y = S ∗y, E = E∗, In = I∗n, Iy = I∗y , J = J∗

}
. Hence, it follows

from LaSalle’s invariance principle [27] that every solution to the Eq (1) with initial conditions in Ω

converge to EE points, Γ∗, as t → ∞. Thus, the positive EE is globally asymptotically stable.
�

Appendix B: Bifurcation analysis

The bifurcation analysis is carried out using center manifold theory (CMT), as presented by Castillo-
Chavez and Song [6]. The conditions for the parameter values in the model (1) that result in forward

AIMS Mathematics Volume 8, Issue 6, 14142–14166.
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or backward bifurcation are investigated. This approach has been widely used in earlier works, for
example, [5, 6, 18, 31, 45]. When R0 crosses unity from below, there is a forward bifurcation, which
results in the loss of stability of the DFE and the appearance of a small positive asymptotically stable
equilibrium [6].

Theorem 5.1. The mpoxv model (1) undergoes forward bifurcation at R0 = 1 whenever the bifurcation
coefficients, A and B, are negative and positive, respectively.

Proof. Following [5,6,30,45], we employ CMT. First, we let
dx
dt

= f (x,Ξ), where Ξ is the bifurcation
parameter, and f is continuously differentiable at least twice with respect to both x and Ξ. The DFE
(Γ0) is the point (x0 = 0,Ξ = 0) and the local stability of Γ0 changes at the point (x0, 0) [45]. We define
a nontrivial equilibrium near the bifurcation point (x0,Ξ).

Suppose that β = β∗ is chosen as a bifurcation parameter and we let R0 = 1 from (3). Then, by
Theorem 5.1, the DFE Γ0, is locally stable when β < β∗ and unstable when β > β∗. Here β = β∗ is a
bifurcation value.

For convenience, let S n = x1, S y = x2, E = x3, In = x4, Iy = x5, J = x6 and R = x7, so that
N = x1+x2+x3+x4+x5+x6+x7. Further, by adopting the same vector notation with x = (x1, x2, ..., x7)T ,
the model (1) can be written as dx

dt = f (x) where f = ( f1, f2, ..., f7)T is as follows:

f1 = (1 − ρ)π − λx1 − A5x1,

f2 = πρ + θx1 − ελx2 − µx2,

f3 = λ(x1 + εx2) − A1x3,

f4 = σnx3 − A2x4,

f5 = σyx3 + ηx4 − A3x5,

f6 = γnx4 + γyx5 − A4x6,

f7 = τnx4 + τyx5 + τJ x6 − µx7,

(B-1)

where the associated forces of infection are respectively given by

λ =
β(x4 + αx5)

7∑
i=1

xi

.
(B-2)

The Jacobian matrix of the system (B-2) (computed from the relation J(Γ0) = F − V , where F and V
are infection and transition matrices, respectively), evaluated at the DFE (Γ0) with β = β∗, is given by

J(Γ0) =



−A0 0 0 −c1 −c4 0 0

θ −µ 0 −c2 −c5 0 0

0 0 −A1 c3 c6 0 0

0 0 σn −A2 0 0 0

0 0 σy η −A3 0 0

0 0 0 γn γy −A4 0

0 0 0 τn τy τ j −µ


, (B-3)
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where
c1 =

A5β µ

µ3ρ+θ (2 ρ+1)µ2+((ρ+2)θ2+A5)µ+θ3 , c2 =
ε (µ ρ+θ)(θ+µ)2β

µ3ρ+θ (2 ρ+1)µ2+((ρ+2)θ2+A5)µ+θ3 ,

c3 = β
(
ε π (µ ρ+θ)(θ+µ)

µ
+

π A5
θ+µ

) (
π A5
θ+µ

+
π (µ ρ+θ)(θ+µ)

µ

)−1
, c4 =

A5β α µ

µ3ρ+θ (2 ρ+1)µ2+((ρ+2)θ2+A5)µ+θ3 ,

c5 =
ε (µ ρ+θ)(θ+µ)2β α

µ3ρ+θ (2 ρ+1)µ2+((ρ+2)θ2+A5)µ+θ3 , and c6 = β α
(
ε π (µ ρ+θ)(θ+µ)

µ
+

π A5
θ+µ

) (
π A5
θ+µ

+
π (µ ρ+θ)(θ+µ)

µ

)−1
.

The Jacobian matrix J(Γ0) of the system (B-2) has a simple zero eigenvalue (other eigenvalues
have negative real parts). Hence, the CMT [6, 45] can be employed to analyse the dynamics of the
system (B-2) located at β = β∗ [6]. The subsequent computations are carried out using similar notations
as in [6].

Eigenvectors of J(Γ0)β=β∗: For the case when R0 = 1, it can be shown that the J(Γ0) has a right
eigenvector (corresponding to the zero eigenvalues), given by Ψ = (Ψ1,Ψ2, ...,Ψ7)T , where

Ψ1 =
A3c1σn + c5A2σy + n5ησn

A0A2A3
Ψ3,

Ψ2 =
θA3c1σn + θc5A2σy + θc5ησn + A0A3c2σn + A0c5A2σy + A0c5ησn

µA0A2A3
Ψ3,

Ψ3 > 0,

Ψ4 =
σn

A2
Ψ3,

Ψ5 =
A2σy + ησn

A2A3
Ψ3,

Ψ6 =
A3γnσn + γyA2σy + γyησn

A2A3A4
Ψ3,

Ψ7 =
A3A4τnσn + A4τyA2σy + A4τyησn + τJA3γnσn + τJγyA2σy + τJγyησn

µA2A3A4
Ψ3.

(B-4)

Similarly, the components of the left eigenvector of J(Γ0) (corresponding to the zero eigenvalue),
denoted by Φ = (Φ1,Φ2, ...,Φ7), are given by

Φ1 = 0,
Φ2 = 0,
Φ3 > 0,

Φ4 =
c3(σnη − A2σy) − η(σnc3 − A1A2)

A2(σnη − A2σy)
Φ3,

Φ5 =
(σnc3 − A1A2)
σnη − A2σy

Φ3,

Φ6 = 0,
Φ7 = 0.

(B-5)

Note that the free components (entry) are chosen to be Φ3 = 1 and Ψ3 = 1
A1+A2

respectively, where

A1 = 1 +
σn

A2
+

(c3(σnη − A2σy) − η(σnc3 − A1A2)
A2(σnη − A2σy)

)
and A2 =

σnc3 − A1A2

σnη − A2σy

A2σy + ησn

A2A3
, (B-6)
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so that, v · w = 1 (in line with [6]).
It can be shown, by computing the non-zero partial derivatives of fi (i = 1, ..., 7), that the associated

bifurcation coefficients, A and B, are given, respectively, by

A =

7∑
k,i, j=1

ΦkΨiΨ j
∂2 fk(0, 0)
∂xi∂x j

= − 2A0
[ρU1µ

3 + 2U1(ρ + 1
2 )θµ2 + ((ρ + 2)U1θ

2 − A5U2)µ + U1θ
3](αΨ5 + Ψ4)µβΦ3

π
(
µ3ρ + θ (2 ρ + 1) µ2 +

(
(ρ + 2) θ2 + A5

)
µ + θ3)2 ,

(B-7)

B =

7∑
k,i=1

ΦkΨi
∂2 fk(0, 0)
∂xi∂β

=
(Ψ4 + αΨ5)

(
ε µ3ρ + 2 ε µ2ρ θ + ε µ ρ θ2 + ε µ2θ + 2 ε µ θ2 + ε θ3 + µ A5

)
Φ3

µ3ρ + 2 µ2ρ θ + µ ρ θ2 + µ2θ + 2 µ θ2 + θ3 + µ A5
,

(B-8)
where U1 = (Ψ1 + Ψ3 + Ψ4 + Ψ5 + Ψ6 + Ψ7)ε − Ψ1 and U2 = εΨ2 − Ψ2 − Ψ3 − Ψ4 − Ψ5 − Ψ6 − Ψ7.
Now, since Φ3 > 0, Ψ3 > 0, Ψ4 > 0, and Ψ5 > 0, indicating that B ≥ 0, therefore, forward bifurcation
occurs if and only if A < 0 else we have backward bifurcation (i.e. when A > 0). To verify the above
results numerically, we computed the expression using the parameter values in Table 2 and found that
A (−651.5562000) and B (5.585740031) were negative and positive, respectively. As a result, forward
bifurcation is likely for the mpoxv model (1) at R0 = 1. Furthermore, an EE will not exist if R0 < 1,
leaving DFE as the only local attractor. However, if R0 > 1, the EE exists. Therefore, a forward
bifurcation likely exists because disease prevalence is an increasing function of R0 in the vicinity of
the bifurcation point.

�
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