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Abstract: This paper is concerned with a class of nonhomogeneous generalized Kadomtsev-
Petviashvili equations { ut + (|u|p−2u)x + uxxx + hx(x − τt, y) + β∇yv = 0,

vx = ∇yu.

By proving a local Palais-Smale condition, we manage to prove the existence of solitary waves with
the help of a variational characterization on the smallest positive constant of an anisotropic Sobolev
inequality (Huang and Rocha, J. Inequal. Appl., 2018, 163). The novelty is to give an explicit estimate
on the sufficient condition of h to get the existence of solitary waves.
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1. Introduction

The classical Kadomtsev-Petviashvili [1] equation is a two-dimensional generalization of
the Korteweg-de Vries equation appears in mathematical models for the description of long
dispersive waves, which travel essentially in one direction but have small transverse effects. A
generalized Kadomtsev-Petviashvili (GKP) equation with variable coefficients has been proposed
by David et al. [2, 3] to describe water waves that propagate in straits or rivers rather than unbounded
surfaces. After that, there are some works studying the existence of solitary waves or soliton solutions
of the GKP with variable coefficients; see, for instance [4–6] and the references therein. In R2, a class
of GKP with the form

(u(t) + r(t)uux + q(t)uxxx)x + σ(y, t)uyy + a(y, t)uy + b(y, t)uxy

+c(y, t)uxx + e(y, t)ux + f (y, t)u + h(y, t) = 0
(1.1)
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has been considered by Güngör and Winternitz [4], where r, q, σ, a, b, c, e, f and h are functions
satisfying some technical conditions.

In the case of GKP without a nonhomogeneous term h(y, t), a lot of mathematicians have studied
the existence of solitary waves. A pioneering work was achieved by De Bouard and Saut [7], where
the authors have studied the existence of solitary waves for the following:{ ut + f ′(u)ux + uxxx + βvy = 0,

vx = uy,
(x, y) ∈ RN (1.2)

with f (s) = |s|ps and β = −1, where 1 ≤ p < 4 if N = 2, and 1 ≤ p < 4
3 if N = 3. Moreover p = m

n ,
where m and n are relatively prime and n is odd. In the three dimensional case, a series of works
on soliton solutions, rogue wave solutions, soliton and rogue wave mixed solutions as well as their
numerical simulations, have been obtained by Ma et al. [8–12]. Wang and Willem [13] have studied
the existence of multiple solitary waves of (1.2) for a more general nonlinear term.

For GKP without a nonhomogeneous term h(y, t) in higher spatial dimensions, Xuan [14] has
investigated the existence of solitary waves of

wt + wxxx + ( f (w))x = D−1
x ∆yw, (1.3)

where (t, x, y) ∈ R+ × R × RN−1, y = (y1, · · · , yN−1), N ≥ 3, D−1
x denotes D−1

x g(x, y) =
∫ x

−∞
g(s, y)ds

and △y =
∑N−1

k=1
∂2

∂y2
k
. For various kinds of nonlinearities f , we refer the interested readers to [15–18].

For other kinds of related equations, the existence of solitary waves as well their properties have been
investigated by several mathematicians; we refer the interested readers to [19–24].

While for GKP with a nonhomogeneous term, we do not see any results in the literature. The
purpose of this paper is to investigate the existence of solitary waves for the following class of GKP
equations with a nonhomogeneous term{ ut + (|u|p−2u)x + uxxx + hx(x − τt, y) + β∇yv = 0,

vx = ∇yu, (x, y) ∈ R × RN−1,
(1.4)

where 2 < p < p∗ := 2(2N − 1)/(2N − 3), with N ≥ 2 and ∇y =
(
∂
∂y1
, · · · , ∂

∂yN−1

)
. The h(x, y, t) is a

real valued function satisfying suitable conditions. We recall that a solitary wave of (1.4) is a solution
of the form u(t, x, y) = u(x − τt, y) with τ > 0. Hence the function u must satisfy the problem{

−τux + (|u|p−2u)x + uxxx + hx(x − τt, y) + β∇yv = 0,
vx = ∇yu.

(1.5)

In the sequel, we will treat the case of β = −1 and τ = 1. It is easy to see that the above equation can
be written as

−ux + (|u|p−2u)x + uxxx + hx(x − τt, y) − D−1
x ∆yu = 0, (1.6)

or equivalently
(−uxx + D−2

x ∆yu + u − (|u|p−2u)x − h)x = 0. (1.7)

Before stating the main result, we need the following N-dimensional anisotropic Sobolev
inequality [25]: for N ≥ 2 and 2 < p < p∗ := 2(2N − 1)/(2N − 3), there is a positive constant α
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such that for all u ∈ Y ,∫
RN
|u|pdV ≤ α

( ∫
RN
|u|2dV

) 2(2N−1)+(3−2N)p
4

( ∫
RN
|ux|

2dV
) N(p−2)

4
N−1∏
k=1

( ∫
RN
|D−1

x ∂yku|
2dV

) p−2
4

, (1.8)

where V := (x, y) and Y is the closure of ∂x(C∞0 (RN)) under the norm

∥u∥2Y :=
∫
RN

(
u2

x + |D
−1
x ∇yu|2 + |u|2

)
dV. (1.9)

In [26], we have proven that the smallest positive constant α can be characterized variationally by a
minimal action solution of

−u + uxx + |u|p−2u = D−2
x △yu, u , 0, u ∈ Y. (1.10)

From [26, Theorem 2.8], we know that the smallest positive constant α satisfies

α−1 =

(
T
2p

) T
4
(

NN(p − 2)2N−1

(2p)2N−3T 2

) p−2
4

(∫
|ϕ|2dV

) p−2
2

, (1.11)

where T = (3 − 2N)p + 2(2N − 1), and ϕ is a minimal action solution of (1.10). Moreover the smallest
positive constant α is independent of the choice of ϕ, though we do not have uniqueness of the minimal
action solution to (1.10). Besides, from [26, Proposition 2.7], we also have the following inequality:(∫

|u|pdV
) 2

p
(∫
|ϕ|pdV

) p−2
p

≤ ∥u∥2Y , for all u ∈ Y. (1.12)

With the help of (1.11) and (1.12), we are ready to propose the following condition:

h ∈ C1(RN) ∩ L2(RN) and ∥h∥Y−1 <
p − 2
p − 1

(
1

p − 1

) 1
p−2

(∫
|ϕ|pdV

) 1
2

. (1.13)

Theorem 1.1. Under the condition (1.13), if N ≥ 2 and 2 < p < 2(2N − 1)/(2N − 3), then (1.4) admits
a solitary wave.

Theorem 1.1 seems to be the first result for the existence of solitary wave GKP with a
nonhomogeneous term. The study is based on finding a critical point of the functional I defined on
Y; see Section 2. In Section 3, we use the classical minimization argument to prove the existence of
solitary waves.

2. Variational framework

Throughout this paper, all integrals are taken over RN unless stated otherwise. On Y , we define the
following functional

I(u) =
1
2
∥u∥2Y −

1
p

∫
|u|pdV −

∫
hudV. (2.1)
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Based on the inequality (1.8), we know that I is well defined and C1 on Y . Moreover there is a one-
to-one correspondence between the critical points of I and the solutions to (1.7). Since we study the
problem in the whole space RN , one main difficulty of using a variational method is the lack of the
Palais-Smale (PS) condition. In the following proposition, we will prove that I satisfies the (PS )c

condition for a suitable range of c. Define

m0 = inf
u∈Λ

I(u), where Λ = {u ∈ Y\{0} : ⟨I′(u), u⟩ = 0}. (2.2)

Proposition 2.1. Let (un) be such that I(un)→ d < m0+
p−2
2p

∫
|ϕ|pdV and I′(un)→ 0 in Y−1 as n→ ∞.

Then (un) contains a convergent subsequence in Y.

Proof. For n large enough,

1 + d + o(1)∥un∥Y ≥ I(un) −
1
p
⟨I′(un), un⟩

=
p − 2
2p
∥un∥

2
Y −

p − 1
p

∫
hundV ≥

p − 2
4p
∥un∥

2
Y −

(p − 1)2

p(p − 2)
∥h∥2Y−1 ,

(2.3)

which implies that (un) is bounded in Y .
Going if necessary to a subsequence, still denoted by (un), we may assume that un → u0 weakly in

Y , un → u0 strongly in Lp
loc(R

N) and un → u0 a. e. on RN . Similar to the proof of [26, Page 6] (see
also [27]), we can assume u0 , 0. Moreover from I′(un) → 0 in Y−1 as n → ∞, we also deduce that
I′(u0) = 0. Therefore u0 ∈ Λ.

Denote wn := un − u0. Then from the Brezis-Lieb [28] lemma (see also [27]), we obtain from
I′(u0) = 0 that for n large enough

o(1) = ∥un∥
2
Y −

∫
|un|

pdV −
∫

hundV

= ∥u0∥
2
Y −

∫
|u0|

pdV −
∫

hu0dV + ∥wn∥
2
Y −

∫
|wn|

pdV = ∥wn∥
2
Y −

∫
|wn|

pdV.
(2.4)

Suppose that there is a b ≥ 0 such that ∥wn∥
2
Y → b and

∫
|wn|

pdV → b as n → ∞. If b , 0, then
from (1.12), one may deduce that

b ≥ b
2
p

(∫
|ϕ|pdV

) p−2
p

. (2.5)

Using I(un)→ d as n→ ∞, we obtain that for n large enough,

d + o(1) = I(un) = I(u0) +
1
2
∥wn∥

2
Y −

1
p

∫
|wn|

pdV

≥ m0 +
p − 2
2p

b ≥ m0 +
p − 2
2p

∫
|ϕ|pdV,

(2.6)

which contradicts the assumption of d. Therefore b = 0 and we have proven that un → u0 strongly in
Y .

Lemma 2.2. Under the condition (1.13), then m0 +
p−2
2p

∫
|ϕ|pdV > 0.
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Proof. For any u ∈ Λ, we have that

I(u) =
1
2
∥u∥2Y −

1
p

∫
|u|pdV −

∫
hudV =

p − 2
2p
∥u∥2Y −

p − 1
p

∫
hudV. (2.7)

From the condition (1.13), we know that

p − 1
p

∫
hudV ≤

p − 1
p
∥h∥Y−1∥u∥Y ≤

p − 2
p

(
1

p − 1

) 1
p−2

(∫
|ϕ|pdV

) 1
2

∥u∥Y

≤
p − 2
2p
∥u∥2Y +

p − 2
2p

(
1

p − 1

) 1
p−2

∫
|ϕ|pdV.

(2.8)

Hence

I(u) ≥ −
p − 2
2p

(
1

p − 1

) 1
p−2

∫
|ϕ|pdV. (2.9)

Therefore we deduce that

m0 +
p − 2
2p

∫
|ϕ|pdV ≥

p − 2
2p

1 − (
1

p − 1

) 1
p−2

 ∫ |ϕ|pdV > 0. (2.10)

3. Existence of solitary waves

In this section, we will prove Theorem 1.1. Let φ ∈ Y be such that φ ≥ 0 and ∥φ∥Y = 1. Then for
s > 0, we have that

I(sφ) =
s2

2
−

sp

p

∫
|φ|pdV − s

∫
hφdV. (3.1)

Hence, there is ρ0 > 0 such that for any s ∈ (0, ρ0), I(sφ) < 0. Define the following minimization
problem:

c1 = inf
B̄ρ0

I(u). (3.2)

Proof of Theorem 1.1. From the above discussion, we have that −∞ < c1 < 0. By the Ekeland
variational principle, there is a sequence (vn) with vn ∈ B̄ρ0 such that I(vn) → c1 and I′(vn) → 0 in Y−1

as n→ ∞.
According to Proposition 2.1 and Lemma 2.2, we know that I satisfies the (PS )c1 condition. Hence

there is a convergent subsequence, still denoted by (vn), and a v0 ∈ Y\{0} such that vn → v0 strongly in
Y . Moreover v0 is a nontrivial solution. This proves Theorem 1.1.

4. Conclusions

The GKP equation is an important model in the description of nonlinear wave propagation in
diverse dissipative media. The case of GKP with a nonhomogeneous term has not been investigated
in the literature as far as the author’s best knowledge. An interesting and important issue is how the
nonhomogeneous term affects the existence of solitary waves, and what size of the nonhomogeneous
term is enough to get a solitary wave.
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In the present paper, with the help of a variational characterization on the smallest positive constant
of an anisotropic Sobolev inequality by Huang and Rocha [26], we are able to give an estimate on
the size of the nonhomogeneous term, which ensures the existence of solitary waves. We expect
that the condition (1.13) proposed here will be helpful to find multiple solitary waves of GKP with
a nonhomogeneous term. This can be a work for further study.
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