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1. Introduction

Fractional calculus is a rapidly growing area with numerous applications in various fields, ranging
from engineering and technology to finance and natural phenomena. Many physical processes in
real-world events exhibit fractional-order behavior, such as biological systems, earthquake vibrations,
electrical circuits, viscoelasticity, natural phenomena, and heat flow in materials, among others.
Fractional calculus is a useful tool for studying these phenomena, and as a result, many researchers
have investigated various fractional differential equations. This topic continues to be a popular area
for research. For further study on fractional calculus, one can refer to the references [1, 2] and
monographs by Kilbas et al. [3], Zhou et al. [4], Oldham and Spanier [5] and Podlubny [6].

In recent years, many researchers have investigated the existence of solutions to various classes of
fractional differential equations, obtaining excellent results in this field through the use of fixed point
theorems, evolution families, and semigroup techniques. In particular, the existence of mild solutions
for various fractional differential equations in Banach and Hilbert spaces has received significant
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attention. Byszewski [7] studied the existence of solutions with nonlocal conditions for evolution
equations in Banach spaces, and subsequently, due to their many applications, various researchers
have obtained results using nonlocal conditions. For example, Mophou and N’Guerekata [8]
investigated the existence of mild solutions for some fractional differential equations, Shu and
Wang [9] studied the existence of mild solutions for fractional differential equations of order
1 < γ < 2, Wang and Shu [10] discussed the existence of positive mild solutions for fractional
differential evolution equations of order 1 < α < 2, and Balachandran and Sakthivel [11] proved the
existence of solutions of the neutral functional integrodifferential equation in Banach spaces.

Controllability is a fundamental concept in control theory, which refers to the ability to steer a
system from any initial state to any desired final state using an appropriate control input. The study of
controllability began with the work of Kalman in the 1960s, who developed the necessary and
sufficient conditions for controllability of finite-dimensional linear systems. Since then, many
researchers have worked on controllability problems in both finite-dimensional and
infinite-dimensional systems, developing various techniques and tools for analysis and control design.
In the last few decades, many researchers have worked on the controllability of different fractional
differential equations with nonlocal conditions. In this direction Arthi et al. [12] studied the
controllability of damped second-order neutral integrodifferential systems with nonlocal conditions,
Mohan Raja et al. [13] studied results on the existence and controllability of fractional
integrodifferential system of order 1 < r < 2,. Wang and Zhou [14] investigated the existence and
controllability of semilinear fractional differential inclusions while Liu and Zeng [15] studied the
existence and controllability of fractional evolution inclusions of Clarke’s subdifferential type. Ji
et al. [16] established controllability results for impulsive differential systems with nonlocal
conditions, Madmudov et al. [17] verified the approximate controllability of fractional
integrodifferential equations involving nonlocal initial conditions. In addition, Gorniewics et al. [18]
worked on the existence and controllability of functional differential inclusions with nonlocal
conditions while Guo et al. [19] studied the optimal control problem of random impulsive differential
equations. Most recently, Chendrayan et al. [20] established results on controllability of Sobolev-type
fractional stochastic hemivariational inequalitities of order r ∈ (1, 2), Mohan Raja et al. [21] proved
some beautiful results related to the controllability of fractional integrodifferential inclusions of order
r ∈ (1, 2), Chendrayan et al. [22] worked on the controllability of fractional stochastic
Volterra-Fredholm integro-differential systems of order 1 < r < 2, Arora et al. [23] discussed the
controllability with monotonic nonlinearity of nonlocal fractional semilinear equations of order
1 < r < 2, Mohan Raja et al. [24] established results on the approximate controllability for fractional
integrodifferential systems of order 1 < r < 2, Ma et al. [25] proved new results related to the
controllability of Sobolev-type fractional differential equations of order 1 < r < 2 with finite delay
and Shu et al. [26] discussed the existence of mild solutions and approximate controllability for
Riemann-Liouville fractional stochastic evolution equations of order 1 < α < 2 with nonlocal
conditions. Here, we reference some work recently published on the aforesaid area, where authors
used the tools of fixed point theory and applied analysis like [27, 28].

Motivated by the work as mentioned in the above discussion, by using semigroup theory, mild
solutions, sectorial operator, control theory, fractional calculus, Arzelà-Ascoli theorem, Krasnoselskii’s
and Schauder’s fixed point theorems, in this manuscript, we study the existence and controllability of
fractional differential evolution equation of order 1 < γ < 2 with nonlocal conditions in Banach space
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Y of the formcDγr(ξ) = Ar(ξ) + Bv(ξ) + g(ξ, r(ξ)) +
∫ ξ

0
p(ξ − ζ) f (ζ, r(ζ))dξ, ξ ∈ J = [0,K],

r(0) + n(r) = r0 ∈ Y, r
′

(0) + m(r) = r1 ∈ Y,
(1.1)

where cDγ is the Caputo fractional derivative of order 1 < γ < 2, A : D(A) ⊂ Y → Y is a sectorial
operator of type (W, ϑ, γ, δ), B : Y → Y is a bounded linear operator, v(·) ∈ L2(J,Y) is control function.
The nonlinear functions g, f : J × Y → P are continuous functions, where P is a positive cone,
p : [0,K] → R+ is an integrable function, and p = maxξ∈[o,K]

∫ ξ
0
|p(ξ − ζ)|dζ, n,m : Y → Y are

continuous functions.
The organization of this manuscript is as follows: Section 2 includes some definitions, lemmas,

remarks, and theorems that will be used to prove our main results. Section 3 presents the existence and
controllability results of a fractional differential evolution equation with nonlocal conditions. In the
last section, Section 4, an example is included to illustrate the applicability of our main results.

2. Preliminaries

Now, we present some definitions, remarks, and theorems which will be used in the proof of the
main results. Let (Y, ∥ · ∥) be an ordered Banach space and P be a cone in which a partial ordering in
Y is defined by h ≤ k if and only if k − h ∈ P. If there exist a positive constant N such that ϑ ≤ h ≤ k
implies ∥h∥ ≤ N∥k∥ then P is said to be a normal, where ϑ represents the zero element of Y, and the
smallest N is called the normal constant of P. If the interior of P is nonempty then P is called solid
cone. whenever h − k ∈ P and P is solid cone then we write h ≪ k. For further study on cone theory,
see [29].

Throughout this manuscript, we assume that P is a positive cone of ordered Banach space Y, then
T = {h ∈ C(J,Y) : h(ξ) ≥ ϑ, for all ξ ∈ J} is also the positive cone of C(J,Y).

Definition 2.1. The fractional integral of order γ of a function g is denoted by Iγg and defined as

Iγ0 g(ξ) =
1
Γ(γ)

∫ ξ

0
(ξ − ζ)γ−1g(ζ)dζ, ξ > 0, γ > 0.

Definition 2.2. The Caputo derivative of order γ of a function g is denoted by cDγg and defined as

cDγ0
g(ξ) =

1
Γ(m − γ)

∫ ξ

0
(ξ − ζ)m−γ−1gm(ζ)dζ, ξ > 0, m − 1 ≤ γ ≤ m.

Definition 2.3. [6] The Mittag-Leffler function is denoted by Eα,β(s) and defined as

Eα,β(s) =
∞∑

h=0

sh

Γ(αh + β)
=

1
2πi

∫
Hα

eν
να−β

να − s
dν, α, β > 0, s ∈ C,

here Hα denotes Hankle path, a contour starting and ending at −∞, and encircles the disc |ν| ≤ |s|
1
α

counterclockwise.

Now, we present well-known results which will be used in the proof of main results.
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Theorem 2.4. (Schauder’s fixed point theorem) Let Y be a Banach space and X be a nonempty,
bounded, convex and closed subset of Y, and let K : X → X is a compact operator. Then the operator
K has at least one fixed point in X.

Theorem 2.5. (Krasnoselskii’s fixed point theorem) Let Y be a Banach space and W , ∅ be a closed,
convex subset of Y. And letA and B be operators satisfies the following three conditions

(1) Ah + Bk ∈ W, f orh, k ∈ W;
(2) A continuous and compact;
(3) B is a contraction mapping.

Then there exists z ∈ W ∋ z = Az + Bz

Theorem 2.6. (Arzelà-Ascoli Theorem) LetD be compact and {gm(ξ)}∞m=1 be a sequence of continuous
functions defined on D. If G = {gm : m ∈ N} is uniformly bounded and equicontinuous on D. Then
there exists a subsequence {gmk}

∞
k=1 that converges uniformly to a function g ∈ C(D,R).

Theorem 2.7. [30] LetA be a densely defined operator in Y satisfies

(1) For some 0 < ϑ < π2 , ν + Tϑ = {ν + η : η ∈ C, |Arg(−η)| < ϑ}.

(2) There exists a constant W, such that

∥(ηI −A)−1∥ ≤ W
|η−ν|
, < ν + Tϑ.

Then (A) is an infinitesimal generator of a semigroup S(ξ) satisfies ∥S(ξ)∥ ≤ C. Also,
S(ξ) = 1

2πi

∫
C

eηξR(η,A)dη, for η ∈ c, η < ν + Tϑ, where C is a suitable path.

Definition 2.8. [9] LetA be a closed linear operator from D(Y) ⊆ Y into Y. A is said to be a sectorial
operator of type (W, ϑ, γ, ν) if there exist W > 0, 0 < ϑ ≤ π2 and ν ∈ R such that out side of the following
sector ν + Tϑ, γ−resolvent ofA exists,

ν + Tϑ = {ν + η
γ : γ ∈ C, |Arg(−ηγ)| < ϑ}

and

∥(ηI −A)−1∥ ≤ W
|η−ν|
, < ν + Tϑ.

Remark 2.9. [9] If A is sectorial operator of type (W, ϑ, γ, ν), then the operator A is the infinitesimal
generator of a γ−resolvent family {Sγ(ξ)}ξ≥0 in a Banach space, where Sγ(ξ) = 1

2πi

∫
c

eηξR(ηγ,A)dη.

Definition 2.10. Let R(ξ)(ξ≥0) be a γ−resolvent solution operator in Y. When R(ξ)h ≥ ϑ for all h ≥ ϑ,
h ∈ Y, and ξ ≥ 0, then R(ξ)ξ≥0 is called to be positive.

Definition 2.11. [31] The linear operatorA : D(A) ⊆ Y → Y is said to be non-negative ifA satisfies
the following conditions:

(1) For every value η > 0 and every q ∈ D(A), we have

η∥q∥ ≤ T∥ηq +Aη∥.

(2) R(ηI +A) = Y for all values of η > 0.
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Definition 2.12. [31] Let A be a linear operator and if for K = 1 the linear operator A satisfy
condition (1) in Definition 2.11, then A is said to be accretive. And if A also satisfy condition (2) in
Definition 2.11, thenA is said to be m−accretive.

Definition 2.13. A is said to be a sectorial accretive operator of type (W, ϑ, γ, ν) if and only if A is
accretive andA is a sectorial operator of type (W, ϑ, γ, ν).

Remark 2.14. [31] Let (Y, ⟨·, ·⟩) is a Hilbert space. ThenA is to be accretive if and only if Re(Aq, q) ≥
0 for all q ∈ D(A). In particular, if Y is a Hilbert space with field of real numbers and A is positive,
then (Aq, q) ≥ 0 for every q ∈ D(A). And note that if an order Banach space is a real space, implying
that ifA is accretive and Y is an ordered Banach space, then (Aq, q) ≥ 0 for all q ∈ D(A).

Definition 2.15. [9] A function r ∈ C([0,K],Y) is said to be a mild solution of (1.1) if it satisfies

r(ξ) = Tγ(ξ)[r0 − n(r)] + Qγ(ξ)[q1 − m(q)]

+

∫ ξ

o
Sγ(ξ − ζ)

[
g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, q(λ))dλ

]
dζ.

Lemma 2.16. [10] IfA is a sectorial operator of type (W, ϑ, γ, ν), then we have

Tγ(ξ) = 1
2πi

∫
c

eηξηγ−1R(ηγ,A)dη = Eγ,1(Aξγ) =
∑∞

h=0
(Aξγ)h

Γ(1+γh) ,

Sγ(ξ) = 1
2πi

∫
c

eηξR(ηγ,A)dη = ξγ−1Eγ,γ(Aξγ) = ξγ−1∑∞
h=0

(Aξγ)h

Γ(γ+γh)

and

Qγ(ξ) = 1
2πi

∫
c

eηξηγ−2R(ηγ,A)dη = ξEγ,2(Aξγ) = ξ
∑∞

h=0
(Aξγ)h

Γ(2+γh) .

Remark 2.17. In the range 1 < γ < 2, the Mittag-Leffler function Eγ,1(h) is well known to have a finite
number of real zeros. [32] deduces that the operator Tγ(ξ) is non-positive by Lemma 2.16.

Remark 2.18. It follows from Remark 2.14 and Definition 2.13 that ifA is a sectorial operator of type
(W, ϑ, γ, ν) and Y is an ordered Banach space, then the γ−resolvent families {Sγ(ξ)}ξ≥0, {Tγ(ξ)}ξ≥0, and
{Qγ(ξ)}ξ≥0, are positive.

Theorem 2.19. [9] LetA be a sectorial operator of type (W, ϑ, γ, ν). Then the following two estimates
are hold for ∥Tγ(ξ)∥.

(1) Let ν ≥ 0. Given φ ∈ (0, π), we have

∥Tγ(ξ)∥ ≤
T1(ϑ, φ)We[T1(ϑ,φ)(1+νξγ)][(1 + sinφ

sin(φ−ϑ)
1
γ

) − 1]

π sin1+ 1
γ ϑ

(1 + νξγ)

+
Γ(γ)W

π(1 + νξγ)| cos π−φ|
γ

γ

sinϑ sinφ,

for ξ > 0, where T1(ϑ, φ) = max{1, sinϑ
sin(ϑ−φ) }
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(2) Assume ν < 0. Given T1(ϑ, π), we have

∥Tγ(ξ)∥ ≤
(eW[(1 + sinφ)

1
γ − 1]

π| cosφ|1+
1
γ

+
Γ(γ)W

π| cosφ|| cos π−φ
γ
|γ

) 1
1 + |ν|ξγ

,

for ξ > 0.

Theorem 2.20. [9] LetA be a sectorial operator of type (W, ϑ, γ, ν). Then the following two estimates
are hold for ∥Sγ(ξ)∥ and ∥Qγ(ξ)∥.

(1) Let ν ≥ 0. Given φ ∈ (0, π), we have

∥Sγ(ξ)∥ ≤
We[T1(ϑ,φ)(1+νξγ)][(1 + sinφ

sin(φ−ϑ)
1
γ

) − 1]

π sin1+ 1
γ ϑ

(1 + νξγ)
1
γ ξγ−1

+
Wξγ−1

π(1 + νξγ)| cos π−φ|
γ

γ

sinϑ sinφ,

∥Qγ(ξ)∥ ≤
WT1(ϑ, φ)e[T1(ϑ,φ)(1+νξγ)][(1 + sinφ

sin(φ−ϑ)
1
γ

) − 1]

π sin
γ+2
γ ϑ

(1 + νξγ)
γ−1
γ ξγ−1

+
WγΓ(γ)

π(1 + νξγ)| cos π−φ|
γ

γ

sinϑ sinφ,

for ξ > 0, where T1(ϑ, φ) = max{1, sinϑ
sin(ϑ−φ) }

(2) Assume ν < 0. Given T1(ϑ, π), we have

∥Sγ(ξ)∥ ≤
(eW[(1 + sinφ)

1
γ − 1]

π| cosφ|
+

W
π| cosφ|| cos π−φ

γ
|

)
ξγ−1

1 + |ν|ξγ
,

∥Qγ(ξ)∥ ≤
(eW[(1 + sinφ)

1
γ − 1]

π| cosφ|1+
2
γ

+
γΓ(γ)W

π| cosφ|| cos π−φ
γ
|

) 1
1 + |ν|ξγ

,

for ξ > 0.

3. Mild solutions and controllability

From Theorems 2.19 and 2.20, it is obvious because of the estimation on Tγ(ξ), Qγ(ξ) and Sγ(ξ),
that Tγ(ξ), Qγ(ξ) and Sγ(ξ) are bounded and A is a linear operator. Now, we make the following
(H1)–(H4) assumptions:

H1. A is a sectorial operator of type (W, ϑ, γ, ν) and generates compact γ−resolvent families {Sγ(ξ)}ξ≥0,
{Tγ(ξ)}ξ≥0 and {Qγ(ξ)}ξ≥0.

H2. There exists W̃ > 0, such that for any ξ ∈ J, we have supξ∈J ∥Tγ(ξ)| ≤ W̃, supξ∈J ∥Qγ(ξ)| ≤ W̃ and
supξ∈J ∥Sγ(ξ)| ≤ W̃.
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H3. The functions g, f : J × Y → P are jointly continuous and for each h > 0 there exist νh, µh ∈

L([0,K],R+) such that sup∥r∥≤h ∥g(ξ, r)∥ ≤ νh(ξ), sup∥r∥≤h ∥ f (ξ, r)∥ ≤ µh(ξ)

H4. r0 − n(r), r1 − m(r) ∈ C(Y, P) and there exist a, b, c, d > 0 such that ∥n(r)∥ ≤ c∥r∥ + d, ∥m(r)∥ ≤
a∥r∥ + b, for all r ∈ Y.

Theorem 3.1. Let (H1)–(H4) hold and W̃ < 1, then problem (1.1) has at least one positive mild
solution on J.

Proof.

r(ξ) = Tγ(ξ)[r0 − n(r)] + Qγ(ξ)[r1 − m(r)]

+

∫ ξ

0
Sγ(ξ − ζ)

[
g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

]
dζ.

Choose

h ≥
W̃(Kνh(ξ)) + K pµh(ξ)) + ∥r0∥ + ∥r1∥ + d + b

1 − W̃(c + a)

and suppose Θ = {r ∈ T : ∥r∥ ≤ h}. Define the operator Υ : Θ→ C(J,Y) by

(Υr)(ξ) = Tγ(ξ)[r0 − n(r)] + Qγ(ξ)[r1 − m(r)]

+

∫ ξ

0
Sγ(ξ − ζ)

[
g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

]
dζ.

Step 1. First we show that ΥΘ ⊆ Θ. For any r ∈ Θ, based on assumption (H3) and (H4), for ξ ∈ J, we
have

r0 − n(r) ≥ ϑ, r1 − m(r) ≥ ϑ, (3.1)

g(ξ, r(ξ)) ≥ ϑ,
∫ ξ

0
p(ξ − ζ) f (ζ, r(ζ))dζ ≥ ϑ. (3.2)

Because of (H2), we know that the operator A is a sectorial accretive of type (W, ϑ, γ, ν) and
generates compact and positive γ-resolvent families {Tγ(ξ)}ξ≥0, {Qγ(ξ)}ξ≥0 and {Sγ(ξ)}ξ≥0. Then
we have

Tγ(ξ)[r0 − n(r)] ≥ ϑ,Qγ(ξ)[r1 − n(r)] ≥ ϑ, (3.3)

∫ ξ

0
Sγ(ξ − ζ)

[
g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

]
dζ ≥ ϑ. (3.4)

Consequently, we obtain

(Υr) ≥ ϑ, f or r ∈ Θ. (3.5)
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Also we have

∥(Υr)(ξ)∥ ≤∥Tγ(ξ)∥ · ∥r0 − n(r)∥ + ∥Qγ(ξ)∥ · ∥r1 − n(r)∥

+

∫ ξ

0
∥Sγ(ξ − ζ)∥

∥∥∥∥∥g(ζ, r(ζ)) +
∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

∥∥∥∥∥dζ
≤W̃
(
∥r0∥ + ∥n(r)∥ + ∥r1∥ + ∥m(r)∥ + K∥g(ζ, r(ζ))∥

+ K
∫ ζ

0
|p(ζ − λ)| · ∥ f (λ, r(λ))∥dζ

)
≤W̃(∥r0∥ + c∥r∥ + d + ∥r1∥ + a∥r∥ + b

+ Kνh(ξ) + K pµh(ξ))
≤h.

(3.6)

From (3.6), we obtain ΥΘ ⊆ Θ, for all r ∈ Θ.

Step 2. Now, we prove the continuity of Υ.
Suppose {ri} be a sequence in Θ such that ∥ri − r∥ → 0. Noting that g, f , n,m are continuous, as
i→ ∞ we have

n(ri)→ n(r),m(ri)→ m(r), (3.7)

g(ξ, ri(ξ))→ g(ξ, r(ξ)), f (ξ, ri(ξ))→ f (ξ, r(ξ)). (3.8)

For all ξ ∈ J, we get

∥(Υri)(ξ) − (Υr)(ξ)∥ ≤∥Tγ(ξ)∥ · ∥n(ri) − n(r)∥ + ∥Qγ(ξ)∥ · ∥m(ri) − m(r)∥

+

∫ ξ

0
∥Sγ(ξ − ζ)∥ ·

[
∥g(ζ, ri(ζ)) − g(ζ, r(ζ))∥

+

∫ ζ

0
|p(ζ − λ)| · ∥ f (λ, ri(λ)) − f (λ, r(λ))∥dλ

]
dζ

≤W̃∥n(ri) − n(r)∥ + W̃∥m(ri) − m(r)∥

+ W̃K∥g(ζ, ri(ζ)) − g(ζ, r(ζ))∥

+ W̃K p∥ f (ζ, ri(ζ)) − f (ζ, r(ζ))∥.

Combining (3.7) and (3.8), we obtain limm→∞(Υri)(ξ) = (Υr)(ξ), that is, Υ is continuous.

Step 3. In this step, we show that {(Υr)(ξ) : r ∈ Θ} is uniformly bounded. We have

∥(Υr)(ξ)∥ ≤ ∥Tγ(ξ)∥ · ∥r0 − n(r)∥ + ∥Qγ(ξ)∥ · ∥r1 − n(r)∥

+

∫ ξ

0
∥Sγ(ξ − ζ)∥

[
∥g(ζ, r(ζ))∥ +

∫ ζ

0
|p(ζ − λ)| · ∥ f (λ, r(λ))∥dλ

]
dζ

≤ W̃
(
∥r0∥ + ∥n(r)∥ + ∥r1∥ + ∥m(r)∥ + K∥g(ζ, r(ζ))∥

+K
∫ ζ

0
|p(ζ − λ)|∥ f (λ, r(λ))∥dζ

)
AIMS Mathematics Volume 8, Issue 6, 14188–14206.
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≤ W̃(∥r0∥ + c∥r∥ + d + ∥r1∥ + a∥r∥ + b

+Kνh(ξ) + K pµh(ξ))
≤ h

< ∞.

So, {(Υr)(ξ) : r ∈ Θ} is uniformly bounded.

Step 4. Now, we prove that Υ(Θ) is equicontinuous. The function {(Υr)(ξ) : r ∈ Θ} are equicontinuous
at ξ = 0. For 0 < ξ1 < ξ2 ≤ K and r ∈ Θ, we have

∥(Υr)(ξ2) − (Υr)(ξ1)∥ ≤ ∥Tγ(ξ2) − Tγ(ξ1)∥ · ∥r0 − n(r)∥
+∥Qγ(ξ2) − Qγ(ξ1)∥ · ∥r1 − m(r)∥

+

∫ ξ1

0
∥Sγ(ξ2 − ζ) − Sγ(ξ1 − ζ)∥

[
∥g(ζ, r(ζ))∥

+

∫ ζ

0
|p(λ − ζ)| · ∥ f (λ, r(λ))∥dλ

]
dζ

+

∫ ξ2

ξ1

∥Sγ(ξ2 − ζ)∥
[
∥g(ζ, r(ζ))∥

+

∫ ζ

0
|p(λ − ζ)| · ∥ f (λ, r(λ))∥dλ

]
dζ

≤ I1 + I2 + I3,

where

I1 = ∥Tγ(ξ2) − Tγ(ξ1)∥ · ∥r0) − n(r)∥ + ∥Qγ(ξ2) − Qγ(ξ1)∥ · ∥r1 − m(r)∥,

I2 =

∫ ξ1

0
∥Sγ(ξ2 − ζ) − Sγ(ξ1 − ζ)∥ ·

[
∥g(ζ, r(ζ))∥ +

∫ ζ

0
|p(λ − ζ)|∥ f (λ, r(λ))∥dλ

]
dζ,

I3 =

∫ ξ2

ξ1

∥Sγ(ξ2 − ζ)∥
[
∥g(ζ, r(ζ))∥ +

∫ ζ

0
|p(λ − ζ)|∥ f (λ, r(λ))∥dλ

]
dζ.

The continuity of functions ξ → ∥Tγ(ξ)∥, ξ → ∥Qγ(ξ)∥ for ξ ∈ (0,K], gives us to get that
limξ1→ξ2 I1 = 0. In fact, we have

I2 =

∫ ξ1

0
∥Sγ(ξ2 − ζ) − Sγ(ξ1 − ζ)∥ · [νh(ξ) + K pµh(ξ)]dζ.

So, the continuity of functions ξ → ∥Sγ(ξ)∥, ξ → ∥Sγ(ξ)∥ for ξ ∈ (0,K], gives us to get that
limξ1→ξ2 I2 = 0.We have

I3 =

∫ ξ2

ξ1

∥Sγ(ξ2 − ζ)∥(νh(ξ) + pµh(ξ))dζ

≤ W̃(νh(ξ) + pµh(ξ))|ξ2 − ξ1|.

Consequently, limξ1→ξ2 I3 = 0. Thus, for ξ ∈ J, {(Υr)(ξ) : r ∈ Θ} is a family of equicontinuous
functions. As a consequence of steps 1–4 with the Arzelà-Ascoli theorem, we have proved that
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{(Υr)(ξ) : r ∈ Θ} is relative compact, therefore Υ is compact. So, by using Theorem 2.4, Υ has
at least one fixed point on J. As (Υr)(ξ) ≥ ϑ when r ∈ Θ, problem (1.1) has at least one positive
mild solution on J.

□

Next, if (H4) does not satisfied then we prove an existence result, for that result we need the
following two assumptions.

H5. r0 − n(r), r1 − m(r) : Y → P are bounded and continuous on Y.

H6. There exist L1, L2 > 0 such that for every ξ ∈ J, r, u ∈ Y we have
∥g(ξ, r) − g(ξ, u)∥ ≤ L1∥r − u∥, ∥ f (ξ, r) − f (ξ, u)∥ ≤ L2∥r − u∥.

Theorem 3.2. Let (H1)–(H3), (H5) and (H6) hold. If W̃K(L1 + pL2) < 1, then (1.1) has at least one
positive mild solution on J.

Proof. Select
h ≥ W̃(∥r0 − n(r)∥ + ∥r1 − m(r)∥ + Kνh(ξ) + K pµh(ξ)),

and consider Ω = {r ∈ T : ∥r∥ ≤ h}. Define operators T ,S on Ω by

(T r)(ξ) = Tγ(ξ)[r0 − n(r)] + Qγ(r1 − m(r))],

(Sr)(ξ) =
∫ ξ

0
Sγ(ξ − ζ)

[
g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

]
dζ.

Step 1. First we show that when r, u ∈ Ω, then T r + Su ∈ Ω. Similar to (3.3) and (3.4), for r, u ∈ Ω,
we obtain

Tγ(ξ)[r0 − n(r)] ≥ ϑ,Qγ(ξ)[r1 − m(r)] ≥ ϑ,∫ ξ

0
Sγ(ξ − ζ)

[
g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

]
dζ ≥ ϑ.

Consequently, we obtain
(T r)(ξ) + (Su)(ξ) ≥ ϑ, f or r, u ∈ Ω. (3.9)

Following from (H1), (H3) and (H5), we have

∥(T r)(ξ) − (Su)(ξ)∥ ≤∥Tγ(ξ)∥ · ∥r0 − n(r)∥ + ∥Qγ(ξ)∥ · ∥r1 − m(r)∥

+

∫ ξ

0
∥Sγ(ξ − ζ)∥ ·

∥∥∥∥∥g(ζ, r(ζ))
∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

∥∥∥∥∥
≤W̃(∥r0 − n(r)∥ + ∥r1 − m(r)∥ + Kνh(ξ) + K pµh(ξ))
≤h.

(3.10)

From (3.9) and (3.10), we have T r + Su ∈ Ω, for r, u ∈ Ω.
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Step 2. Now, we show that S is contraction. For any r, u ∈ Ω, we get

∥(Sr)(ξ) − (Su)(ξ)∥ ≤
∫ ξ

0
∥Sγ(ξ − ζ)∥ · ∥g(ζ, r(ζ)) − g(ζ, r(ζ))∥dζ

+

∫ ζ

0
∥Sγ(xi − ζ)∥ ·

( ∫ ζ

0
|p(ζ − λ)| · ∥g(λ, r(λ)) − g(λ, u(λ))∥

)
dζ

≤ W̃SL1∥r(ξ) − u(ξ)∥ + W̃SL2 p∥r(ξ) − u(ξ)∥
≤ W̃S(L1 + pL2)∥r − u∥.

As W̃S(L1 + pL2) < 1, operator S is a contraction.

Step 3. In this step, we show that T is continuous. Let ri, r ∈ Ω, ∥ri(ξ) − r(ξ)∥ → 0 as i → 0. As we
know n,m are continuous, we have

n(ri)→ n(r), m(ri)→ m(r), as m→ ∞ (3.11)

Then

∥(T ri)(ξ) − (T r)(ξ)∥ ≤ ∥Tγ(ξ)∥ · ∥n(ri) − n(r)∥ + ∥Qγ(ξ)∥ · ∥m(ri) − m(r)∥
≤ W̃(∥n(ri) − n(r)∥ + ∥m(ri) − m(r)∥).

From (3.11), we have limm→∞(T ri)(ξ) = (T r)(ξ). That is, operator T is continuous.

Step 4. In this step, we show that T is uniformly bounded. For r ∈ Ω, we have

∥(T r)(ξ)∥ ≤ ∥Tγ(ξ)∥ · ∥r0 − n(r)∥ + ∥Qγ(ξ)∥ · ∥r1 − m(r)∥
≤ W̃(∥r0 − n(r)∥ + ∥r1 − m(r)∥)
< ∞.

This completes that T is uniformly bounded.

Step 5. In this step, we show that T (Ω) is equicontinuous. Evidently, (T r)(ξ) is equicontinuous at
ξ = 0. For 0 < ξ1 < ξ2 ≤ K, r ∈ Ω, we have

∥(T r)(ξ2) − (T r)(ξ1)∥ ≤ ∥Tγ(ξ2) − Tγ(ξ1)∥ · ∥r0 − n(r)∥
+∥Qγ(ξ2) − Qγ(ξ1)∥ · ∥r1 − m(r)∥.

In view of (H5), ∥r0 − n(r)∥, ∥r1 − m(r)∥ are bounded, so the continuity of function ξ → ∥Tγ(ξ)∥,
ξ → ∥Qγ(ξ)∥ for ξ ∈ (0,K], enable us to obtain that

lim
ξ1→ξ2

(T r)(ξ1) = (Sr)(ξ2).

This completes that T (Ω) is equicontinuous. As a consequence of the above steps with Arzelà-
Ascoli theorem, T is compact and also all the conditions of Theorem 2.5 are satisfied, so we get
that (1.1) has at least one mild solution on J. Given that T r + Sr ≥ ϑ for r ∈ Ω, we get that (1.1)
has at least one positive mild solution on J.
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□

Here we list definition of controllability and some reasonable hypotheses which will help us in the
proof of controllability result.

Definition 3.3. System (1.1) is said to be controllable on [0, d], if, for any r0, s0 ∈ D(A) there exists a
control v ∈ L2(J,Y) such that a mild solution r of (1.1) satisfy r(d) + n(r) = s0.

H7. n,m : Y → D(A) are continuous functions. For any v1, v2 ∈ Y, there exist l1, l2 ≥ 0, such that
∥n(v1) − n(v2)∥ ≤ l1∥v1 − v2∥ and ∥m(v1) − m(v2)∥ ≤ l2∥v1 − v2∥.

H8. The linear operator W : L2(J,Y)→ Y defined by Wv =
∫ d

0
Sγ(d − ζ)Bv(ζ)dζ induces an invertible

operator W− defined on L2(J,Y)/KerW, and there existsM > 0, such that ∥BW−∥ ≤ M.

H9. For any h > 0, there exists a function νh ∈ L(J,R+) such that sup∥r∥≤h ∥g(ξ, r(ξ))∥ ≤ νh(ξ).

Theorem 3.4. Let (H7)–(H9) hold and suppose that

W̃(l1 + l2) < 1, (3.12)

∥g(ζ, r(ζ)) +
∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ∥ ≤ νz(ζ), (3.13)

and

W̃
(
∥r0∥ + ∥r1∥ + l1z + ∥n(0)∥ + l2z + ∥m(0)∥

)
+ dW̃M

(
∥s0∥ + l1z + ∥n(0)∥ + W̃∥u0∥ + W̃l1z + W̃∥n(0)∥ + W̃∥u1∥

+ W̃l2z + W̃∥m(0)∥ + W̃
∫ d

0
νz(ζ)dζ

)
< z,

(3.14)

for some z > 0. Then system (1.1) is controllable on J.

Proof. Set Bz = {r ∈ Y : ∥r∥ ≤ z}. For r ∈ Bz, define the operator Λ = Λ1 + Λ2, where

(Λ1r)(ξ) = Tγ(ξ)(r0 − n(r)) + Qγ(ξ)(r1 − m(r))

and

(Λ2r)(ξ) =
∫ ξ

0
Sγ(ξ − ζ)[g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ]dζ.

Then

∥(Λ1r)(ξ)∥ ≤ W̃∥r0 − n(r)∥ + W̃∥r1 − m(r)∥
≤ W̃(∥r0∥ + ∥r1∥ + l1z + ∥n(0)∥ + l2z + ∥m(0)∥)
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and

∥(Λ2r)(ξ)∥ ≤W̃
∫ ξ

0
∥g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ]dζ∥ + W̃

∫ ξ

0
∥Br(ζ)∥dζ

≤W̃
∫ ξ

0
νz(ζ)dζ + W̃

∫ ξ

0
∥Br(ζ)∥dζ

≤W̃
∫ ξ

0
νz(ζ)dζ + dW̃M

(
∥s0∥ + l1z + ∥n(0)∥ + W̃∥u0∥ + W̃l1z + W̃∥n(0)∥ + W̃∥u1∥

+ W̃l2z + W̃∥m(0)∥ + W̃
∫ d

0
νz(ζ)dζ

)
.

(3.15)

Using (3.14), we deduce that ∥(Λ1r)(ξ)+ (Λ2s)(ξ)∥ ≤ z. That is, for any r, s ∈ Bz, Λ1r+Λ2s ∈ Bz. Next,
for any r, s ∈ Bz, we have

∥(Λ1r)(ξ) − (Λ1s)(ξ)∥ ≤Tγ(ξ)(r0 − n(r)) + Qγ(ξ)(r1 − m(r)) − Tγ(ξ)(r0 − n(s)) − Qγ(ξ)(r1 − m(s))

≤W̃∥n(s) − n(r)∥ + W̃∥m(s) − m(r)∥

≤W̃l1∥s − r∥ + W̃l2∥s − r∥

=W̃(l1 + l2)∥s − r∥.

It follow from (3.12) that Λ1 is a contraction mapping.
Let {ri}

∞
i=1 be a sequence in Bz, r ∈ Bz, and ri → r (i→ ∞). Noting that g is continuous on J × Y, we

get

g(ζ, ri(ζ)) +
∫ ζ

0
p(ζ − λ) f (λ, ri(λ))dλ→ g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ, i→ ∞. (3.16)

For all ξ ∈ [0, d], we obtain

∥(Λ2ri)(ξ) − (Λ2r)(ξ)∥ ≤
∥∥∥∥∥ ∫ ξ

0
Sγ(ξ − ζ)[g(ζ, ri(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, ri(λ))dλ + Bvi(ζ)]dζ

−

∫ ξ

0
Sγ(ξ − ζ)[g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ + Bv(ζ)]dζ

∥∥∥∥∥.
Using (H8), for an arbitrary function r(·), we define the control v by

v(ξ) = W−

[
s0 − n(r) − Tγ(d)(r0 − n(r)) − Qγ(d)(r1 − m(r))

−

∫ ξ

0
Sγ(ξ − ζ)g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

]
(ξ).

Then

∥(Bvi)(ξ) − (Bv)(ξ)∥ ≤
∥∥∥∥∥BW−

[
s0 − n(ri) − Tγ(d)(r0 − n(ri)) − Qγ(d)(r1 − m(ri))

−

∫ ξ

0
Sγ(ξ − ζ)g(ζ, ri(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, ri(λ))dλ

]
(ξ)
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−BW−

[
s0 − n(r) − Tγ(d)(r0 − n(r)) − Qγ(d)(r1 − m(r))

−

∫ ξ

0
Sγ(ξ − ζ)g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ

]
(ξ)
∥∥∥∥∥

≤ M∥n(r) − n(ri)∥ +M∥Tγ(d)n(r) − Tγ(d)n(ri)∥
+M∥Qγ(d)m(r) − Qγ(d)m(ri)∥

+M

∫ d

0
Sγ(d − ζ)∥g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))

−g(ζ, ri(ζ)) +
∫ ζ

0
p(ζ − λ) f (λ, ri(λ))∥dλ

≤ Ml1∥ri − r∥ +MW̃l1∥ri − r∥ +MW̃l2∥ri − r∥

+MW̃
∫ d

0
∥g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))

−g(ζ, ri(ζ)) +
∫ ζ

0
p(ζ − λ) f (λ, ri(λ))∥dλ.

By Lebesgue dominated convergence theorem, it is easy to see that

∥(Λ2ri)(ξ) − (Λ2r)(ξ)∥ → 0, as i→ ∞.

Thus we obtain that Λ2 is continuous. Now, in order to show the compactness of Λ2, we prove that
{(Λ2r)(ξ) : r ∈ Bz} is uniformly bounded and relatively compact for all ξ ∈ J, respectively. It follows
from (3.15) that ∥(Λ2r)(ξ)∥ ≤ C, where C is a positive constant. For 0 < ξ1 < ξ2 ≤ d, we obtain

∥(Λ2ri)(ξ1) − (Λ2r)(ξ2)∥ ≤
∥∥∥∥∥ ∫ ξ2

0
Sγ(ξ1 − ζ)[g(ζ, ri(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, ri(λ))dλ + Bv(ζ)]dζ∫ ξ1

ξ2

Sγ(ξ1 − ζ)[g(ζ, ri(ζ)) +
∫ ζ

0
p(ζ − λ) f (λ, ri(λ))dλ + Bv(ζ)]dζ

−

∫ ξ2

0
Sγ(ξ − ζ)[g(ζ, r(ζ)) +

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ + Bv(ζ)]dζ

∥∥∥∥∥
≤

∫ ξ2

0
∥Sγ(ξ1 − ζ) − Sγ(ξ2 − ζ)∥∥g(ζ, r(ζ))

+

∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ + Bv(ζ)∥dζ

+

∫ ξ2

ξ1

∥Sγ(ξ1 − ζ)∥∥g(ζ, r(ζ)) +
∫ ζ

0
p(ζ − λ) f (λ, r(λ))dλ + Bv(ζ)∥dζ

≤ I1 + I2,

where

I1 =
∫ ξ2

0
∥Sγ(ξ1 − ζ) − Sγ(ξ2 − ζ)∥∥g(ζ, r(ζ)) +

∫ ζ
0

p(ζ − λ) f (λ, r(λ))dλ + Bv(ζ)∥dζ

and

I2 =
∫ ξ2
ξ1
∥Sγ(ξ1 − ζ)∥∥g(ζ, r(ζ)) +

∫ ζ
0

p(ζ − λ) f (λ, r(λ))dλ + Bv(ζ)∥dζ.
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Noting that the continuity of the function ξ 7→ ∥Sγ(ξ)∥ for ξ ∈ (0, d], we have limξ2→ξ1 Ii = 0. So, by
the Arzelà-Ascoli theorem, Λ2 is compact. Then Theorem 2.5 and Definition 3.3 allow us to conclude
that (1.1) is controllable on J. □

4. Example

Example 4.1. To demonstrate applicability of our main results, we consider the following fractional
differential equation of the form:

cDγr(ξ, h) =
∂2r(ξ, h)
∂h2 +

eξ|r(ξ,h)|

(24 + eξ)(1 + |r(ξ, h)|)
+

∫ ξ

0
eξ−ζ

eζ
√

48 + |r(ξ, h)|
dζ + Bv(ξ)

ω(q, 0) −
|r(ξ, h)|

8 + ||r(ξ, h)|
= 0,

dr(ξ, h)
dξ

|0 −
|r(ξ, h)|

8 + ||r(ξ, h)|
= 0,

r(ξ, 0) = r(ξ, π) = 0, r′(ξ, 0) = r′(ξ, π) = 0,

(4.1)

where, 1 < γ < 2, ξ ∈ J = [0, 1], 0 ≤ h ≤ π. Let Y = L2([0, π]), then the system (4.1) is controllable
on J.

Proof. As Y = L2([0, π]), then the positive cone of Y is P = {r ∈ C(J,Y) : r(ξ, h) ≥ 0, i.e.(ξ, h) ∈ J×Y}.
The operatorA : D(A) ⊂ Y → Y is given by

Ah = h with D(A) := {h ∈ Y : h′, h′′ ∈ Y, h(0) = h(π) = 0}.

B : D(B) ⊂ Y → Y is a bounded linear operator. In [11], obviously it is known that A is infinitesimal
generator of the semigroup {T (ξ)}ξ≥0 on Y.Also,A has discrete spectrum with eigenvalues −m2,m ∈ N,
and associate normalized eigenfunctions given by zm(h) = (π2 )

1
2 sin(mh) and also {zm : m ∈ N},

K(ξ) =
∞∑

m=1

e−m2
⟨h, zm⟩zm, f or h ∈ Y, ξ ≥ 0.

From this representation it follows that K(ξ) is compact for every ξ > 0 and that ∥K(ξ)∥ ≤ e−ξ for all
ξ ≥ 0 [33].

As indicated in [34], the operator A = ∆ is a sectorial of type (W, ϑ, γ, ν) and generates compact
γ−resolvent families {Tγ(ξ)}ξ≥0, {Qγ(ξ)}ξ≥0, and {Sγ(ξ)}ξ≥0. In view of the fact that it has proved in [35]
that the operatorA = ∆ is an m−accretive on Y with dense domain, (H2) is satisfied,

g(ξ, r) = eξ |r|
(24+eξ)(1+|r|) , f (ξ, r) = eξ

√
48+|r|)
,

n(r) = − |r|
8+|r| , m(r) = − |r|

8+|r| , p(ξ − ζ) = eξ−ζ .

Via the estimation on the norms of operators of Theorems 2.19 and 2.20, we can get W̃ = 3 (see [9]).
Furthermore, for ξ ∈ J, r, u ∈ R we have

∥g(ξ, r) − g(ξ, u)∥ =
eξ

24 + eξ

∥∥∥∥∥ r
1 + r

−
u

1 + u

∥∥∥∥∥ ≤ eξ

24 + eξ
∥r − u∥ ≤

1
8
∥r − v∥,

∥ f (ξ, r) − f (ξ, u)∥ = eξ
∥∥∥∥∥ 1
√

48 + r
−

1
√

48 + u

∥∥∥∥∥ ≤ eξ

48
∥r − u∥ ≤

1
16
∥r − v∥.
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There, we have l1 =
1
8 , l2 =

1
16 .Meanwhile,

∥g(ξ, r)∥ ≤
eξ

24 + eξ
<

1
8
, ∥ f (ξ, r)∥ ≤

eξ
√

48
<

3
√

48
+

√
3

4
.

Hence, ∥ν1∥ =
1
8 , ∥µ1∥ =

√
3

4 , which shows that (H3) and (H6) are satisfied. We have

max
∫ ξ

0
|p(ξ − ζ)|dζ = maxξ∈[0,1]

∫ ξ
0

eξ−ζdζ = maxξ∈[0,1] eξ − 1 ≤ 2.

For r ∈ R, we have

∥r0 − n(r)∥ ≤
∥∥∥∥∥ r

8+r

∥∥∥∥∥ ≤ 1
8 , ∥r1 − m(r)∥ ≤ 1

8 .

Then assumption (H5) is satisfied.
Consequently,

W̃K(l1 + pl2) = 3
(

1
8 + 2 × 1

16

)
= 3

4 < 1.

So, all the conditions of Theorem 3.4 are satisfied. Hence, the fractional differential system (1.1) is
controllable on J. □

5. Conclusions

In this paper, we discussed the existence of a positive mild solution and the controllability of the
system (1.1). The existence and controllability results are proved by applying the fact related to
fractional calculus, fixed point theory, and materials related to existence and controllability under
some specific conditions. First, we have proved the existence of positive mild solutions, then
continued to prove the controllability of fractional differential evolution equations of order 1 < γ < 2
with nonlocal conditions. In the end, for demonstration of theory, we have presented an example.
Based on this research work, in the future, we will discuss the existence and controllability of the
system (1.1) of higher orders.
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