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1. Introduction

The Steklov spectrum coincides with that of the Dirichlet-to-Neumann map for the Laplacian (see,
e.g., [1]), and the Steklov eigenvalue problem for the Laplace operator has been well-studied in the
mathematical community. In linear elasticity, the study of the Dirichlet-to-Neumann map is important
in elastostatic problems, and has attracted the attention of scholars (see, e.g., [2–4]). In 2021,
Domínguez [5] first introduced the Steklov-Lamé eigenvalue problem in which the spectral parameter
appears on a Robin boundary condition. [5] investigated the existence of the countable spectrum of
this problem and studied the conforming finite element methods for the Steklov Lamé problem. Later,
Li and Bi [6] proposed a discontinuous finite element method for this problem and gave the a priori
error estimates.

As we know, for numerical solutions of the problems in linear planar elasticity, standard
conforming finite elements may suffer a deterioration in performance as the Lamé constant λ → ∞,
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that is locking phenomenon (see [7, 8]). To overcome the locking phenomenon, several numerical
approaches have been developed including the p-version method [9], the PEERS method [10], the
mixed method [11], the Galerkin least squares method [12], the nonconforming triangular
elements [13, 14] and the discontinuous finite element method [15–17], and so on.

On the other hand, based on standard finite element methods, people design many efficient
discretization schemes/algorithms to get approximations with high accuracy or to reduce the
computation costs. The finite element multigrid discretizations is one of such design approaches. This
method benefits from the two-grid discretization scheme which was first proposed by Xu and
Zhou [18, 19]. The basic idea of the two-grid discretizations is to transform solving an eigenvalue
problem on a fine grid into solving the eigenvalue problem on a coarse grid and solving a series of
algebraic equations on the fine grid. This kind of method can save calculation time while keeping the
accuracy of approximations, or improving the accuracy under the same degrees of freedom. So far,
two-grid and multigrid finite element discretization schemes have been successfully applied to solving
eigenvalue problems, such as elliptic eigenvalue problem [20], Steklov eigenvalue problem [21–24],
biharmonic eigenvalue problem [25], semilinear elliptic eigenvalue problem [26], quantum eigenvalue
problem [27], Stokes eigenvalue problem [28, 29], Maxwell eigenvalue problem [30], 2m-order
elliptic eigenvalue problem [31], etc.

At present, there is not much numerical research report on the Steklov-Lamé eigenproblem. In
view of the characteristics of discontinuous finite element method (DGFEM) and multigrid
discretizations and based on the work in [6, 32], for the Steklov-Lamé eigenvalue problem we will
design and analyze a multigrid discretization scheme of DGFEM based on the shifted-inverse
iteration. The rest of this paper is organized as follows. In Section 2, the discontinuous finite element
approximation of the Steklov-Lamé eigenvalue problem and its a prior error estimates are given. In
Section 3, a multigrid discretization scheme of DGFEM based on the shifted-inverse iteration is
established, and the error estimates of the proposed scheme is presented. Finally, in Section 4, an
adaptive multigrid algorithm is provided coupled with some numerical experiment results. The
numerical results show that our method is efficient and locking-free.

Before the discussion, let us specify some notations. Scalars are denoted by general letters, vectors
are denoted by bold letters and tensors in bold Greek letters. For tensors σ, τ ∈ Rn×n, the double dot
product notation σ : τ = tr(τTσ) where tr(·) denotes the trace of a tensor (sum of the main diagonal).
This inner product induces the Frobenius norm for tensors which is denoted as ‖ · ‖. Let H s(Ω) and
H s(∂Ω) be the usual Sobolev space with order s of scalar fields on Ω and ∂Ω, respectively, whereas
for tensor fields we use the symbols Hs(Ω) and Hs(∂Ω) and each element in Hs belongs to H s. The
norm in H s(Ω) and H s(∂Ω) are denoted by ‖ · ‖s and ‖ · ‖s,∂Ω, respectively, and the same symbols are
also used for the norms in Hs(Ω) and Hs(∂Ω) when there is no ambiguity. H0(∂Ω) = L2(∂Ω).
Throughout this paper, we use the letter C, with or without subscript, to denote a generic positive
constant independent of the mesh size h and the Lamé parameters, which may not be the same at each
occurrence. We use the symbol a . b to mean that a ≤ Cb.

2. DGFEM approximation of the Steklov-Lamé eigenproblem

Suppose that an isotropic and linearly elastic material occupies the region Ω inRn (n = 2 or 3) where
Ω is a bounded convex polygonal with Lipschitz continuous boundary ∂Ω. Consider the following
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Steklov-Lamé eigenvalue problem: Find non-zero displacement vector u and the frequencies ω ∈ R
satisfying −divσ(u) = 0 in Ω,

σ(u)n = ωpu on ∂Ω,
(2.1)

where n is the unit outward normal to ∂Ω, σ(u) is the Cauchy stress tensor defined as

σ(u) = 2µε(u) + λtr(ε(u))I,

where I ∈ Rn×n is the identity matrix, ε(u) is the strain tensor given by

ε(u) =
1
2

(
∇u + (∇u)T

)
,

∇u is the displacement gradient tensor, and λ ∈ R and µ > 0 are the Lamé parameters satisfying 0 <

µ1 < µ < µ2 and 0 < λ < ∞.
Suppose that the density of material p ∈ L∞(∂Ω) has positive lower bound on ∂Ω.
Denote

RM(Ω) := {v ∈ H1(Ω)|v(x) = a + Bx, a ∈ Rn, B ∈ Rn×n, BT = −B, x ∈ Ω}.

It is obvious that 0 is an eigenvalue of (2.1) with the associated eigenfunction u ∈ RM(Ω) (see [5]). To
find non-zero eigenvalues of (2.1), we adopt the following weak formulation: Seek (κ,u) ∈ R × H1(Ω)
such that

a(u, v) = κb(u, v), ∀v ∈ H1(Ω), (2.2)

where κ = ω + 1,

a(u, v) :=
∫

Ω

σ(u) : ε(v)dx +

∫
∂Ω

pu · vds

= 2µ
∫

Ω

ε(u) : ε(v)dx + λ

∫
Ω

(divu)(divv)dx +

∫
∂Ω

pu · vds, ∀u, v ∈ H1(Ω),

b(u, v) :=
∫
∂Ω

pu · vds, ∀u, v ∈ H1(Ω).

Reference [5] proved that a(·, ·) is a continuous and H1-coercive bilinear form in H1(Ω), b(·, ·) is
bounded.

Without losing generality, we assume that p ≡ 1 in the rest of this paper. Denote ‖v‖b = b(v, v)
1
2 ,

then it is clear that ‖ · ‖b = ‖ · ‖0,∂Ω.
Let Th = {K} be a shape-regular partition of Ω, and h = max{hK : K ∈ Th} is the diameter of Th

where hK is the diameter of element K. When n = 2, K is a triangle and a tetrahedron when n = 3.
Let e ∈ ∂K be an edge/face of element K with diameter he, and let Γh = Γi

h ∪ Γb
h where Γi

h denotes
the interior edges/faces set and Γb

h denotes the set of edges/faces lying on the boundary ∂Ω. In the
following, when there is no confusion we always use n to represent the unit outward normal on the
boundary of Ω or element K.
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Define the broken Sobolev space:

Hs(Th) = {v ∈ [L2(Ω)]n : v |K∈ [H s(K)]n,∀K ∈ Th}.

For any v ∈ Hs(Th), define the jump [[v]] and the average {v} on e as follows:

[[v]] =

v+ − v−, e ∈ Γi
h,

v+ , e ∈ Γb
h,
{v} =

 v++v−
2 , e ∈ Γi

h,

v+ , e ∈ Γb
h,

where v+ = v|K+ , v− = v|K− , e ∈ ∂K+ ∩ ∂K−.
Define the DGFEM space:

Sh = {v ∈ [L2(Ω)]n : v |K∈ [Pk(K)]n,∀K ∈ Th},

where Pk(K) is the space of polynomials defined on K with degree less than or equal to k ≥ 1.
The DGFEM discretization for the problem (2.2) is to find (κh,uh) ∈ R × Sh,uh , 0, κh = ωh + 1,

such that

ah(uh, vh) = κhbh(uh, vh), ∀vh ∈ Sh, (2.3)

where

ah(uh, vh) = 2µ

∑
K∈Th

∫
K
ε(uh) : ε(vh)dx −

∑
e∈Γi

h

∫
e
{ε(uh)n} · [[vh]]ds

−
∑
e∈Γi

h

∫
e
{ε(vh)n} · [[uh]]ds +

∑
e∈Γi

h

γµ

he

∫
e
[[uh]] · [[vh]]ds


+λ

∑
K∈Th

∫
K

(divuh)(divvh)dx −
∑
e∈Γi

h

∫
e
{divuh}[[vh · n]]ds

−
∑
e∈Γi

h

∫
e
{divvh}[[uh · n]]ds +

∑
e∈Γi

h

γλ
he

∫
e
[[uh · n]][[vh · n]]ds


+

∑
e∈Γb

h

∫
e

uh · vhds,

bh(uh, vh) =
∑
e∈Γb

h

∫
e

uh · vhds,

and the penalty constants γµ, γλ are independent of the shape of K and h. The determination of γµ and
γλ is to ensure that (2.4) is valid. It is easy to see that the discretization (2.3) is symmetric which is
called symmetric internal penalty method (SIPG) in DGFEM.

Define the DG norm:
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‖uh‖
2
G = 2µ

∑
K∈Th

‖ε(uh)‖20,K + 2µ
∑
e∈Γi

h

γµh−1
e ‖[[uh]]‖20,e + λ

∑
K∈Th

‖divuh‖
2
0,K

+ λ
∑
e∈Γi

h

γλh−1
e ‖[[uh · n]]‖20,e +

∑
e∈Γb

h

‖uh‖
2
0,e,

and the energy-like norm:

‖uh‖
2
h = ‖uh‖

2
G + 2µ

∑
e∈Γi

h

he‖{ε(uh)n}‖20,e + λ
∑
e∈Γi

h

he‖{divuh}‖
2
0,e.

From Lemma 4 in [33] we know that there exist constants Cµ and Cλ, independent of h, he, µ and λ,
such that

‖h1/2
e ε(v)n‖20,e ≤ Cµ‖ε(v)‖20,K ,
‖h1/2

e divv‖20,e ≤ Cλ‖divv‖20,K .

Then, for 0 < β < 1, when γµ ≥ Cµ/(1 − β)2, γλ ≥ Cλ/(1 − β)2, the bilinear form ah(·, ·) is coercive on
Sh (see Lemma 2.2 in [6]):

β‖vh‖
2
G ≤ ah(vh, vh), ∀vh ∈ Sh. (2.4)

Using Cauchy-Schwartz inequality, it is easy to prove that the bilinear form ah(·, ·) is continuous:

|ah(u, v)| ≤ M‖u‖h‖v‖h, ∀u, v ∈ H1+s(Th), s >
1
2
.

In order to derive the convergence and the error estimates of DG approximations by using Babus̆ka-
Osborn spectral approximation theory, we consider the following source problem associated with the
eigenvalue problem (2.2): find w ∈ H1(Ω) such that

a(w, v) = b( f , v), ∀v ∈ H1(Ω). (2.5)

The DG approximation of (2.5) is to find wh ∈ Sh such that

ah(wh, vh) = bh( f , vh), ∀vh ∈ Sh. (2.6)

Since a(·, ·) and ah(·, ·) are continuous and coercive on H1(Ω) and Sh, respectively, b(·, ·) and bh(·, ·) are
bounded, from Lax-Milgram Theorem we know that (2.5) and (2.6) admit the unique solution w and
wh, respectively.

The following regularity estimates of the solution of (2.5) has been discussed in Lemma 3.1 of [6].
(1) Let w be the solution of (2.5). If f ∈ Hr− 1

2 (∂Ω), then w ∈ Hr+1(Ω) and

‖w‖r+1 + λ‖divw‖r ≤ CR‖ f‖r− 1
2 ,∂Ω,

where r = 1 when Ω is a convex polygonal, and r can be large enough when ∂Ω is sufficiently smooth;
(2) If f ∈ H−

1
2 (∂Ω), then w ∈ H1(Ω) and

‖w‖1 + λ‖divw‖0 ≤ CR‖ f‖− 1
2 ,∂Ω;
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(3) If f ∈ L2(∂Ω), then w ∈ H1+ 1
2 (Ω) and

‖w‖1+ 1
2

+ λ‖divw‖ 1
2
≤ CR‖ f‖0,∂Ω, (2.7)

where the constant CR is independent of µ and λ.
For any given f ∈ L2(∂Ω), from (2.7) we have w ∈ H1+r(Ω), r < 1

2 and r can be arbitrarily close
to 1

2 , and

‖w‖1+r + λ‖divw‖r ≤ CR‖ f‖0,∂Ω. (2.8)

Let w and wh be the solution of (2.5) and (2.6), respectively, then the SIPG approximation (2.6)
of (2.5) is consistent (see Lemma 3.3 in [6]):

ah(w − wh, vh) = 0, ∀vh ∈ Sh. (2.9)

For the source problem (2.5), let f ∈ L2(∂Ω), define the solution operator A : L2(∂Ω)→ H1(Ω) by

a(A f , v) = b( f , v), ∀v ∈ H1(Ω),

and define the operator T : L2(∂Ω)→ L2(∂Ω) :

T f = (A f )′,

where ′ denotes the restriction on ∂Ω. Then, (2.2) has the following equivalent operator form:

Au =
1
κ

u.

Similarly, from (2.6) we can define the discrete solution operator Ah : L2(∂Ω)→ Sh by

ah(Ah f , v) = bh( f , v), ∀v ∈ Sh,

and the operator Th : L2(∂Ω)→ δSh
⊂ L2(∂Ω) satisfying

Th f = (Ah f )′,

where δSh is the restriction of Sh on ∂Ω. Then (2.3) has the following equivalent operator form:

Ahuh =
1
κh

uh.

Denote ρ = 1
κ
, ρh = 1

κh
. In this paper, κ, κh and ρ, ρh are all called eigenvalues.

From the definition of Ah and (2.4), noticing that ‖ · ‖h and ‖ · ‖G are equivalent on Sh, we can deduce
that

‖Ah f‖2h . ah(Ah f , Ah f ) = bh( f , Ah f ) . ‖ f‖0,∂Ω‖Ah f‖0,∂Ω . ‖ f‖0,∂Ω‖Ah f‖h,

thus,

‖Ah f‖h 6 C‖ f‖0,∂Ω ≤ C‖ f‖h. (2.10)

AIMS Mathematics Volume 8, Issue 6, 14207–14231.



14213

Reference [6] gave the a priori error estimates of DG approximation of (2.5).
Theorem 2.1. For any given f ∈ L2(∂Ω), let w ∈ H1+r(Ω)(0 < r < 1

2 ) be the solution of (2.5), and let
wh be the solution of (2.6). Assume that the regularity estimate (2.8) is valid, then there hold

‖w − wh‖G . hr‖ f‖0,∂Ω,

‖w − wh‖0,∂Ω . h2r‖ f‖0,∂Ω;

Further, when w ∈ H1+s(Ω)( 1
2 < s ≤ k), there hold

‖w − wh‖h . hr
( √

2µ‖w‖1+r +
√
λ‖divw‖r

)
,

‖w − wh‖0,∂Ω . hr+s
( √

2µ‖w‖1+s +
√
λ‖divw‖s

)
.

Proof. See Theorems 3.6–3.8 in [6].
Suppose that κ is the jth eigenvalue of (2.2) with algebraic multiplicity q, i.e., κ = κ j = κ j+1 = · · · =

κ j+q−1. [5] proved that ‖T − Th‖0,∂Ω → 0 when h → 0, therefore, q eigenvalues κ j,h, κ j+1,h, · · · , κ j+q−1,h

of (2.3) will converge to κ. Let M(κ) be the space of eigenfunctions of (2.2) associated with eigenvalue
κ, and Mh(κ) be the direct sum of the generalized eigenspace of (2.3) associated with κh that converge
to κ, M(ρ) = M(κ) and Mh(ρ) = Mh(κ). From [34] we have the following error estimates.
Theorem 2.2. Assume that the regularity estimate (2.8) is valid, and let M(κ) ⊂ H1+s(Ω)( 1

2 < s), t =

min{k, s}, then there holds

|κ − κh| . h2t; (2.11)

Let uh ∈ Mh(κ) be an eigenfunction of (2.3), then there exists u ∈ M(κ) such that

‖u − uh‖0,∂Ω . hr+t, (2.12)
‖u − uh‖h . ht; (2.13)

Let u ∈ M(κ) be an eigenfunction of (2.2), then there exists uh ∈ Mh(κ) such that

‖u − uh‖h . ht. (2.14)

Proof. See Theorem 3.10 in [6] for the proofs of (2.11)–(2.13). By similar arguments we can get (2.14).
�

3. Multigrid discretization

Let {Thi}
l
0 be a family of regular meshes of Ω, hi−1 � hi, and let Shi be the DG space defined on Thi .

Denote TH = Th0 ,S
H = Sh0 . Now, for the eigenvalue problem (2.3) we give the following multigrid

discretization scheme of DGFEM based on the shifted inverse iteration.
Scheme 3.1. Given the iteration times l .
Step 1: Solve (2.3) on SH: Find (κH,uH) ∈ R × SH, such that ‖uH‖0,∂Ω = 1 and

aH(uH, v) = κHbH(uH, v), ∀v ∈ SH.
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Step 2: uh0 ⇐ uH, κ
h0 ⇐ κH,i⇐ 1.

Step 3: Solve a linear system on Shi: Find u′ ∈ Shi such that

ahi(u
′, v) − κhi−1bhi(u

′, v) = bhi(u
hi−1 , v), ∀v ∈ Shi .

Set uhi = u′
‖u′‖0,∂Ω

.

Step 4: Compute the Rayleigh quotient

κhi =
ahi(uhi ,uhi)
bhi(uhi ,uhi)

.

Step 5: If i = l, then output (κhl ,uhl), stop; else, i⇐ i + 1 and return to Step 3.
Next we will conduct the error analysis on Scheme 3.1.
From (2.9) we define the projection operator Ph : H1(Ω) + Sh

→ Sh
⊂ L2(∂Ω) satifying

ah(u − Phu, vh) = 0, ∀vh ∈ Sh. (3.1)

Then, from (2.9) and (3.1) together with A f = w, Ah f = wh, we can prove easily that Ah = PhA.
We first give the following lemmas to prepare for the error analysis.

Lemma 3.1. Let (κ,u) be an eigenpair of (2.2), then for any v ∈ Sh and ‖v‖b , 0, the Rayleigh quotient
R(v) =

ah(v,v)
‖v‖2b

satisfies

R(v) − κ =
ah(v − u, v − u)

‖v‖2b
− κ
‖v − u‖2b
‖v‖2b

. (3.2)

Proof. From (2.9) we have

ah(u, v) = b(κu, v) = bh(κu, v), ∀v ∈ Sh,

thus,

ah(v − u, v − u) − κb(v − u, v − u)
= ah(v, v) − 2ah(u, v) + ah(u,u) − κb(v, v) + 2κb(u, v) − κb(u,u)
= ah(v, v) − 2b(κu, v) + a(u,u) − κb(v, v) + 2κb(u, v) − κb(u,u)
= ah(v, v) − κb(v, v),

dividing both sides by ‖v‖2b we obtain (3.2). �

Lemma 3.2. For any non-zero elements u, v in any normed linear space (V, ‖ · ‖), it is valid that

‖
u
‖u‖
−

v
‖v‖
‖ ≤ 2

‖u − v‖
‖u‖

, ‖
u
‖u‖
−

v
‖v‖
‖ ≤ 2

‖u − v‖
‖v‖

.

Proof. See Lemma 3.1 in [20]. �
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Denote d = dimSh, dist(u,Sh) = inf
v∈Sh
‖u−v‖h. Referring to Lemma 4.1 in [20] we prove the following

result which plays an important role in our analysis.
Lemma 3.3. Let (ρ0,w0) be an approximation of the jth eigenpair (ρ,u) of (2.2) where ρ0 is not an
eigenvalue of Ah, w0 ∈ Sh, ‖w0‖0,∂Ω = 1. And let u0 = Ahw0

‖Ahw0‖0,∂Ω
. Suppose that

(C1) inf
v∈Mh(ρ)

‖w0 − v‖0,∂Ω ≤
1
2 ;

(C2) |ρ0 − ρ| ≤
ϑ
4 , |ρm,h − ρm| ≤

ϑ
4 ,m = j − 1, j, j + q(m , 0), where ϑ = min

m, j
|ρm − ρ| is the separate

constant of the eigenvalue ρ;
(C3) u′ ∈ Sh and uh ∈ Sh satisfy

(ρ0 − Ah)u′ = u0, uh =
u′

‖u′‖0,∂Ω

. (3.3)

Then

dist(uh,Mh(ρ)) ≤
C
ϑ

max
j≤m≤ j+q−1

|ρ0 − ρm,h|dist(w0,Mh(ρ)).

Proof. Let {um,h}
d
m=1 be eigenfunctions of Ah satisfying b(um,h,ui,h) = δm,i. Then

u0 =

d∑
m=1

b(u0,um,h)um,h.

Since ρ0 is not an eigenvalue of Ah, from (3.3) we can get

(
ρ0 − ρ j,h

)
u′ =

(
ρ0 − ρ j,h

)
(ρ0 − Ah)−1 u0 =

d∑
m=1

ρ0 − ρ j,h

ρ0 − ρm,h
b(u0,um,h)um,h. (3.4)

Using triangle inequality and the condition (C2) we derive∣∣∣ρ0 − ρ j,h

∣∣∣ ≤ |ρ0 − ρ| +
∣∣∣ρ − ρ j,h

∣∣∣ ≤ ϑ

4
+
ϑ

4
=
ϑ

2
,∣∣∣ρ0 − ρm,h

∣∣∣ ≥ |ρ − ρm| − |ρ0 − ρ| −
∣∣∣ρm − ρm,h

∣∣∣ ≥ ϑ − ϑ
4
−
ϑ

4
=
ϑ

2
,

where m = j − 1, j + q(m , 0). Hence, we have∣∣∣ρ0 − ρm,h

∣∣∣ ≥ ϑ

2
m , j, j + 1, · · · , j + q − 1. (3.5)

Because the operator Th is selfadjoint with respect to b(·, ·), in fact, for ∀ f ∈ L2(∂Ω), from the
symmetry of ah(·, ·) and b(·, ·) and b(·, ·) = bh(·, ·) we have
b(Th f , vh) = b(vh,Th f ) = bh(vh,Th f ) = ah(Thvh,Th f ) = ah(Th f ,Thvh) = bh( f ,Thvh) = b( f ,Thvh) and
Ahuh = ρhuh, then, for m = 1, 2, · · · , d, there holds

b(Thw0,um,h)um,h = b(w0,Thum,h)um,h = b(w0, ρm,hum,h)um,h

= b(w0,um,h)ρm,hum,h = b(w0,um,h)Ahum,h. (3.6)
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Noticing that {um,h}
j+q−1
m= j is a standard orthogonal basis of Mh(ρ) with respect to the L2(∂Ω) inner

product b(·, ·), from u0 = Ahw0
‖Ahw0‖0,∂Ω

, (3.4), (3.6), (2.10) and (3.5) we deduce

‖(ρ0 − ρ j,h)u′ −
j+q−1∑
m= j

ρ0 − ρ j,h

ρ0 − ρm,h
b(u0,um,h)um,h‖h

= ‖
∑

m, j, j+1,··· , j+q−1

ρ0 − ρ j,h

ρ0 − ρm,h
b(u0,um,h)um,h‖h

=
1

‖Ahw0‖0,∂Ω

∥∥∥∥∥∥∥ ∑
m, j, j+1,··· , j+q−1

ρ0 − ρ j,h

ρ0 − ρm,h
b(Ahw0,um,h)um,h

∥∥∥∥∥∥∥
h

=
1

‖Ahw0‖0,∂Ω

∥∥∥∥∥∥∥ ∑
m, j, j+1,··· , j+q−1

ρ0 − ρ j,h

ρ0 − ρm,h
b(Thw0,um,h)um,h

∥∥∥∥∥∥∥
h

=
1

‖Ahw0‖0,∂Ω

∥∥∥∥∥∥∥ ∑
m, j, j+1,··· , j+q−1

ρ0 − ρ j,h

ρ0 − ρm,h
b(w0,um,h)Ahum,h

∥∥∥∥∥∥∥
h

=
1

‖Ahw0‖0,∂Ω

∥∥∥∥∥∥∥Ah

 ∑
m, j, j+1,··· , j+q−1

ρ0 − ρ j,h

ρ0 − ρm,h
b(w0,um,h)um,h


∥∥∥∥∥∥∥

h

≤
C

‖Ahw0‖0,∂Ω

∥∥∥∥∥∥∥ ∑
m, j, j+1,··· , j+q−1

ρ0 − ρ j,h

ρ0 − ρm,h
b(w0,um,h)um,h

∥∥∥∥∥∥∥
0,∂Ω

≤
2C

ϑ ‖Ahw0‖0,∂Ω

∣∣∣ρ0 − ρ j,h

∣∣∣  ∑
m, j, j+1,··· , j+q−1

b2(w0,um,h)


1
2

≤
2C

ϑ ‖Ahw0‖0,∂Ω

∣∣∣ρ0 − ρ j,h

∣∣∣ ∥∥∥∥∥∥∥w0 −

j+q−1∑
m= j

b(w0,um,h)um,h

∥∥∥∥∥∥∥
0,∂Ω

=
2C

ϑ ‖Ahw0‖0,∂Ω

∣∣∣ρ0 − ρ j,h

∣∣∣ inf
v∈Mh(ρ)

‖w0 − v‖0,∂Ω

≤
2C

ϑ ‖Ahw0‖0,∂Ω

∣∣∣ρ0 − ρ j,h

∣∣∣ dist (w0,Mh(ρ)) . (3.7)

Taking the norm on both sides of (3.4), and noting that u0 = Ahw0
‖Ahw0‖0,∂Ω

, the condition (C1) and (3.6), we
get ∥∥∥∥(ρ0 − ρ j,h

)
u′

∥∥∥∥
0,∂Ω

=
1

‖Ahw0‖0,∂Ω

∥∥∥∥∥∥∥
d∑

m=1

ρ0 − ρ j,h

ρ0 − ρm,h
b(Ahw0,um,h)um,h

∥∥∥∥∥∥∥
0,∂Ω

=
1

‖Ahw0‖0,∂Ω

∥∥∥∥∥∥∥
d∑

m=1

ρ0 − ρ j,h

ρ0 − ρm,h
b(Thw0,um,h)um,h

∥∥∥∥∥∥∥
0,∂Ω

=
1

‖Ahw0‖0,∂Ω

 d∑
m=1

(
ρ0 − ρ j,h

ρ0 − ρm,h
b2(w0, ρm,hum,h)

)
1
2
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≥
C

‖Ahw0‖0,∂Ω

min
j≤m≤ j+q−1

∣∣∣∣∣∣ ρ0 − ρ j,h

ρ0 − ρm,h

∣∣∣∣∣∣
 j+q−1∑

m= j

b2(w0,um,h)


1
2

=
C

‖Ahw0‖0,∂Ω

min
j≤m≤ j+q−1

∣∣∣∣∣∣ ρ0 − ρ j,h

ρ0 − ρm,h

∣∣∣∣∣∣
∥∥∥∥∥∥∥w0 −

w0 −

j+q−1∑
m= j

b(w0,um,h)um,h


∥∥∥∥∥∥∥

0,∂Ω

≥
C

2 ‖Ahw0‖0,∂Ω

min
j≤m≤ j+q−1

∣∣∣∣∣∣ ρ0 − ρ j,h

ρ0 − ρm,h

∣∣∣∣∣∣ . (3.8)

From (3.7) and (3.8) we derive

dist
(
uh,Mh(ρ)

)
= dist

(
sign

(
ρ0 − ρ j,h

)
uh,Mh(ρ)

)
≤

∥∥∥∥∥∥∥∥∥sign
(
ρ0 − ρ j,h

)
uh −

1∥∥∥∥(ρ0 − ρ j,h

)
u′

∥∥∥∥
0,∂Ω

j+q−1∑
m= j

ρ0 − ρ j,h

ρ0 − ρm,h
b(u0,um,h)um,h

∥∥∥∥∥∥∥∥∥
h

=

∥∥∥∥∥∥∥∥∥
(
ρ0 − ρ j,h

)
u′∥∥∥∥(ρ0 − ρ j,h

)
u′

∥∥∥∥
0,∂Ω

−
1∥∥∥∥(ρ0 − ρ j,h

)
u′

∥∥∥∥
0,∂Ω

j+q−1∑
m= j

ρ0 − ρ j,h

ρ0 − ρm,h
b(u0,um,h)um,h

∥∥∥∥∥∥∥∥∥
h

≤
2
C
‖Ahw0‖0,∂Ω max

j≤m≤ j+q−1

∣∣∣∣∣∣ρ0 − ρm,h

ρ0 − ρ j,h

∣∣∣∣∣∣
∥∥∥∥∥∥∥(ρ0 − ρ j,h

)
u′ −

j+q−1∑
m= j

ρ0 − ρ j,h

ρ0 − ρm,h
b(u0,um,h)um,h

∥∥∥∥∥∥∥
h

≤
C
ϑ

max
j≤m≤ j+q−1

∣∣∣ρ0 − ρm,h

∣∣∣ dist (w0,Mh(ρ)) .

The proof is completed. �

Now we can analyze the error of multigrid discretization scheme 3.1 by using Theorem 2.2 and
Lemma 3.3. We first consider the case of l = 1. Denote H = h0, h = h1.
Theorem 3.1. Suppose that M(κ j) ⊂ H1+s(Ω)(s ≥ r), and t = min{k, s}. Let (κh

j ,u
h
j) be an approximate

eigenpair obtained by Scheme 3.1 (l = 1) and H is sufficiently small, then there exists u j ∈ M(κ j) such
that ∥∥∥uh

j − u j

∥∥∥
h
≤ C(H3t + ht), (3.9)∥∥∥uh

j − u j

∥∥∥
0,∂Ω

≤ C(H3t + hr+t), (3.10)

|κh
j − κ j| ≤ C

(
H3t + ht

)2
. (3.11)

Proof. We will use Lemma 3.3 to complete the proof. Take ρ0 = 1
κH
,w0 = uH and u0 = AhuH

‖AhuH‖0,∂Ω
.

From (2.13) we know that there exists ū ∈ M(κ j) such that

‖uH − ū‖h ≤ CHt.

From the triangle inequality and (2.14) we have

dist(uH,Mh(κ j)) ≤ ‖uH − ū‖H + dist(ū,Mh(κ j))
≤ C(Ht + ht) ≤ CHt, (3.12)

AIMS Mathematics Volume 8, Issue 6, 14207–14231.



14218

thus,

inf
v∈Mh(κ j)

‖uH − v‖0,∂Ω ≤ CHt,

when H is small enough, the condition (C1) in Lemma 3.3 is valid.
From (2.11) we get

∣∣∣ρ0 − ρ j

∣∣∣ =

∣∣∣κH − κ j

∣∣∣
|κHκ j|

≤ CH2t ≤
ϑ

4
;

∣∣∣ρm − ρm,h

∣∣∣ =

∣∣∣κm,h − κm

∣∣∣
|κm,hκm|

≤ Ch2t ≤
ϑ

4
, m = j − 1, j, . . . , j + q,m , 0,

i.e., the condition (C2) in Lemma 3.3 holds.
From the definition of Ah we know that Step 3 in Scheme 3.1 is equivalent to the following:

ah(u′, v) − κHah(Ahu′, v) = ah(AhuH, v) ∀v ∈ Sh,

and uh
j = u′

‖u′‖0,∂Ω
, i.e., (

κ−1
H − Ah

)
u′ = κ−1

H AhuH, uh
j =

u′

‖u′‖0,∂Ω

.

Note that κ−1
H AhuH and u0 differ by only one constant, thus, Step 3 in Scheme 3.1 is equivalent to(

κ−1
H − Ah

)
u′ = u0, uh

j =
u′

‖u′‖0,∂Ω

.

So far, all conditions of Lemma 3.3 are valid.
Since Mh(κ j) is a q-dimensional space, there must exist u∗ ∈ Mh(κ j) such that∥∥∥uh

j − u∗
∥∥∥

h
= dist

(
uh

j ,Mh(κ j)
)
.

For m = j, j + 1, . . . , j + q − 1, according to (2.11) we have

| ρ0 − ρm,h | = |
1
κH
−

1
κm,h
| ≤

∣∣∣κH − κm,h

∣∣∣∣∣∣κHκm,h

∣∣∣
≤ C(|κH − κ j| + |κ j − κm,h|) ≤ CH2t. (3.13)

Therefore, from Lemma 3.3, (3.12) and (3.13) we get

‖uh
j − u∗‖h = dist

(
uh

j ,Mh(κ j)
)

≤
C
ϑ

max
j≤m≤ j+q−1

∣∣∣ρ0 − ρm,h

∣∣∣ dist
(
uH,Mh(κ j)

)
≤ CH3t. (3.14)

From (2.13) we know that there exists u j ∈ M(κ j), such that ‖u∗ − u j‖h = dist
(
u∗,M(κ j)

)
, and

‖u∗ − u j‖h ≤ Cht,
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then
‖uh

j − u j‖h ≤ ‖uh
j − u∗‖h + ‖u∗ − u j‖h ≤ C(H3t + ht),

that is (3.9).
Next, we will prove (3.10). From (2.12) we have

‖u∗ − u j‖0,∂Ω ≤ Chr+t,

which together with (3.14) yields

‖uh
j − u j‖0,∂Ω ≤ ‖uh

j − u∗‖0,∂Ω + ‖u∗ − u j‖0,∂Ω ≤ C(H3t + hr+t).

Finally, we use Lemma 3.1 to derive (3.11). From Step 4 of Scheme 3.1, Lemma 3.1, (3.9) and (3.10)
we deduce that

|κh
j − κ j| =

∣∣∣∣∣∣∣ah(uh
j − u j,uh

j − u j)

‖uh
j‖

2
b

− κ j

b(uh
j − u j,uh

j − u j)

‖uh
j‖

2
b

∣∣∣∣∣∣∣
≤ C

(
‖uh

j − u j‖
2
h + |κ j|‖uh

j − u j‖
2
0,∂Ω

)
≤ C

(
H3t + ht

)2
.

The proof is completed. �

Remark 3.1. Using Theorem 3.1 and referring to Theorem 4.2 in [32], we can give the error
estimates of Scheme 3.1. To ensure that the error is independent of the number of iterations in the
multigrid refinement, we also need the following conditions.
Condition 3.1. For any given ε ∈ (0, 1), there exists ti ∈ (1, 2 − ε](i = 1, 2, · · · ), such that
hi = O(hti

i−1), and hi → 0 (i→ ∞).
Condition 3.1 is easy to be satisfied. For instance, for smooth eigenfunctions, using uniform

meshes and linear elements and taking ε = 0.1, h0 =
√

2
8 , h1 =

√
2

32 , h2 =
√

2
128 , · · · , then

ti =
log(hi)

log(hi−1) =
log(hi−1−log(4)

log(hi−1) , thus, t1 ≈ 1.80, t2 ≈ 1.44, t3 ≈ 1.31, · · · , and ti ↘ 1 when i→ ∞.

Theorem 3.2. Suppose that Condition 3.1 holds and M(κ j) ⊂ H1+s(Ω) (s ≥ r), and t = min{k, s}. Let
(κhl

j ,u
hl
j ) be an approximate eigenpair obtained by Scheme 3.1, then, when h0 = H is small enough,

there exists u j ∈ M(κ j) such that ∥∥∥∥uhl
j − u j

∥∥∥∥
h
≤ Cht

l, (3.15)∥∥∥∥uhl
j − u j

∥∥∥∥
0,∂Ω

≤ Chr+t
l , (3.16)∣∣∣∣κhl

j − κ j

∣∣∣∣ ≤ Ch2t
l , l ≥ 1. (3.17)

4. Numerical experiments

In this section, we will report some numerical experiments to show the efficiency of the
DG-multigrid method (Scheme 3.1) for solving the Steklov-Lamé eigenproblem. We conduct the
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numerical experiments on the MATLAB 2022a on a ThinkBook 14p Gen 2 PC with 16G memory,
and our program makes use of the package of iFEM [35]. The test domains are set to be the unit
square ΩS = (0, 1)2 and the L-shaped domain ΩL = (−1, 1)2\[0, 1)2.
Example 4.1. We use Scheme 3.1 to compute the approximation for the 1st eigenvalue κ1 of the
problem (2.2). We adopt piecewise polynomial of degree 1 (P1 element) to compute on uniform
isosceles right triangulations. We produce the initial coarse grid TH = Th0 and refine the coarse grid in
a uniform way (each triangle is divided into four congruent triangles) repeatedly to obtain fine grids
Thi , i = 1, 2, ..., l. By using the basis functions of SH, the eigenvalue problem on the initial coarse grid
in Step 1 of Scheme 3.1 can be rewritten as a generalized matrix eigenvalue problem

KHū1,H = κ1,H MHū1,H, (4.1)

where the elements of array ū1,H are the coordinates of u1,H under the basis functions in SH. Similarly,
by using the basis functions of Shi , the algebraic system in Step 3 of Scheme 3.1 can be rewritten as

(Khi − κhi−1
1 Mhi)û = Mhiûhi−1

1 (4.2)

and ūhi
1 = û√

ûT Mhi û
where ûhi−1

1 is actually the projection of the solution ūhi−1
1 obtained on the previous

grid Thi−1 in Thi . For example, if Th0 contains NT = 2 elements with the associated solution
ūh0

1 = ū1,H, denote ūh0
1 = [uh0

1 , u
h0
2 ]T with uh0

1 = [a11, a21, a12, a22, a13, a23],
uh0

2 = [b11, b21, b12, b22, b13, b23] and aι j, bι j( j = 1, 2, 3) being the coordinates of the basis function
{1, x, y} on the element ι in Th0 , and encrypt Th0 once (each triangle is divided into four congruent
triangles) to get Th1 which contains 4NT = 8 elements, then the projection of ūh0

1 in Th1 is as follows:

ûh0
1 = Q1ūh0

1 ,

where Q1 is the projection (restriction) operator:

Q1 =

[
Q11 0
0 Q12

]
, Q11 = Q12 =


I4

NT 0 0
0 I4

NT 0
0 0 I4

NT

 , I4
NT =


INT

INT

INT

INT

 , INT = I2 =

[
1 0
0 1

]
.

If bisecting encryption is used, that is, each triangle is divided into two triangles, then just replace

I4
NT with I2

NT =

[
INT

INT

]
. We use the command “eigs” of MATLAB to solve the discrete algebraic

eigenvalue problem (4.1), and use the command “\” in MATLAB to solve the linear system (4.2).
Further, there has no difficulty with solving the system (4.2) (see Lecture 27.4 in [36]).

For comparison, we also use the multigrid method of conforming finite elements by adopting P1
element to compute. The error curves are depicted in Figure 1 where the reference value are taken as
the most accurate approximations that we can compute. From Figure 1, we can see that as the Lamé
parameter λ increases, the DG-multigrid method is robust compared with the multigrid method of
conforming finite elements, which is a major advantage of using DG method to solve elastic problems.
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Figure 1. The error curves of the approximations for the 1st eigenvalue κ1 of (2.2) obtained
by multigrid method of conforming finite element and the DG-multigrid method by using P1
element in ΩS (left) and ΩL (right).

Example 4.2. Adaptive computation.
Adaptive algorithm based on the a posterior error estimation is an efficient and important

numerical approach for solving partial differential equations. Referring to [37], we combine the
multigrid scheme 3.1 and the a posteriori error indicator to establish the adaptive multigrid algorithm.
Referring to the a posterior error indicator (25) for the linear elastic source problem in [37], we
formally give the following local error indicator for the underlying eigenvalue problem:

ζ2
K(κh,uh) = h2

K‖divσ(uh)‖2L2(K) + hK

(
‖Σn(uh) − n · σ(uh)‖2L2(∂K\∂Ω)

+ ‖Σn(uh) − n · σ(uh)‖2L2(∂K∩∂Ω)

)
+ h−1

K ‖[[uh]]‖2L2(∂K\∂Ω),

where

Σn(uh) :=
{

n · {σ(uh)} − γµh−1
e [[uh]] − h−1

e γλn(n · [[uh]]), on ∂K \ ∂Ω,

(κh − 1)uh, on ∂K ∩ ∂Ω.

Define the global error indicator:
ζΩ = (

∑
K∈Th

ζ2
K(κh,uh))

1
2 .

Based on the above error indicators and Scheme 3.1, we design the following adaptive multigrid
algorithm bases on the shifted inverse iteration.
Algorithm 4.1. Choose parameter 0 < α < 1.

Step 1: Pick any initial mesh Th0 .
Step 2: Solve (2.3) on Th0 for discrete solution (κ j,h0 ,u j,h0).
Step 3: Let l = 1. uh1

j ⇐ u j,h0 , κ
h1
j ⇐ κ j,h0 .

Step 4: Compute the local indicator ζK(κhl
j ,u

hl
j ).

Step 5: Construct T̂hl ⊂ Thl by Mark Strategy and parameter α.
Step 6: Refine Thl to get a new mesh Thl+1 by procedure REFINE.
Step 7: Find ũ ∈ Shl+1 such that

ahl+1(ũ,ψ) − κhl
j bhl+1(ũ,ψ) = bhl+1(u

hl
j ,ψ), ∀ψ ∈ Shl+1 .
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Denote uhl+1
j = ũ

‖ũ‖0,∂Ω
and compute the Rayleigh quotient

κhl+1
j =

ahl+1(u
hl+1
j ,uhl+1

j )

bhl+1(u
hl+1
j ,uhl+1

j )
.

Step 8: Let l = l + 1 and go to Step 4.
Mark Strategy

Given parameter 0 < α < 1.
Step 1: Construct a minimal subset T̂hl of Thl by selecting some elements in Thl such that∑

K∈T̂hl

ζ2
K(κhl

j ,u
hl
j ) ≥ α

∑
K∈Thl

ζ2
K(κhl

j ,u
hl
j ).

Step 2: Mark all elements in T̂hl .
Mark Strategy was first proposed in [38], and the procedure REFINE is some iterative or recursive

bisection (see, e.g., [39, 40]) of elements with the minimal refinement condition that marked elements
are bisected at least once.

In addition, to investigate the efficiency of Algorithm 4.1, referring to the standard popular adaptive
algorithm [41] we give the following Algorithm 4.2 for comparison.
Algorithm 4.2. Choose parameter 0 < α < 1.

Step 1: Pick any initial mesh Th0 .
Step 2: Solve (2.3) on Th0 for discrete solution (κ j,h1 ,u j,h1).
Step 3: Let l = 1.
Step 4: Compute the local indicators ζK(κ j,hl ,u j,hl).
Step 5: Construct T̂hl ⊂ Thl by Mark Strategy and parameter α.
Step 6: Refine Thl to get a new mesh Thl+1 by procedure REFINE.
Step 7: Solve (2.3) on Thl+1 for discrete solution (κ j,hl+1 ,u j,hl+1).
Step 8: Let l = l + 1 and go to Step 4.
We use the adaptive DG-multigrid method (Algorithm 4.1) with polynomials of degree 1 (P1

element) and degree 2 (P2 element) to compute, and take α = 0.5. For convenience of reading, we
specify the following notations in our tables and figures.

- N j,l: the degrees of freedom at the lth iteration;
- κhl

j : the jth eigenvalue obtained by Algorithm 4.1 at the l th iteration;
- κ j,hl : the jth eigenvalue obtained by Algorithm 4.2 at the l th iteration;
- CPU j,l(s): the CPU time(s) from the first iteration beginning to the calculate results of the lth

iteration appearing by using Algorithm 4.1/4.2;
- e j: the error of the jth approximate eigenvalue by Algorithm 4.1;
- ζ j: the error indicator of the jth approximate eigenvalue by Algorithm 4.1.

We first give a numerical experiment comparison between using DGFEM to solve directly on fine
meshes and using the adaptive DG-multigrid method (Algorithm 4.1) for the 1st nonzero eigenvalue
of (2.3). The error curves are shown in Figures 2 and 3. An observation of the left and right subgraphs
in Figures 2 and 3 tells us that the regularity of the eigenfunction in ΩL is lower than that in ΩS , which
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is consistent with the general conclusion of the regularity of solutions to PDEs. From Figure 2 we can
see that the error curves of adaptive DG-multigrid method are all parallel to the line with slope −1 but
the error curves of directly computing by DGFEM do not parallel, which indicates that the approximate
eigenvalues obtained by the adaptive DG-multigrid method achieve the optimal convergence order. The
same conclusion can be seen from Figure 3.
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Figure 2. The error curves of directly computing by DGFEM and Algorithm 4.1 by using
P1 element for the 1st nonzero eigenvalue of (2.3) in ΩS (left) and ΩL (right).
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Figure 3. The error curves of directly computing by DGFEM and Algorithm 4.1 by using
P2 element for the 1st nonzero eigenvalue of (2.3) in ΩS (left) and ΩL (right).

Now we use Algorithms 4.1 and 4.2 with P1 and P2 elements to compute the first 7
non-zero eigenvalues of (2.3) in ΩS and ΩL, respectively. When using P1 element, the parameters
µ = 1, λ = 1, γµ = γλ = 10 and the diameter of initial mesh is taken as

√
2

16 . Limited to space, we list
the 1st, the 3rd, the 4th and the 6th approximate eigenvalue in Tables 1 and 2. We also depict the error
curves of approximate eigenvalues by Algorithm 4.1 and the curve of error indicators in Figure 4,
where the reference values are taken as the most accurate approximations that we can compute. In
addition, for the 1st non-zero eigenvalue of (2.3), we investigate the influence of Lamé parameter by
taking λ = 1, 10, 100, 1000, 10000, and the corresponding error curves are shown in Figure 5. When
using P2 element, the parameters µ = λ = 1, γµ = γλ = 40 and the diameter of initial mesh is taken as
√

2
8 . In Tables 3 and 4 we list the 1st, the 3rd, the 4th and the 6th approximate eigenvalue. We also plot
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the error curves of approximate eigenvalues by Algorithm 4.1 and the curve of error indicators in
Figure 6. For the 1st non-zero eigenvalue of (2.3), we investigate the influence of Lamé parameter by
taking λ = 1, 10, 100, 1000, 10000, and the corresponding error curves are shown in Figure 7.

Table 1. The results in ΩS by Algorithms 4.1 and 4.2 with P1 element.

j l N j,l κhl
j CPU j,l(s) l N j,l κ j,hl CPU j,l(s)

1 1 3600 2.5834151705 0.05433 1 3600 2.5834151539 0.06679
1 8 26328 2.5365029347 1.62136 8 26328 2.5365029348 2.52953
1 21 1208232 2.5310939833 249.69061 21 1208232 2.5310939827 391.04103
1 22 1570164 2.5310583228 485.28739 22 1570164 2.5310583228 651.02095
1 23 2050932 2.5310346038 817.8231911 23 2050932 2.531034604 1167.502765
3 1 3324 2.7404121518 0.02745 1 3324 2.7414582353 0.07244
3 11 30156 2.6778807957 1.75582 16 43908 2.6778901580 7.73674
3 20 428676 2.6740736381 57.92155 31 605400 2.6740696701 244.04938
3 23 1026540 2.6739097335 212.85588 34 1025280 2.6739660124 488.60793
3 24 1349388 2.6738786576 395.09095 35 1219860 2.6739372698 624.67912
4 1 3888 3.7164345114 0.05795 1 3888 3.7164345114 0.10192
4 9 44460 3.7115741607 3.84681 9 44460 3.7115741607 5.61523
4 22 1762944 3.7111432638 194.69801 22 1762944 3.7111432638 341.67732
4 23 2344044 3.7111398968 269.71127 23 2344044 3.7111398969 470.55583
4 24 3028620 3.7111378848 385.01813 24 3028620 3.7111378848 654.91996
6 1 3792 5.2873876626 0.06042 1 3792 5.2873876273 0.09334
6 5 11784 5.2632333578 0.70311 5 11784 5.2632333578 1.11777
6 20 942528 5.2537917257 198.46971 20 942528 5.2537917253 306.96848
6 21 1259328 5.2537597122 334.17056 21 1259328 5.2537597120 452.24058
6 22 1636512 5.2537348070 605.55218 22 1636512 5.2537348072 796.76924
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Table 2. The results in ΩL by Algorithms 4.1 and 4.2 with P1 element.

j l N j,l κhl
j CPU j,l(s) l N j,l κ j,hl CPU j,l(s)

1 1 9252 1.1578406889 0.08684 1 9252 1.1578406889 0.21686
1 4 9960 1.1568717901 0.51428 4 9960 1.1568717901 1.05144
1 22 854196 1.1551704849 83.61915 22 854520 1.1551704801 143.97265
1 23 1125306 1.1551665423 116.92568 23 1125690 1.1551665389 193.87293
1 24 1469730 1.1551634294 330.33730 24 1470228 1.1551634258 431.50241
3 1 9852 2.0253499592 0.10770 1 9852 2.0253499590 0.24006
3 3 13236 2.0200276681 0.62807 3 13236 2.0200276680 1.21075
3 18 1072320 2.0137654513 221.81309 18 1072320 2.0137654513 344.53795
3 19 1431672 2.0137487824 351.63554 19 1431672 2.0137487822 590.05031
3 20 1924536 2.0137351315 711.94221 20 1924536 2.0137351315 1029.63061
4 1 9540 2.1396949065 0.10559 1 9540 2.1396949061 0.23500
4 4 13446 2.1322409848 0.70466 4 13446 2.1322409847 1.33492
4 19 823536 2.1258417612 147.60184 19 823536 2.1258417612 260.40436
4 20 1085094 2.1258166076 225.83332 20 1085094 2.1258166075 386.16427
4 21 1437324 2.1257991175 324.24898 21 1437324 2.1257991172 566.48046
6 1 9828 2.7939491213 0.15553 1 9828 2.7939490858 0.31958
6 3 12894 2.7668920157 0.78224 3 12894 2.7668920151 1.00058
6 18 965010 2.7367899041 163.71460 18 965010 2.7367899035 335.07813
6 19 1292184 2.7367099740 271.08934 19 1292184 2.7367099727 503.74878
6 20 1729368 2.7366439994 494.77192 20 1729368 2.7366439984 797.84910
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Figure 4. Convergence study of Algorithm 4.1 by P1 element in ΩS (left) and ΩL (right).
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Figure 5. Robustness study of Algorithm 4.1 by P1 element in ΩS (left) and ΩL (right).

Table 3. The results in ΩS by Algorithms 4.1 and 4.2 with P2 element.

j l N j,l κhl
j CPU j,l(s) l N j,l κ j,hl CPU j,l(s)

1 1 1632 2.5399573563 0.20754 1 1632 2.5399573531 0.33385
1 5 3600 2.5321126514 0.80285 5 3600 2.5321126514 1.16189
1 24 760152 2.5309641786 211.46084 24 760152 2.5309641786 239.26807
1 25 1003368 2.5309641677 278.22507 25 1003368 2.5309641677 320.01464
1 26 1339404 2.5309641607 378.58015 26 1339404 2.5309641607 439.05795
3 1 1584 2.6862908794 0.12511 1 1584 2.6862921826 0.40313
3 18 43920 2.6737990072 8.60574 24 46896 2.6737995054 17.94984
3 30 813360 2.6737894142 210.84097 42 823224 2.6737894180 409.26749
3 31 1021272 2.6737894039 275.45868 44 1129272 2.6737894027 587.31383
3 32 1276776 2.6737893962 363.84821 45 1328904 2.6737893981 708.17810
4 1 1824 3.7114311740 0.13369 1 1824 3.7114311740 0.21961
4 5 6360 3.7111583273 0.89324 5 6360 3.7111583273 1.89695
4 22 754512 3.7111313470 178.28979 22 754512 3.7111313471 250.31766
4 23 939408 3.7111313465 244.08245 23 939408 3.7111313466 341.16368
4 24 1218768 3.7111313461 339.61412 24 1218768 3.7111313462 460.76539
6 2 1920 5.2557235447 0.49529 2 1920 5.2557235444 0.59788
6 8 8904 5.2537750836 1.87161 8 8904 5.2537750836 2.28091
6 24 838920 5.2536682063 197.38184 24 838920 5.2536682064 267.40500
6 25 1119096 5.2536682008 270.08041 25 1119096 5.2536682009 376.06184
6 26 1456968 5.2536681969 380.87500 26 1456968 5.2536681971 520.85769
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Table 4. The results in ΩL by Algorithms 4.1 and 4.2 with P2 element.

j l N j,l κhl
j CPU j,l(s) l N j,l κ j,hl CPU j,l(s)

1 1 4656 1.1562458918 0.38986 1 4656 1.1562458918 0.55317
1 25 66996 1.1551541513 18.31403 25 66996 1.1551541513 22.07079
1 38 774480 1.1551532609 260.06329 38 774480 1.1551532609 325.52552
1 39 923052 1.1551532590 320.61556 39 923052 1.1551532591 400.40419
1 40 1099044 1.1551532576 398.76151 40 1099044 1.1551532576 496.73607
3 1 4680 2.0159225406 0.46936 1 4680 2.0159225405 0.57221
3 9 19224 2.0137381688 4.00481 9 19224 2.0137381688 5.20982
3 23 976428 2.0136927626 233.96942 23 976428 2.0136927626 313.17266
3 24 1280052 2.0136927550 324.92148 24 1280052 2.0136927550 421.48383
3 25 1679592 2.0136927505 458.31975 25 1679592 2.0136927505 578.37647
4 10 11316 2.1259084959 3.98294 10 11316 2.1259084959 4.01302
4 21 105648 2.1257416544 27.89323 21 105648 2.1257416544 37.43586
4 32 822120 2.1257391878 297.07841 32 822120 2.1257391878 368.95873
4 33 980688 2.1257391755 362.49125 33 980688 2.1257391755 456.94719
4 34 1181328 2.1257391658 446.73985 34 1181328 2.1257391658 572.04947
6 1 4680 2.7468959498 0.40303 1 4680 2.7468959503 0.61874
6 3 5232 2.7405213916 0.92105 3 5232 2.7405213907 1.21365
6 23 1000704 2.7364519542 234.72412 23 1000704 2.7364519542 334.60146
6 24 1312716 2.7364519227 327.39089 24 1312716 2.7364519227 448.35877
6 25 1726080 2.7364519037 468.01995 25 1726080 2.7364519038 608.05296
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Figure 6. Convergence study of Algorithm 4.1 by P2 element in ΩS (left) and ΩL (right).
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Figure 7. Robustness study of Algorithm 4.1 by P2 element in ΩS (left) and ΩL (right).

It can be seen from Tables 1–4 that to get the same accurate approximate eigenvalues, Algorithm 4.1
uses less time or less degrees of freedom than Algorithm 4.2. In Figure 4, the error curves e1, e3, e4 and
e6 are all parallel to the line with slope −1, and in Figure 6 the error curves e1, e3, e4 and e6 are parallel
to the line with slope −2, which indicate that the approximate eigenvalues obtained by Algorithm 4.1
achieve the optimal convergence order. Meanwhile, in Figure 5, the error curves e1, e3, e4 and e6 are
almost parallel to the curve of ζ1, ζ3, ζ4 and ζ6 respectively, and in Figure 7, the curves of e1, e3, e4

and e6 are parallel to ζ1, ζ3, ζ4 and ζ6, which indicate that the error indicators are reliable and efficient.
Figures 5 and 7 then show that Algorithm 4.1 is robust in both ΩS and ΩL.

5. Conclusions

In this paper, we discussed a multigrid discretization scheme of DGFEM based on the
shifted-inverse iteration. Theoretical analysis and numerical results all showed that this method can
efficiently solve the Steklov-Lamé eigenproblem as we expected. Generally, the time of solving a
linear algebraic system is much less than that of solving an eigenvalue problem. Further, we observe
from Tables 1–4 that although the CPU time of the adaptive DG-multigrid method is less than that of
the standard adaptive DGFEM, the advantage is not obvious. We think that this may be because we
use “\” to solve linear algebraic systems. We notice that in recent research, the multigrid method has
been combined with other methods to form many efficient algorithms and applied to many problems,
as combined with the DG method in this paper. For example, the multigrid-homotopy method to
diffusion equation [42], the multigrid method for the semilinear interface problem based on the
modified two-grid method [43], the multigrid method for nonlinear eigenvalue problems based on
Newton iteration [44], etc. It is of interest for us to explore more applications of multigrid methods
and more efficient solvers for solving linear algebraic equations in multigrid methods.
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8. I. Babuška, M. Suri, On locking and robustness in the finite element method, SIAM J. Numer. Anal.,
29 (1992), 1261–1293. http://doi.org/10.1137/0729075

9. M. Vogelius, An analysis of the p-version of the finite element method for nearly incompressible
materials, Numer. Math., 41 (1983), 39–53. https://doi.org/10.1007/BF01396304

10. D. N. Arnold, F. Brezzi, J. Douglas, PEERS: A new mixed finite element for plane elasticity, Japan
J. Appl. Math., 1 (1984), 347–367. http://doi.org/10.1007/bf03167064

11. R. Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math., 53 (1988),
513–538. https://doi.org/10.1007/bf01397550

12. L. Franca, R. Stenberg, Error analysis of some Galerkin-least-squares methods for the elasticity
equations, SIAM J. Numer. Anal., 28 (1991), 1680–1697. http://www.jstor.org/stable/2157955

13. R. S. Falk, Nonconforming finite element methods for the equations of linear elasticity, Math.
Comput., 57 (1991), 529–550. http://doi.org/10.1090/s0025-5718-1991-1094947-6

14. S. C. Brenner, L. Y. Sung, Linear finite element methods for planar linear elasticity, Math. Comput.,
59 (1992), 321–338. http://doi.org/10.1090/s0025-5718-1992-1140646-2

15. T. P. Wihler, Locking-free DGFEM for elasticity problems in polygons, IMA J. Numer. Anal., 24
(2004), 45–75. https://doi.org/10.1093/imanum/24.1.45

16. T. P. Wihler, Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems,
Math. Comput., 75 (2006), 1087–1102. https://doi.org/10.2307/4100266

AIMS Mathematics Volume 8, Issue 6, 14207–14231.

http://dx.doi.org/https://doi.org/10.4171/JST/164
http://dx.doi.org/https://doi.org/10.1137/21M1412955
http://dx.doi.org/https://doi.org/10.1016/j.cma.2005.01.022
http://dx.doi.org/https://doi.org/10.1016/j.apm.2005.07.008
http://dx.doi.org/http://doi.org/10.1016/J.CAM.2021.113558
http://dx.doi.org/https://doi.org/10.1016/j.apnum.2023.02.018
http://dx.doi.org/http://doi.org/10.1007/bf01396238
http://dx.doi.org/http://doi.org/10.1137/0729075
http://dx.doi.org/https://doi.org/10.1007/BF01396304
http://dx.doi.org/http://doi.org/10.1007/bf03167064
http://dx.doi.org/https://doi.org/10.1007/bf01397550
http://dx.doi.org/http://www.jstor.org/stable/2157955
http://dx.doi.org/http://doi.org/10.1090/s0025-5718-1991-1094947-6
http://dx.doi.org/http://doi.org/10.1090/s0025-5718-1992-1140646-2
http://dx.doi.org/https://doi.org/10.1093/imanum/24.1.45
http://dx.doi.org/https://doi.org/10.2307/4100266


14230

17. T. Steiner, P. Wriggers, S. Loehnert, A discontinuous Galerkin finite element method for linear
elasticity using a mixed integration scheme to circumvent shear-locking, PAMM, 16 (2016), 769–
770. https://doi.org/10.1002/pamm.201610373

18. J. Xu, A. Zhou, A two-grid discretization scheme for eigenvalue problems, Math. Comput., 70
(1999), 17–25. https://doi.org/10.2307/2698923

19. J. Xu, A. Zhou, Local and parallel finite element algorithms for eigenvalue problems, Acta. Math.
Appl. Sin., 18 (2002), 185–200. https://doi.org/10.1007/s102550200018

20. Y. Yang, H. Bi, Two-grid finite element discretization schemes based on shifted-inverse
power method for elliptic eigenvalue problems, SIAM J. Numer. Anal., 49 (2011), 1602–1624.
https://doi.org/10.1137/100810241

21. Q. Li, Y. Yang, A two-grid discretization scheme for the Steklov eigenvalue problem, J. Appl.
Math. Comput., 36 (2011), 129–139. https://doi.org/10.1007/s12190-010-0392-9

22. H. Bi, Y. Yang, A two-grid method of the non-conforming Crouzeix-Raviart element
for the Steklov eigenvalue problem, Appl. Math. Comput., 217 (2011), 9669–9678.
http://doi.org/10.1016/j.amc.2011.04.051

23. M. Xie, F. Xu, M. Yue, A type of full multigrid method for non-selfadjoint Steklov eigenvalue
problems in inverse scattering, ESAIM Math. Model. Numer. Anal., 55 (2021), 1779–1802.
https://doi.org/10.1051/m2an/2021039

24. M. Yue, F. Xu, M. Xie, A multilevel Newton’s method for the Steklov eigenvalue problem, Adv.
Comput. Math., 48 (2022), 33. https://doi.org/10.1007/s10444-022-09934-6

25. A. Andreev, R. Lazarov, M. Racheva, Postprocessing and higher order convergence of the mixed
finite element approximations of biharmonic eigenvalue problems, J. Comput. Appl. Math., 182
(2005), 333–349. http://doi.org/10.1016/j.cam.2004.12.015

26. C. S. Chien, B. W. Jeng, A two-grid discretization scheme for semilinear elliptic eigenvalue
problems, SIAM J. Sci. Comput., 27 (2006), 1287–1304. http://doi.org/10.1137/030602447

27. X. Dai, A. Zhou, Three-scale finite element discretizations for quantum eigenvalue problems,
SIAM J. Numer. Anal., 46 (2008), 295–324. http://doi.org/10.1137/06067780x

28. H. Chen, S. Jia, H. Xie, Postprocessing and higher order convergence for the mixed finite
element approximations of the Stokes eigenvalue problems, Appl. Math., 54 (2009), 237–250.
http://doi.org/10.1007/s10492-009-0015-7

29. H. Xie, X. Yin, Acceleration of stabilized finite element discretizations for the Stokes eigenvalue
problem, Adv. Comput. Math., 41 (2015), 799–812. https://doi.org/10.1007/s10444-014-9386-8

30. J. Chen, Y. Xu, J. Zou, An adaptive inverse iteration for Maxwell eigenvalue problem based on
edge elements, J. Comput. Phys., 229 (2010), 2649–2658. http://doi.org/10.1016/j.jcp.2009.12.013

31. M. R. Racheva, A. B. Andreev, Superconvergence postprocessing for eigenvalues, Comp. Methods
Appl. Math., 2 (2002), 171–185. https://doi.org/10.2478/cmam-2002-0011

32. Y. Yang, H. Bi, J. Han, Y. Yu, The shifted-inverse iteration based on the multigrid
discretizations for eigenvalue problems, SIAM J. Sci. Comput., 37 (2015), A2583–A2606.
https://doi.org/10.1137/140992011

AIMS Mathematics Volume 8, Issue 6, 14207–14231.

http://dx.doi.org/https://doi.org/10.1002/pamm.201610373
http://dx.doi.org/https://doi.org/10.2307/2698923
http://dx.doi.org/https://doi.org/10.1007/s102550200018
http://dx.doi.org/https://doi.org/10.1137/100810241
http://dx.doi.org/https://doi.org/10.1007/s12190-010-0392-9
http://dx.doi.org/http://doi.org/10.1016/j.amc.2011.04.051
http://dx.doi.org/https://doi.org/10.1051/m2an/2021039
http://dx.doi.org/https://doi.org/10.1007/s10444-022-09934-6
http://dx.doi.org/http://doi.org/10.1016/j.cam.2004.12.015
http://dx.doi.org/http://doi.org/10.1137/030602447
http://dx.doi.org/http://doi.org/10.1137/06067780x
http://dx.doi.org/http://doi.org/10.1007/s10492-009-0015-7
http://dx.doi.org/https://doi.org/10.1007/s10444-014-9386-8
http://dx.doi.org/http://doi.org/10.1016/j.jcp.2009.12.013
http://dx.doi.org/https://doi.org/10.2478/cmam-2002-0011
http://dx.doi.org/https://doi.org/10.1137/140992011


14231

33. P. Hansbo, M. G. Larson, Discontinuous Galerkin methods for incompressible and nearly
incompressible elasticity by Nitsche’s method, Comput. Methods Appl. Mech. Eng., 191 (2002),
1895–1908. http://doi.org/10.1016/s0045-7825(01)00358-9
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