
http://www.aimspress.com/journal/Math

AIMS Mathematics, 8(6): 14426–14448.
DOI: 10.3934/math.2023737
Received: 16 February 2023
Revised: 10 March 2023
Accepted: 14 March 2023
Published: 19 April 2023

Research article

Attractor of a nonlinear hybrid reaction–diffusion model of neuroendocrine
transdifferentiation of human prostate cancer cells with time-lags

Kaihong Zhao*

Department of Mathematics, School of Electronics & Information Engineering, Taizhou University,
Taizhou 318000, Zhejiang, China

* Correspondence: Email: zhaokaihongs@126.com.

Abstract: Prostate cancer is a serious disease that endangers men’s health. The genetic mechanism
and treatment of prostate cancer have attracted the attention of scientists. In this paper, we focus on the
nonlinear mixed reaction diffusion dynamics model of neuroendocrine transdifferentiation of prostate
cancer cells with time delays, and reveal the evolutionary mechanism of cancer cells mathematically.
By applying operator semigroup theory and the comparison principle of parabolic equation, we study
the global existence, uniqueness and boundedness of the positive solution for the model. Additionally,
the global invariant set and compact attractor of the positive solution are obtained by Kuratowski’s
measure of noncompactness. Finally, we use the Pdepe toolbox of MATLAB to carry out numerical
calculations and simulations on an example to check the correctness and effectiveness of our main
results. Our results show that the delay has no effect on the existence, uniqueness, boundedness and
invariant set of the solution, but will affect the attractor.
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1. Introduction

In recent decades, many models have been established to study prostate cancer. For example, some
biological models, such as TRAP, LADY and LNCaP models [1], use genetically engineered mice
with human prostate cancer cells to simulate the growth of prostate cancer cells. These biological
models are based on extracorporeal experiments, and cannot truly reflect the growth of cancer cells in
the human body. Swanson et al. [2] and Vollmer et al. [3, 4] were early researchers who applied
mathematical models to study prostate cancer. In their models, the relationship between serum
prostate specific antigen concentration and tumour volume was mainly discussed. Subsequently,
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Kuang et al. [5] applied the idea of ecostoichiometry to establish the KNE model to study tumour
growth under various physical conditions. Some scholars [6–8] have revealed that androgens are
significantly associated with prostate cancer. Later mathematical models focused on the effect of
androgen concentration on prostate tumour growth. One of the topics most worthy of separate
discussion is the mathematical models [9, 10] that Jackson put forward in 2004. The main
contribution of Jackson’s models is to show that there are two types of tumours, androgen dependent
and androgen independent. The subsequent mathematical models of prostate cancer were established
and studied under this framework. For example, Ideta et al. [11] found that intermittent ADT can
shorten the time of cancer recurrence by establishing a mathematical model. In [12], Eikenberry et al.
built a mathematical model for the intracellular dynamics of androgens and their receptors. Their
research showed that lowering the androgen level would increase the PCa cell mutation rate, and lead
to more heterogeneous populations.

Subsequently, research has focused on the role of neuroendocrine cells in the recurrence of
prostate cancer. Neuroendocrine cells throughout the human body are special secretory cells with a
cell structure similar to that of neurons. Therefore, they usually help to stabilize the surrounding
tissues [13]. Based on an extracorporeal experiment with androgen deprivation conditions of LNCaP
cells grown in petri dishes, Cerasolo et al. [14] proposed a discrete delay kinetic model to study the
theory of neuroendocrine transdifferentiation in PCa. This model considered androgen-dependent
cells, neuroendocrine androgen-dependent cells and androgen concentration. In the model of Morken
et al. [15], the cancer cell population is divided into androgen-dependent cells and
androgen-independent cells, which can proliferate in vivo. In 2021, Turner et al. [16] proposed a
delayed nonlinear ODE model to investigate the neuroendocrine transdifferentiation of prostate cancer
cells. Combined with biological significance, the author carefully studied the existence and global
asymptotic stability of the equilibrium point of the model, as well as Hopf bifurcation.

Inspired by modelling ideas and methods in [16], we put forward a nonlinear reaction-diffusion
model to describe the diffusion distribution of androgens in human prostate tumours. Our main
contributions are as follows. (a) We are the first to establish a diffusion PDE model to reveal the
dynamic mechanism of human prostate cancer. (b) We obtain some sufficient conditions for the global
existence, uniqueness, boundedness and compact attraction of the positive solution for our model. (c)
Our findings are helpful for the prevention and treatment of human prostate cancer.

The remaining structure of the paper is as follows. Section 2 gives the process of mathematical
modelling. In Section 3, we apply operator semigroup theory and the comparison principle of parabolic
equations to prove that our model has a global bounded unique positive solution. In Section 4, we
obtain the global invariant set and compact attractor of our model by utilizing Kuratowski’s measure of
noncompactness. In Section 5, we provide an example and carry out a numerical simulation to examine
the validity of our results. Section 6 gives a brief summary and outlook.

2. Mathematical modelling

This section describes the process of mathematical modelling in detail. Since we benefit from the
ODE model [16] in terms of thinking methods, let us review the establishment course of this ODE
model first.
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Human prostate cancer cells are divided into transdifferentiated nonmalignant neuroendocrine
androgen-independent cells (denoted by Z(t)) and LNCaP androgen-dependent cells (denoted by
Y(t)). During the growth of Y(t) cells, their proliferation ability is affected by the change in androgen
concentration (denoted by X(t)) in the environment. In the experiment, androgen serum stripped by
charcoal is introduced into the culture dish. Since this is the only external source of androgen, it can
be considered that the concentration of serum is equivalent to the initial androgen concentration. Z(t)
cells are considered to be androgen-independent and mitotic products. They have no proliferative
ability and can only be produced by transdifferentiation of Y(t) cells. Y(t) cells undergo asymmetric
cell division, which means that a certain proportion of daughter cells will differentiate when
undergoing proliferation. Y(t) cells are divided into three groups: mature/resting cells (still denoted
by Y(t)), proliferating cells (denoted by U(t)) and transdifferentiated cells (denoted by V(t)). It is
worth noting that U(t) and V(t) represent different stages of the life cycle of Y(t) cells, so they do not
represent new cell types. The average cell cycle duration of Y(t) is denoted as τ1, and the cell
transdifferentiation duration from Y(t) to Z(t) is denoted as τ2.

Next, the biological transformation relationship and its quantification in terms of X(t), Y(t), Z(t),
U(t) and V(t) are given as follows. Androgen X(t) is depleted at a constant rate d1 and is secreted
by Z(t) cells at a secretion rate r. Y(t) and U(t) die according to the ratio d2. The proportions of
death of Z(t) and V(t) cells are d3 and d4, respectively. The function a f (X) is the rate of Y(t) cells
becoming U(t) cells. The function g(X,Y) is the rate of Y(t) cells becoming V(t) cells. 2[1 − b f (X(t −
τ2))]e−d4τ2g(X(t − τ2),Y(t − τ2))Y(t − τ2) is the measure of U(t) cells asymmetrically dividing into Y(t)
cells. 2b f

(
X(t − τ1)

)
e−d4τ1g

(
X(t − τ1), X(t − τ1)

)
Y(t − τ1) is the measure of V(t) cells asymmetrically

dividing into Z(t) cells. e−d2τ2a f
(
X(t − τ2)

)
Y(t − τ2) is the measure of U(t) cells becoming Z(t) cells.

Based on the above analysis, the following delayed nonlinear ODE model describing the
neuroendocrine transdifferentiation of prostate cancer cells was proposed in [16]

dX
dt = −d1X(t) + rZ(t),
dY
dt = −d2Y(t) − a f

(
X(t)
)
Y(t) − g

(
X(t),Y(t)

)
Y(t) + 2[1 − b f (X(t − τ1))]e−d4τ1

×g(X(t − τ1),Y(t − τ1))Y(t − τ1),
dZ
dt = −d3Z(t) + ae−d2τ2 f

(
X(t − τ2)

)
Y(t − τ2) + 2b f

(
X(t − τ1)

)
e−d4τ1

×g
(
X(t − τ1),Y(t − τ1)

)
Y(t − τ1),

dU
dt = −d2U(t) + a f

(
X(t)
)
Y(t) − e−d2τ2a f

(
X(t − τ2)

)
Y(t − τ2),

dV
dt = −d4V(t) + g

(
X(t),Y(t)

)
Y(t) − ed4τ1g

(
X(t − τ1),Y(t − τ1)

)
Y(t − τ1).

(2.1)

In practice, however, the concentration of cancer cells and androgen also depends on spatial
variables. In particular, androgen concentration will produce a diffusion phenomenon during
concentrated consumption and synthesis. In fact, the movement of particles in liquid medium is
mainly in the form of diffusion. The PDE model describing the diffusion phenomenon has better
accuracy than the ODE model. In recent years, some scholars have applied the diffusion PDE model
to study practical problems such as virus transmission, cancer prevention and treatment, and online
game addiction, and some good results have been achieved (see [17–20]). Therefore, we introduce
spatial variables and androgen diffusion to generalize Model (2.1). In addition, for better alignment
with biology and experimental results, we take f (Z) as the Ricker function regulated by
f (Z) = βZe−ξZ, which is suggested by experimental evidence [14], where β is the gradient of the
differentiation increase, and ξ is the inverse of the maximum differentiation rate. g(X,Y) = γ0

X
b+X

θn

θn+Yn
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is a Hill-type function used by Adimy et al. in [21,22], where γ0 is the maximum rate of transfer from
Y(t) cells to V(t) cells, b is the half-saturation constant for androgen concentration, and θ and n have
similar roles to the Hill coefficients and represent the response to human prostate cancer cell
population changes. Based on the above discussion, we focus on the following model in this paper

∂X
∂t = D∆X − d1(·)X + r(·)Z, (x, t) ∈ Ω × R+,
∂Y
∂t = −d2(·)Y − a(·)β(·)XYe−ξ(·)X − γ0(·) X

b(·)+X
[θ(·)]n(·)

[θ(·)]n(·)+Yn(·) Y
+2
[
1 − b(·)β(·)X(·, t − τ1)e−ξ(·)X(·,t−τ1)]e−d4(·)τ1

×γ0(·) X(·,t−τ1)
b(·)+X(·,t−τ1)

[θ(·)]n(·)

[θ(·)]n(·)+[Y(·,t−τ1)]n(·) Y(·, t − τ1), (x, t) ∈ Ω × R+,
∂Z
∂t = −d3(·)Z + a(·)e−d2(·)τ2β(·)X(·, t − τ2)Y(·, t − τ2)e−ξ(·)X(·,t−τ2)

+2b(·)β(·)X(·, t − τ1)e−ξ(·)X(·,t−τ1)e−d4(·)τ1

×γ0(·) X(·,t−τ1)
b(·)+X(·,t−τ1)

[θ(·)]n(·)

[θ(·)]n(·)+[Y(·,t−τ1)]n(·) Y(·, t − τ1), (x, t) ∈ Ω × R+,
∂U
∂t = −d2(·)U + a(·)β(·)XYe−ξ(·)X − e−d2(·)τ2a(·)β(·)

×X(·, t − τ2)Y(·, t − τ2)e−ξ(·)X(·,t−τ2), (x, t) ∈ Ω × R+,
∂V
∂t = −d4(·)V + γ0(·) X

b(·)+X
[θ(·)]n(·)

[θ(·)]n(·)+Yn(·) Y − e−d4(·)τ1γ0(·)

×
X(·,t−τ1)

b(·)+X(·,t−τ1)
[θ(·)]n(·)

[θ(·)]n(·)+[Y(·,t−τ1)]n(·) Y(·, t − τ1), (x, t) ∈ Ω × R+,
∂X
∂ν
= 0, (x, t) ∈ ∂Ω × R+,

(X,Y,Z,U,V) = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5), (x, t) ∈ Ω × [−τ, 0],

(2.2)

where R+ = (0,+∞), and the lags τ1, τ2 > 0 are some constants, τ = max{τ1, τ2}. Ω ⊂ Rn is a spatially
bounded domain with smooth boundary ∂Ω associated with the non flux boundary condition ∂X

∂ν
= 0.

ν is the outer normal vector. D > 0 is a diffusion coefficient. ∆ is a Laplace operator. ϕk = ϕk(·, t)
(k = 1, 2, 3, 4, 5) is the initial delay function. The biological interpretation of the remaining spatially
dependent parameters is similar to system (2.1). The state changes of human prostate cancer cells and
androgens in tumours are shown in Figure 1.

Proliferating Cell U(t)

𝜏𝟐
Mature Cell Y(t)

Become Mature
𝟐[𝟏 − 𝒃𝒇 𝑿 𝒕 − 𝝉𝟐 ]𝒆−𝒅𝟒𝝉𝟐

𝒈 𝑿 𝒕 − 𝝉𝟐 , 𝒀 𝒕 − 𝝉𝟐 𝒀(𝒕 − 𝝉𝟐)

Introduction
𝒂𝒇(𝑿)

Differentiation
𝟐𝒃𝒇 𝑿 𝒕 − 𝝉𝟏 𝒆−𝒅𝟒𝝉𝟏𝒈൫

൯

𝑿(

)

𝒕

− 𝝉𝟏 , 𝒀 𝒕 − 𝝉𝟏 𝒀(𝒕 − 𝝉𝟏)

Transdifferentiating Cell V(t)

𝜏𝟏

Androgen 
Cell X(t)

Androgen Independent 

Cell Z(t)

Cell Death

Secretion

Differentiation
Introduction

g(X,Y)

Inhibition Inhibition

Inhibition

Cell Death Cell Death

Cell Death

𝒅𝟐
𝒅𝟐

𝒅𝟑 𝒅𝟒

Figure 1. General scheme of the state transition in the models (2.1) and (2.2).
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The parameter symbols and their meanings in the model are listed in the following table.

t time variable
x spatial variable

X(x, t) the concentration of androgen cells in human prostate tumors
Y(x, t) the concentration of mature cells in human prostate tumors
Z(x, t) the concentration of Androgen-independent cells in human prostate tumors
U(x, t) the concentration of proliferating cells in human prostate tumors
V(x, t) the concentration of transdifferentiating cells in human prostate tumors
r(x) the rate of increase of X(x, t) secreted by Z(x, t)
d1(x) the consumption rate of X(x, t)
d2(x) the rate of Y(x, t) and U(x, t)
d3(x) the rate of Z(x, t)
d4(x) the rate of V(x, t)
a(x) the differentiation ratio from U(x, t) to Z(x, t)
b(x) the half-saturation constant of X(x, t)
β(x) the gradient of the differentiation increase
ξ(x) the inverse of the maximum differentiation rate
θ(x),n(x) the Hill coefficients
γ0(x) the maximum rate of transfer from the Y(x, t) to V(x, t)
τ1 the average cell cycle duration of Y(x, t)
τ2 the cell transdifferentiation duration from Y(x, t) to Z(x, t)
D the diffusion coefficient
ν the outer normal vector
∆ the Laplace operator

ϕi(i = 1, 2, 3, 4, 5) the delay initial function
τ τ = max |τ1, τ2|

To ensure that V(x, t) cells asymmetrically divide into Y(x, t) cells, it is necessary that

2
[
1 − b(·)β(·)X(·, t − τ1)e−ξ(·)X(·,t−τ1)]e−d4(·)τ1γ0(·)

X(·, t − τ1)
b(·) + X(·, t − τ1)

> 0. (2.3)

To do so, let h(u) = 1 − b(·)β(·)ue−ξ(·)u, then

h′(u) = b(·)β(·)e−ξ(·)u(uξ(·) − 1), h′′(u) = b(·)β(·)e−ξ(·)uξ(·)(2 − uξ(·)).

It follows from h′(u) and h′′(u) that h(u) has only one minimum value point u0 =
1
ξ(·) ∈ (0,+∞).

Thereby, minu>0 h(u) = h(u0) = 1 − b(·)β(·)
eξ(·) . If (2.3) holds, it suffices that minu>0 h(u) > 0, and 0 <

b(·)β(·)
ξ(·) < e. Therefore, this paper requires the following underlying assumptions.

(H1) The functions 0 < d1(·), d2(·), d3(·), d4(·), r(·), a(·), b(·), β(·), ξ(·), γ0(·), n(·) ∈ C(Ω,R). τ1, τ2 > 0
are two constants, τ = max{τ1, τ2}.

(H2) For all x ∈ Ω, 0 < b(·)β(·)
ξ(·) < e, which ensures that V(·, t) cells asymmetrically divide into Y(·, t)

cells.
(H3) The initial delay function ϕk = ϕk(·, t)(k = 1, 2, 3, 4, 5) satisfies 0 < ϕk ∈ C(Ω × [−τ, 0],R).
(H4) For all x ∈ Ω, d2(·) < 2γ0(·), which ensures that Y(·, t) cells do not vanish because of natural

death.
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3. Global existence, uniqueness and boundedness of the solution

This section focuses on the global existence, uniqueness and boundedness of the solution to (2.2).
First, we need to review the relevant knowledge of operator semigroup theory and the comparison
principle of parabolic equations.

Let X = C(Ω × R,R5), X + = C(Ω × R+,R5
+), X +

τ = C(Ω × [−τ, 0],R5
+). For any

W = (W1,W2,W3,W4,W5)T ∈X and ϕ = (ϕ1, ϕ2, ϕ3, ϕ4, ϕ5)T ∈X +
τ , two norms are defined by

∥W∥ = sup
t∈R+

∫
Ω

5∑
j=1

[W j(x, t)]2dx


1
2

,

and

∥ϕ∥τ = sup
t∈[−τ,0]

∫
Ω

5∑
j=1

[ϕ j(x, t)]2dx


1
2

,

then (X , ∥ · ∥) and (X +
τ , ∥ · ∥τ) are two Banach spaces. X + = C(Ω×R+,R5

+) is the closed positive cone
of X . For any f (x) ∈ C(Ω,R), denote

f + = sup
x∈Ω

f (x), f − = inf
x∈Ω

f (x).

Set W(t) = (X(·, t),Y(·, t),Z(·, t),U(·, t),V(·, t))T and ϕ(t) = (ϕ1(·, t), ϕ2(·, t), ϕ3(·, t), ϕ4(·, t), ϕ5(·, t))T ,
then the model (2.2) is rewritten by{ dW(t)

dt = L(W(t)) + F (W(t)), t ∈ R+
W(t) = ϕ(t), t ∈ [−τ, 0],

(3.1)

where the mappings L and F are defined by

L(W(t)) = L


X
Y
Z
U
V


=


D∆X − d1(·)X
−d2(·)Y
−d3(·)Z
−d2(·)U
−d4(·)V


, (3.2)

and

F (W(t)) = F


X
Y
Z
U
V


=


F1(W)
F2(W)
F3(W)
F4(W)
F5(W)


, (3.3)

here

F1(W) = r(·)Z,
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F2(W) = − a(·)β(·)XYe−ξ(·)X − γ0(·)
X

b(·) + X
θn(·)(·)

[θ(·)]n(·) + Yn(·) Y

+ 2
[
1 − b(·)β(·)X(·, t − τ1)e−ξ(·)X(·,t−τ1)]e−d4(·)τ1

× γ0(·)
X(·, t − τ1)

b(·) + X(·, t − τ1)
[θ(·)]n(·)

[θ(·)]n(·) + [Y(·, t − τ1)]n(·) Y(·, t − τ1),

F3(W) =a(·)e−d2(·)τ2β(·)X(·, t − τ2)Y(·, t − τ2)e−ξ(·)X(·,t−τ2)

+ 2b(·)β(·)X(·, t − τ1)e−ξ(·)X(·,t−τ1)e−d4(·)τ1

× γ0(·)
X(·, t − τ1)

b(·) + X(·, t − τ1)
[θ(·)]n(·)

[θ(·)]n(·) + [Y(·, t − τ1)]n(·) Y(·, t − τ1),

F4(W) = a(·)β(·)XYe−ξ(·)X − e−d2(·)τ2a(·)β(·)X(·, t − τ2)Y(·, t − τ2)e−ξ(·)X(·,t−τ2),

and

F5(W) =γ0(·)
X

b(·) + X
[θ(·)]n(·)

[θ(·)]n(·) + Yn(·) Y − ed4(·)τ1γ0(·)
X(·, t − τ1)

b(·) + X(·, t − τ1)

×
[θ(·)]n(·)

[θ(·)]n(·) + [Y(·, t − τ1)]n(·) Y(·, t − τ1).

For all φ = (φ1, φ2, φ3, φ4, φ5)T ∈X +, define{
T1(t)φ1 = e−d1(·)t

∫
Ω
Λ(·, s, φ1(s))ds, T2(t)φ2 = e−d2(·)tφ2,

T3(t)φ3 = e−d3(·)tφ3, T4(t)φ4 = e−d2(·)tφ4, T5(t)φ5 = e−d4(·)tφ5,
(3.4)

where T1(t) is a compact and strongly positive C0-semigroup [23] induced by D∆ − d1(·) with the
Neumann boundary ∂X

∂ν
= 0. Λ is Green’s function. C0-semigroup {eLt}t≥0 = (T1(t), T1(t), T3(t), T4(t),

T5(t)) on X + is generated by the mapping L corresponding to the linear part of Eq (2.2), and satisfies
eLtX + ⊂ X +. In this way, the differential equation (3.1) is transformed into the following integral
equation form: {

W(t) = eLtφ +
∫ t

0
eL(t−s)F (W(s))ds, t > 0,

W(t) = ϕ(t), −τ ≤ t ≤ 0.
(3.5)

For any φ ∈X +, we have

φ + ϵF (φ) =


φ1 + ϵF1(φ)
φ2 + ϵF2(φ)
φ3 + ϵF3(φ)
φ4 + ϵF4(φ)
φ5 + ϵF5(φ)


≥


φ1 + ϵr−φ3

φ2[1 − ϵ(a+β+φ1 + γ
+
0 )]

φ3

φ4 − ϵa+β+φ1φ2

φ5 − ϵγ
+
0φ2


.

Taking ϵ > 0 small enough, one has φ + ϵφ ∈ X +, and limϵ→0+ dist(φ + ϵφ,X +) = 0. By Corollary 4
in [24] and noting that ϕ ∈X +

τ , we derive the following conclusion.

AIMS Mathematics Volume 8, Issue 6, 14426–14448.



14433

Lemma 3.1. For each φ ∈X +, Eq (2.2) has a unique discontinuous mild solution

W =
{
ϖ(·, t, φ), 0 < t < tφ,
ϕ(·, t), −τ ≤ t ≤ 0,

such thatϖ(·, t, φ) ∈ C([0, tφ],X )∩C1((0, tφ),X ) withϖ(·, 0+, φ) = φ. Furthermore, when t ∈ [−τ, tφ),
W is the classical solution of (2.2), and lim supt→tφ ∥ϖ(·, t, φ)∥ = +∞ provided that tφ < +∞.

The proof of Lemma 3.1 is the same as that of Corollary 4 in [24], so we omit it.

Lemma 3.2. [25] Consider{
∂w
∂t = d∆w + g(·) − h(·)w, (x, t) ∈ Ω × (0,+∞),
∂w
∂ν
= 0, (x, t) ∈ ∂Ω × (0,+∞),

(3.6)

where d > 0, g(·), h(·) ∈ C(Ω,R+). Then Eq (3.6) has a unique globally asymptotically stable steady-
state solution w∗(·) ∈ C(Ω,R+). Furthermore, for all x ∈ Ω, w∗(·) = g

h provided that g(·) ≡ g and
h(·) ≡ h, where h, g > 0 are some constants.

Theorem 3.1. For each φ ∈X +, Eq (2.2) has a unique solution

W =
{
ϖ(·, t, φ), 0 < t < +∞,
ϕ(·, t), −τ ≤ t ≤ 0,

(3.7)

such that ϖ(·, t, φ) ∈X + with ϖ(·, 0+, φ) = φ. And there has a constantM > 0 independent of φ such
that lim supt→+∞ϖ(·, t, φ) ≤ M, ∀ x ∈ Ω.

Proof. For each φ ∈ X +, according to Lemma 3.1, we know that Eq (2.2) has a unique classical
solution

W =
{
ϖ(·, t, φ), 0 < t < tφ,
ϕ(·, t), −τ ≤ t ≤ 0,

such that ϖ(·, t, φ) ∈ C([0, tφ],X ) ∩ C1((0, tφ),X ) with ϖ(·, 0+, φ) = φ. Next, it suffices to prove
that tφ = +∞, and there has a constantM > 0 independent of φ such that lim supt→+∞ϖ(·, t, φ) ≤ M,
∀ x ∈ Ω. In fact, from the second equation of (2.2) and (H1)–(H4), we have

∂Y
∂t
≤ − d2(·)Y + 2e−d4(·)τ1γ0(·)

X(·, t − τ1)
b(·) + X(·, t − τ1)

[θ(·)]n(·)

[θ(·)]n(·) + [Y(·, t − τ1)]n(·) Y(·, t − τ1)

≤ − d−2 Y(·, t) + 2γ+0 Y(·, t − τ1). (3.8)

Consider the following delayed differential equation

∂Y
∂t
= −d−2 Y(·, t) + 2γ+0 Y(·, t − τ1), (3.9)

let Y = eλt, then the characteristic equation of (3.9) is read as

λ + d−2 = 2γ+0 e−λτ1 . (3.10)
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Set Q(λ) = λ + d−2 − 2γ+0 e−λτ1 , together with (H1) and (H4), then Q′(λ) = 1 + 2γ+0 τ1e−λτ1 > 0,
Q(0) = d−2 − 2γ+0 < 0, Q(+∞) = +∞ > 0. Therefore, Q(λ) is strictly monotonically increasing in R.
According to the existence theorem of zero point of continuous function, there has a unique constant
λ0 ∈ (0,∞) such that Q(λ0) = 0, that is, the characteristic Eq (3.10) has a unique characteristic root
λ = λ0 > 0. Therefore, the general solution of Eq (3.9) is Y = Ceλ0t. Thus, (3.8) becomes

∂[eλ0tY(·, t)]
∂t

= [−d−2 Y(·, t) + 2γ+0 Y(·, t − τ1)]eλ0t ≤ 0. (3.11)

Integrating from 0 to t on both side of (3.11), we get

eλ0tY(·, t) − Y(·, 0) = eλ0tY − ϕ2(·, 0) ≤ 0,

which implies that

Y(·, t) ≤ ϕ+2 (0)e−λ0t ≤ ϕ+2 (0), 0 < t ≤ tφ. (3.12)

One derives from (3.12) and (H3) that there has a constantM0 such that

M0 ≥ max

 sup
x∈Ω,−τ≤t≤0

ϕ2(·, t), ϕ+2 (0)

 > 0, Y(·, t) ≤ M0, ∀ − τ ≤ t < tφ. (3.13)

Let
Θ(·, t) = Y(·, t) + Z(·, t) + U(·, t) + V(·, t),

then

Θ(·, 0) = Y(·, 0) + Z(·, 0) + U(·, 0) + V(·, 0) =
5∑

k=2

ϕk(·, 0).

Denote

d = min{d−2 , d
−
3 , d

−
4 }, Θ

+(0) = sup
x∈Ω

Θ(·, 0) =
5∑

k=2

sup
x∈Ω

ϕk(·, 0).

In view of (H1)–(H4), (2.2) and (3.13), we obtain

∂Θ

∂t
= − d2(·)Y − d3(·)Z − d2(·)U − d4(·)V

+ e−d4(·)τ1γ0(·)
X(·, t − τ1)

b(·) + X(·, t − τ1)
[θ(·)]n(·)

[θ(·)]n(·) + [Y(·, t − τ1)]n(·) Y(·, t − τ1)

≤ − dΘ(·, t) + γ+0 Y(·, t − τ1) ≤ −dΘ(·, t) + γ+0M0. (3.14)

By (3.14), we have

∂[edtΘ(·, t)]
∂t

= edt

[
∂Θ(·, t)
∂t

+ dΘ(·, t)
]
≤ γ+0M0edt. (3.15)

Integrating from 0 to t on both side of (3.15), we obtain

edtΘ(·, t) ≤ Θ(·, 0) + γ+0M0

∫ t

0
edtdt = Θ(·, 0) +

γ+0M0

d
(edt − 1). (3.16)
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From (3.16) and noting that d > 0, we yield

Θ(·, t) ≤ Θ+(0)e−dt +
γ+0M0

d
(1 − e−dt) ≤ Θ+(0) +

γ+0M0

d
, 0 < t < tφ. (3.17)

From (H3) and (3.17), we take

M1 ≥ max

 sup
x∈Ω,−τ≤t≤0

Θ(·, t), Θ+(0) +
γ+0M0

d

 > 0,

then

Θ(·, t) = Y(·, t) + Z(·, t) + U(·, t) + V(·, t) ≤ M1, ∀ x ∈ Ω, t ∈ [−τ, tφ). (3.18)

From the first equation of (2.2) and (3.18), we have{
∂X
∂t = D∆X − d1(·)X + r(·)Z ≤ D∆X + r+M1 − d−1 X, (x, t) ∈ Ω × (0, tφ),
∂X
∂ν
= 0, (x, t) ∈ ∂Ω × (0, tφ).

(3.19)

By Lemma 3.2 and the comparison principle, there has a constantsM2 ≥
r+M1

d−1
> 0 such that X(·, t) ≤

M2, ∀ (x, t) ∈ Ω × (0, tφ). Thus, takingM = max{M1,M2, supx∈Ω,−τ≤t≤0 ϕ1(·, t)} > 0 independent of φ,
one has

ϖ(·, t, φ) ≤ M, ∀ (x, t) ∈ Ω × (0, tφ); ϕ(·, t) ≤ M, ∀ (x, t) ∈ Ω × [−τ, 0]. (3.20)

In the light of (3.20) and Lemma 3.1, we conclude that tφ = +∞ and lim supt→+∞ϖ(·, t, φ) ≤ M,
∀ x ∈ Ω. The proof is completed. □

4. Global compact attractor

Let

M∗0 = max

 sup
x∈Ω,−τ≤t≤0

ϕ2(·, t), ϕ+2 (0)

 , M∗1 = max

 sup
x∈Ω,−τ≤t≤0

Θ(·, t), Θ+(0) +
γ+0M

∗
0

d

 ,
M∗2 =

r+M∗1
d−1
, M∗ = max

{
M∗1,M

∗
2, sup

x∈Ω,−τ≤t≤0
ϕ1(·, t)

}
.

Define a set D and a solution semiflow Ft : X + →X + of (2.2) as

D =
{
(X,Y,Z,U,V)T ∈X + : 0 ≤ X ≤ M∗, 0 ≤ Y + Z + U + V ≤ M∗1

}
, (4.1)

and

Ft(φ) = W(x, t, φ) = (X(·, t, φ),Y(·, t, φ),Z(·, t, φ),U(·, t, φ),V(·, t, φ)), t ≥ 0, φ ∈X +. (4.2)

To ensure the existence of a global compact attractor for the solution semiflow Ft(φ), it needs to be
further assumed that the condition below is true.
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(H5) κ1 = −d−2 + γ
+
0 + 2γ+0 e−d−4 τ1 + 1

2

[a+β+e−d−2 τ2

ξ−e +
2b+β+γ+0 e−d−4 τ1

ξ−e (1 + n+)
]
+ 1

2

[ a+β+
ξ−e +

a+β+

ξ−e e−d−2 τ2
]
+ 1

2

[
γ+0 (1 +

n+) + γ+0 e−d−4 τ1(1 + n+)
]
< 0, κ2 = −d−3 +

1
2

[ a+β+e−d−2 τ2

ξ−e +
2b+β+γ+0 e−d−4 τ1

ξ−e (1 + n+)
]
< 0 and κ3 = −d−4 +

1
2

[
γ+0 (1 + n+) + γ+0 e−d−4 τ1(1 + n+)

]
< 0.

Theorem 4.1. If (H1)–(H5) hold, then the solution semiflow Ft(φ) defined by (4.2) has a global
compact attractor A on X +.

Next, we shall fulfil the proof of Theorem 4.1 from the under lemmas.

Lemma 4.1. D is a positive invariant set of Ft defined by (4.2) in the sense of Ft(φ) ∈ D , ∀φ ∈ D ,
t ≥ 0.

Proof. From the proof of Theorem 3.1, we know that the constantsM∗1 andM∗ can be regarded as the
upper solution of Eqs (3.14) and (3.19), respectively. That is, for all φ ∈ D , t ≥ 0, noting that Ft(φ) is a
solution of Eq (2.2), we have 0 ≤ X(·, t, φ) ≤ M∗ and 0 ≤ Y(·, t, φ)+Z(·, t, φ)+U(·, t, φ)+V(·, t, φ) ≤ M∗1,
namely, Ft(φ) ∈ D . The proof is completed. □

Since there is a lack of diffusion terms in the last four equations of system (2.2), the semiflow Ft

is no longer compact. Therefore, we adopt Kuratowski’s measure of noncompactness (see [26]) K
defined by

K(E) = inf{σ > 0 : E has a f inite cover by subsets o f Ei ⊂ E such that diam(Ei) ≤ σ}, (4.3)

where E is any bounded set and diam(Ei) is the diameter of the set Ei. If E is unbounded, then K(E) =
+∞. Moreover, K(E) = 0 if and only if E is precompact (i.e. E is compact). For the sake of unity
and convenience, let w = (w1,w2,w3,w4) = (Y,Z,U,V), then the last four equations of system (2.2) are
rewritten as

∂w
∂t
= h(x, X,w), x ∈ Ω, t > 0. (4.4)

For Eq (4.4), we have the following conclusion.

Lemma 4.2. If (H5) holds, then there has a constant κ > 0 such that

ζ

[
∂h(x, X,w)
∂w

]
ζT ≤ −κζζT , ∀ ζ = (ζ1, ζ2, ζ3, ζ4) ∈ R4, (4.5)

where
[
∂h(x,t,X,w)
∂w

]
is the Jacobian matrix of h(x, t, X,w) with respect to w.

Proof. A direct calculation gives

∂h1

∂w1
= − d2(·) − a(·)β(·)Xe−ξ(·)X − γ0(·)

X
b(·) + X

[ [θ(·)]n(·)

[θ(·)]n(·) + wn(·)
1

−
n(·)[θ(·)]n(·)wn(·)

1

([θ(·)]n(·) + wn(·)
1 )2

]
+ 2
[
1 − b(·)β(·)X(·, t − τ1)e−ξ(·)X(·,t−τ1)]e−d4(·)τ1γ0(·)

X(·, t − τ1)
b(·) + X(·, t − τ1)

×

[ [θ(·)]n(·)

[θ(·)]n(·) + [w1(·, t − τ1)]n(·) −
n(·)[θ(·)]n(·)[w1(·, t − τ1)]n(·)

([θ(·)]n(·) + [w1(·, t − τ1)]n(·))2

]
, (4.6)
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∂h1

∂w2
=
∂h1

∂w3
=
∂h1

∂w4
= 0, (4.7)

∂h2

∂w1
=a(·)e−d2(·)τ2β(·)X(·, t − τ2)e−ξ(·)X(·,t−τ2) + 2b(·)β(·)X(·, t − τ1)e−d4(·)τ1

× e−ξ(·)X(·,t−τ1)γ0(·)
X(·, t − τ1)

b(·) + X(·, t − τ1)

[ [θ(·)]n(·)

[θ(·)]n(·) + [w1(·, t − τ1)]n(·)

−
n(·)[θ(·)]n(·)[w1(·, t − τ1)]n(·)

([θ(·)]n(·) + [w1(·, t − τ1)]n(·))2

]
, (4.8)

∂h2

∂w2
= −d3(·),

∂h2

∂w3
=
∂h2

∂w4
= 0, (4.9)

∂h3

∂w1
= a(·)β(·)Xe−ξ(·)X − e−d2(·)τ2a(·)β(·)X(·, t − τ2), e−ξ(·)X(·,t−τ2) (4.10)

∂h3

∂w3
= −d2(·),

∂h3

∂w2
=
∂h3

∂w4
= 0, (4.11)

∂h4

∂w1
=γ0(·)

X
b(·) + X

[ [θ(·)]n(·)

[θ(·)]n(·) + wn(·)
1

−
n(·)[θ(·)]n(·)wn(·)

1

([θ(·)]n(·) + wn(·)
1 )2

]
− e−d4(·)τ1γ0(·)

×
X(·, t − τ1)

b(·) + X(·, t − τ1)

[ [θ(·)]n(·)

[θ(·)]n(·) + [w1(·, t − τ1)]n(·) −
n(·)[θ(·)]n(·)[w1(·, t − τ1)]n(·)

([θ(·)]n(·) + [w1(·, t − τ1)]n(·))2

]
, (4.12)

and

∂h4

∂w4
= −d4(·),

∂h4

∂w2
=
∂h4

∂w3
= 0. (4.13)

From (4.6)–(4.13) and Schwartz’s inequality, we have

ζ

[
∂h(x, X,w)
∂w

]
ζT =

∂h1

∂w1
ζ2

1 +
∂h2

∂w2
ζ2

2 +
∂h3

∂w3
ζ2

3 +
∂h4

∂w4
ζ2

4 +
∂h2

∂w1
ζ1ζ2 +

∂h3

∂w1
ζ1ζ3 +

∂h4

∂w1
ζ1ζ4

≤
∂h1

∂w1
ζ2

1 +
∂h2

∂w2
ζ2

2 +
∂h3

∂w3
ζ2

3 +
∂h4

∂w4
ζ2

4 +
1
2

∣∣∣∣∣ ∂h2

∂w1

∣∣∣∣∣(ζ2
1 + ζ

2
2 ) +

1
2

∣∣∣∣∣ ∂h3

∂w1

∣∣∣∣∣(ζ2
1 + ζ

2
3 ) +

1
2

∣∣∣∣∣ ∂h4

∂w1

∣∣∣∣∣(ζ2
1 + ζ

2
4 )

≤

{
− d2(·) + γ0(·) + 2γ0(·)e−d4(·)τ1 +

1
2

[a(·)β(·)e−d2(·)τ2

ξ(·)e
+

2b(·)β(·)γ0(·)e−d4(·)τ1

ξ(·)e
(1 + n(·))

]
+

1
2

[a(·)β(·)
ξ(·)e

+
a(·)β(·)
ξ(·)e

e−d2(·)τ2
]
+

1
2

[
γ0(·)(1 + n(·)) + γ0(·)e−d4(·)τ1(1 + n(·))

]}
ζ2

1

+

{
− d3(·) +

1
2

[a(·)β(·)e−d2(·)τ2

ξ(·)e
+

2b(·)β(·)γ0(·)e−d4(·)τ1

ξ(·)e
(1 + n(·))

]}
ζ2

2

+

{
− d2(·) +

1
2

[a(·)β(·)
ξ(·)e

+
a(·)β(·)
ξ(·)e

e−d2(·)τ2
]}
ζ2

3
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+

{
− d4(·) +

1
2

[
γ0(·)(1 + n(·)) + γ0(·)e−d4(·)τ1(1 + n(·))

]}
ζ2

4

≤

{
− d−2 + γ

+
0 + 2γ+0 e−d−4 τ1 +

1
2

[a+β+e−d−2 τ2

ξ−e
+

2b+β+γ+0 e−d−4 τ1

ξ−e
(1 + n+)

]
+

1
2

[a+β+
ξ−e
+

a+β+

ξ−e
e−d−2 τ2

]
+

1
2

[
γ+0 (1 + n+) + γ+0 e−d−4 τ1(1 + n+)

]}
ζ2

1

+

{
− d−3 +

1
2

[a+β+e−d−2 τ2

ξ−e
+

2b+β+γ+0 e−d−4 τ1

ξ−e
(1 + n+)

]}
ζ2

2

+

{
− d−2 +

1
2

[a+β+
ξ−e
+

a+β+

ξ−e
e−d−2 τ2

]}
ζ2

3

+

{
− d−4 +

1
2

[
γ+0 (1 + n+) + γ+0 e−d−4 τ1(1 + n+)

]}
ζ2

4 . (4.14)

Take 0 < κ ≤ −min{κ1, κ2, κ3}, then it follows from (H5) and (4.14) that the formula (4.5) holds. The
proof is completed. □

Lemma 4.3. If (H5) is true, then Ft defined as (4.3) is asymptotically compact andK-contract in sense
of

lim
t→+∞
K(Ft(E)) = 0, f or any bounded set E ∈X +.

Proof. For any bounded subset E ⊂ D , Ft is asymptotically compact on E ⇐⇒ For any sequences
tn → +∞ and φn ∈ D , there have common subsequences tnk and φnk such that Ftnk

(φnk) converges in
X as k → ∞. We derive from Theorem 3.1 that Ftn(φn) is uniformly bounded on Ω. According to
Ascoli-Arezlà theorem, it suffices to prove that Ftn(φn) is equicontinuous on Ω. To this end, let

Ft(φn) = (Xn(x, t),wn(x, t)), ∀φn ∈ D , t ≥ 0, x ∈ Ω,

and

(Xn(x, t),wn(x, t)) = (Xn(x, t + tn),wn(x, t + tn)), ∀ t ≥ tn, x ∈ Ω.

Obviously, (Xn(x, 0),wn(x, 0)) = Ftn(φn)(x), for all n ≥ 1, x ∈ Ω. One knows from Theorem 3.1 that
(Xn(x, t),wn(x, t)) is also uniformly bounded, for all n ≥ 1, x ∈ Ω and t ≥ 0. For arbitrary x1, x2 ∈ Ω

satisfying |x1 − x2| < δ, we have

∂

∂t
∥wn(x1, t) − wn(x2, t)∥2

=2(wn(x1, t) − wn(x2, t)) · (h(x1, Xn(x1, t),wn(x1, t)) − h(x2, Xn(x2, t),wn(x2, t)))T

=2(wn(x1, t) − wn(x2, t)) · (h(x1, Xn(x1, t),wn(x1, t)) − h(x1, Xn(x1, t),wn(x2, t)))T

+ 2(wn(x1, t) − wn(x2, t)) · (h(x1, Xn(x1, t),wn(x2, t)) − h(x2, Xn(x2, t),wn(x2, t)))T . (4.15)
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For all t ≥ tn, from Lemma 4.2 and (4.15), we have

(wn(x1, t) − wn(x2, t)) · (h(x1, Xn(x1, t),wn(x1, t)) − h(x1, Xn(x1, t),wn(x2, t)))T

=(wn(x1, t) − wn(x2, t)) ·
[ ∫ 1

0

∂h
∂w

(x1, Xn(x1, t),wn(x1, t) + µ(wn(x1, t) − wn(x2, t))dµ
]

· (wn(x1, t) − wn(x2, t))T

≤ − κ∥wn(x1, t) − wn(x2, t)∥2. (4.16)

Denote

Hn(x1, x2, t) = ∥h(x1, Xn(x1, t),wn(x2, t)) − h(x2, Xn(x2, t),wn(x2, t))∥, (4.17)

then we derive from (4.1) and (4.15)–(4.17) that

∂

∂t
∥wn(x1, t) − wn(x2, t)∥2 ≤ −2κ∥wn(x1, t) − wn(x2, t)∥2 + 8M∗1Hn(x1, x2, t). (4.18)

By (4.18), we get

∂

∂t
[
e2κt∥wn(x1, t) − wn(x2, t)∥2

]
≤ 8M∗1Hn(x1, x2, t)e2κt. (4.19)

For all t ≥ s ≥ −tn, x1, x2 ∈ Ω, integrating from s to t on both side of (4.19), we obtain

∥wn(x1, t) − wn(x2, t)∥2 ≤ e−2κ(t−s)∥wn(x1, s) − wn(x2, s)∥2

+ 8M∗1

∫ t

s
e−2κ(t−η)Hn(x1, x2, η)dη. (4.20)

Fixing t = 0 and s = −tn in (4.20), we have

∥wn(x1, tn) − wn(x2, tn)∥2 ≤ e−2κtn∥wn(x1, 0) − wn(x2, 0)∥2

+ 8M∗1

∫ 0

tn
e2κηHn(x1, x2, η)dη, ∀ n ≥ 1, x1, x2 ∈ Ω. (4.21)

According to Sobolev imbedding theorem and the Lp estimate of parabolic equations, and noting
that (Xn(x, t),wn(x, t)) = Ft(φn), φn ∈ E, ∀ n ≥ 1, t ≥ 0, x ∈ Ω, we conclude that Xn(x, 0) is
equicontinuous with respect to x ∈ Ω. Furthermore, for any given t∗ > 0, when t ∈ [−t∗, 0] with
tn > t∗, Xn(x, t) is also equicontinuous with respect to x ∈ Ω. Therefore, we need to show that
{wn(x, tn)}∞n=1 is equicontinuous, that is, ∀ ε > 0, ∀ x1, x2 ∈ Ω and n ≥ 1 (large enough), ∃ δ > 0, when
|x1 − x2| < δ, we have

∥wn(x1, tn) − wn(x2, tn)∥ < ε. (4.22)

Indeed, wn(x, 0) is bounded on Ω, there has an integer n0 ≥ 1 such that

e−2κtn∥wn(x1, 0) − wn(x2, 0)∥2 <
ε

2
, n > n0. (4.23)
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In addition, X and w are bounded ⇒ Hn is also bounded on Ω × Ω × [−tn, 0]. Therefore, there has
T > 0 such that

8M∗1

∫ −T

−tn
e2κηHn(x1, x2, η)dη <

ε

4
, ∀ tn > T . (4.24)

Moreover, since Xn(x, 0) is equicontinuous with respect to x ∈ Ω, there has δ > 0 satisfying |x1−x2| < δ

such that

Hn(x1, x2, η) <
κε

16M∗1
,

which implies that

8M∗1

∫ 0

−T
e2κηHn(x1, x2, η)dη <

ε

4
. (4.25)

Thus, it follows from (4.21) and (4.23)–(4.25) that (4.22) holds. As a result, Ft is asymptotically
compact on E. Based on Lemma 23 in [27], we know that the omega limit set ω(E) is nonempty,
compact and invariant, and attracts E, which shows that Ft is asymptotically smooth. Thank to
Lemma 2.1 in [28], we have

K(Ft(E)) ≤ K(ω(E)) + ρ(Ft(E), ω(E)) = ρ(Ft(E), ω(E)), (4.26)

where ρ(Ft(E), ω(E)) stands for the distance between Ft(E) and ω(E). Taking the limit t → +∞ on
the both side of (4.26), we obtain limt→+∞K(Ft(E)) = 0. Therefore, Ft is K-contract. The proof is
completed. □

By applying Theorem 3.1 and Lemma 4.3, we conclude that Theorem 4.1 holds.

5. An example and numerical simulation

It is worth noting that some parameters such as r, a and b in system (2.1) cannot be estimated
by experimental design, which is shown by the authors of [14]. Therefore, the following numerical
simulation only reveals the global dynamic behaviour of model (2.2) mathematically.

Let Ω = (0, 1) ⊂ R, D = 2, d1(·) ≡ 0.2, r(·) ≡ 0.5, d2(·) ≡ 0.6, d3(·) ≡ 0.3, d4(·) ≡ 0.5, a(·) ≡ 1,
β(·) ≡ 2, ξ(·) ≡ 4, γ0(·) ≡ 0.1, b(·) ≡ 5, θ(·) ≡ 0.2, n(·) ≡ 0.3, τ1 = τ2 = 1, ϕk = 0.1, k = 1, 2, 3, 4, 5.
Obviously, the conditions (H1)–(H4) hold. From Theorem 3.1, we conclude that system (2.2) has a
unique bounded solution.

Next, we verify the condition (H5) is true. Indeed, a direct calculation gives

κ3 = −d−4 +
1
2
[
γ+0 (1 + n+) + γ+0 e−d−4 τ1(1 + n+)

]
≈ −0.3956 < 0,

κ2 = −d−3 +
1
2

[a+β+e−d−2 τ2

ξ−e
+

2b+β+γ+0 e−d−4 τ1

ξ−e
(1 + n+)

]
≈ −0.1770 < 0,
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and

κ1 = − d−2 + γ
+
0 + 2γ+0 e−d−4 τ1 +

1
2

[a+β+e−d−2 τ2

ξ−e
+

2b+β+γ+0 e−d−4 τ1

ξ−e
(1 + n+)

]
+

1
2

[a+β+
ξ−e
+

a+β+

ξ−e
e−d−2 τ2

]
+

1
2

[
γ+0 (1 + n+) + γ+0 e−d−4 τ1(1 + n+)

]
≈ −0.0088 < 0.

Thus, it follows from Theorem 4.1 that system (2.2) has a global compact attractor.
With the help of the Pdepe toolbox in MATLAB 2018b, we now give the numerical solutions and

simulations of the example. Taking the initial values X0 = 1, Y0 = 0.8, Z0 = 0.9, U0 = 0.8, and
V0 = 0.8, when x = 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95, and t = 1.55, 1.60, 1.65, 1.70,
1.75, 1.80, 1.85, 1.90, 1.95, the numerical solutions of X(x, t), Y(x, t), Z(x, t), U(x, t) and V(x, t) are
as given in Tables 1–5, respectively. Figures 2–6 are their respective numerical simulations. It can be
seen from the numerical solutions and simulation diagrams that this example has a positive solution of
global attraction.

Table 1. The numerical solution X(x, t).

t
x

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

1.55 1.1259 1.1007 1.0753 1.0500 1.0249 0.9997 0.9745 0.9493 0.9239
1.60 1.1409 1.1154 1.0892 1.0632 1.0371 1.0111 0.9851 0.9590 0.9329
1.65 1.1547 1.1289 1.1021 1.0755 1.0489 1.0222 0.9956 0.9689 0.9422
1.70 1.1681 1.1419 1.1146 1.0874 1.0601 1.0329 1.0057 0.9785 0.9511
1.75 1.1811 1.1546 1.1267 1.0988 1.0710 1.0432 1.0154 0.9876 0.9597
1.80 1.1936 1.1668 1.1383 1.1099 1.0815 1.0531 1.0247 0.9963 0.9678
1.85 1.2056 1.1786 1.1495 1.1205 1.0915 1.0626 1.0336 1.0046 0.9756
1.90 1.2173 1.1899 1.1603 1.1307 1.1012 1.0717 1.0422 1.0126 0.9830
1.95 1.2285 1.2008 1.1706 1.1405 1.1105 1.0804 1.0503 1.0202 0.9900

Figure 2. Simulation of solution of X(x, t)
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Table 2. The numerical solution Y(x, t).

t
x

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

1.55 2.7597 0.7675 0.7752 0.7751 0.7750 0.7749 0.7748 0.7747 0.7826
1.60 4.6898 0.7207 0.7513 0.7510 0.7508 0.7507 0.7505 0.7501 0.7817
1.65 6.5911 0.6601 0.7285 0.7277 0.7275 0.7272 0.7269 0.7260 0.7966
1.70 8.4642 0.5862 0.7068 0.7052 0.7049 0.7045 0.7041 0.7024 0.8268
1.75 10.3098 0.4994 0.6863 0.6834 0.6830 0.6826 0.6821 0.6790 0.8719
1.80 12.1286 0.4000 0.6670 0.6623 0.6619 0.6614 0.6608 0.6558 0.9312
1.85 13.9211 0.2885 0.6490 0.6419 0.6414 0.6408 0.6403 0.6327 1.0045
1.90 15.6882 0.1653 0.6323 0.6221 0.6216 0.6210 0.6204 0.6095 1.0910
1.95 17.4303 0.0308 0.6171 0.6029 0.6025 0.6018 0.6012 0.5861 1.1905

Figure 3. Simulation of solution of Y(x, t).

Table 3. The numerical solution Z(x, t).

t
x

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

1.55 2.8801 0.8837 0.8873 0.8874 0.8874 0.8875 0.8875 0.8876 0.8910
1.60 4.8462 0.8605 0.8748 0.8748 0.8749 0.8750 0.8752 0.8753 0.8890
1.65 6.7984 0.8304 0.8624 0.8625 0.8626 0.8628 0.8629 0.8630 0.8939
1.70 8.7367 0.7936 0.8503 0.8502 0.8504 0.8506 0.8509 0.8509 0.9055
1.75 10.6612 0.7500 0.8384 0.8381 0.8384 0.8386 0.8389 0.8388 0.9239
1.80 12.5721 0.6998 0.8268 0.8262 0.8265 0.8268 0.8271 0.8267 0.9490
1.85 14.4695 0.6431 0.8155 0.8144 0.8147 0.8151 0.8155 0.8147 0.9807
1.90 16.3535 0.5799 0.8044 0.8027 0.8031 0.8035 0.8039 0.8026 1.0190
1.95 18.2242 0.5103 0.7937 0.7912 0.7916 0.7921 0.7926 0.7905 1.0638
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Figure 4. Simulation of solution of Y(x, t).

Table 4. The numerical solution U(x, t).

t
x

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

1.55 2.7623 0.7696 0.7769 0.7769 0.7770 0.7770 0.7770 0.7771 0.7843
1.60 4.6963 0.7255 0.7546 0.7545 0.7546 0.7547 0.7547 0.7547 0.7833
1.65 6.6029 0.6682 0.7331 0.7327 0.7328 0.7329 0.7331 0.7327 0.7966
1.70 8.4824 0.5980 0.7125 0.7115 0.7116 0.7118 0.7120 0.7111 0.8238
1.75 10.3354 0.5152 0.6929 0.6909 0.6911 0.6913 0.6915 0.6896 0.8646
1.80 12.1625 0.4203 0.6744 0.6708 0.6711 0.6713 0.6716 0.6682 0.9185
1.85 13.9642 0.3135 0.6570 0.6513 0.6516 0.6519 0.6523 0.6469 0.9852
1.90 15.7409 0.1952 0.6408 0.6324 0.6328 0.6331 0.6335 0.6254 1.0645
1.95 17.4933 0.0657 0.6259 0.6139 0.6144 0.6147 0.6153 0.6038 1.1558

Figure 5. Simulation of solution of Y(x, t).
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Table 5. The numerical solution V(x, t).

t
x

0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95

1.55 2.7679 0.7742 0.7804 0.7804 0.7804 0.7804 0.7803 0.7803 0.7865
1.60 4.7119 0.7366 0.7613 0.7612 0.7612 0.7612 0.7612 0.7611 0.7858
1.65 6.6322 0.6877 0.7429 0.7425 0.7425 0.7425 0.7425 0.7421 0.7974
1.70 8.5294 0.6277 0.7251 0.7243 0.7243 0.7243 0.7243 0.7234 0.8210
1.75 10.4038 0.5568 0.7081 0.7065 0.7065 0.7065 0.7065 0.7049 0.8564
1.80 12.2559 0.4753 0.6919 0.6891 0.6892 0.6891 0.6892 0.6864 0.9032
1.85 14.0860 0.3834 0.6765 0.6722 0.6722 0.6722 0.6723 0.6680 0.9612
1.90 15.8946 0.2815 0.6620 0.6557 0.6558 0.6557 0.6558 0.6495 1.0302
1.95 17.6821 0.1698 0.6484 0.6396 0.6397 0.6397 0.6398 0.6309 1.1098

Figure 6. Simulation of solution of Y(x, t).

6. Conclusions and outlooks

Prostate cancer is a common type of malignant tumour and one of the main diseases causing death
in males. Many researchers have conducted extensive and in-depth experimental and theoretical
research on prostate cancer. In this manuscript, we applied the PDE model (2.2) to explore the spatial
distribution and evolution of prostate cancer cells and androgen in tumours. Applying C0-semigroup
theory and the comparison principle of PDEs, we obtain the global existence, uniqueness and
boundedness of the solution of our model (2.2). At the same time, we obtain some sufficient
conditions for the existence of global invariant sets and global attractors by the solution semiflow and
Kuratowski’s measure of noncompactness. Our theoretical results show that the time delay has no
effect on the global existence, uniqueness and boundedness of the solution. However, the time delay
and natural cell death rate will have a great impact on global attraction. The numerical solution and
simulation of an example verify the correctness and effectiveness of our theoretical outcomes. Our
results show that the evolution of prostate cancer cells and androgens over time is not only attractive,
but also asymptotically stable. Our research provides certain theoretical support for the prevention
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and treatment of human prostate cancer. In addition, enlightened by some recent research [29–42], we
can further apply fractional calculus theory, fixed point theory, coincidence theory and Lyapunov
stability theory to study human diseases in the future, reveal the pathogenesis of these diseases
through mathematical methods, and make certain contributions to the prevention and treatment of
human diseases.
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