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Background: Non-typeable Haemophilus influenzae has become increasingly 
important as a causative agent of invasive diseases following vaccination against 
H. influenzae type b. The emergence of antibiotic resistance underscores the 
necessity to investigate typeable non-b carriage and non-typeable H. influenzae 
(NTHi) in children.

Methods: Nasopharyngeal swab samples were taken over a three-year period 
(2016–2018) from 336 children (6–30 months of age) attending daycare centers 
(DCCs) in Belgium, and from 218 children with acute otitis media (AOM). Biotype, 
serotype, and antibiotic resistance of H. influenzae strains were determined 
phenotypically. Mutations in the ftsI gene were explored in 129 strains that were 
resistant or had reduced susceptibility to beta-lactam antibiotics. Results were 
compared with data obtained during overlapping time periods from 94 children 
experiencing invasive disease.

Results: Overall, NTHi was most frequently present in both carriage (DCC, AOM) 
and invasive group. This was followed by serotype “f” (2.2%) and “e” (1.4%) in 
carriage, and “b” (16.0%), “f” (11.7%), and “a” (4.3%) in invasive strains. Biotype II was 
most prevalent in all studied groups, followed by biotype III in carriage and I  in 
invasive strains. Strains from both groups showed highest resistance to ampicillin 
(26.7% in carriage vs. 18.1% in invasive group). A higher frequency of ftsI mutations 
were found in the AOM group than the DCC group (21.6 vs. 14.9% – p = 0.056). 
Even more so, the proportion of biotype III strains that carried a ftsI mutation was 
higher in AOM compared to DCC (50.0 vs. 26.3% – p < 0.01) and invasive group.

Conclusion: In both groups, NTHi was most frequently circulating, while specific 
encapsulated serotypes for carriage and invasive group were found. Biotypes I, 
II and III were more frequently present in the carriage and invasive group. The 
carriage group had a higher resistance-frequency to the analyzed antibiotics 
than the invasive group. Interestingly, a higher degree of ftsI mutations was found 
in children with AOM compared to DCC and invasive group. This data helps 
understanding the H. influenzae carriage in Belgian children, as such information 
is scarce.
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Introduction

The nasopharynx is a major reservoir for bacterial pathogens that 
can lead to upper respiratory tract infections in children and 
nasopharyngeal carriage of pathogens is an important source of 
transmission to other susceptible groups, mainly elderly (Aniansson 
et al., 1992). Haemophilus influenzae is one of the most important 
bacterial colonizers of the nasopharynx and is a frequent cause of 
acute otitis media (AOM) and sinusitis (Hashida et al., 2008; Ortiz-
Romero et  al., 2017). H. influenzae can exist without a capsule 
(non-typeable H. influenzae) or can be capsulated by six different 
polysaccharide capsules (i.e., serotypes a to f; Pittman, 1931), with the 
most virulent one being H. influenzae serotype b (Hib). Up until the 
introduction of the H. influenzae vaccine — that included the Hib 
capsule — into the national childhood vaccination programs in 1993 
(Jacquinet et al., 2021), Hib was the most common cause of invasive 
H. influenzae disease in young children, including meningitis 
(Pittman, 1931; Peltola et  al., 1977; Peltola, 2000). The routine 
administration of Hib vaccines led to a significant decline in invasive 
Hib disease in all age groups, through direct and indirect (herd 
immunity) protection (Swingler et al., 2007); but this in turn made 
room for non-typeable H. influenzae (NTHi) cases as well as non-b-
serotype cases to increase (Madore, 1996; Agrawal and Murphy, 2011). 
In Belgium, most (76.8%) of the invasive H. influenzae strains were 
reported as non-typeables during the period 2017–2021 (Grammens 
et al., 2017, 2018; Jacquinet et al., 2021). However, typeable serotypes, 
such as serotype “f ” (9.7%), serotype “b” (5.8%), serotype “a” (2.7%), 
serotype “e” (1.1%) and serotype “d” (0.4%), were also found to be the 
cause of invasive infections in children and elderly during the same 
period (Grammens et al., 2017, 2018; Jacquinet et al., 2021). These 
observations demonstrate the importance of conducting further 
research into the circulating serotypes of H. influenzae.

H. influenzae strains can acquire antibiotic resistance by two 
different mechanisms; either by producing beta-lactamase enzymes 
which hydrolyze beta-lactam antibiotics (Medeiros et  al., 1986; 
McElligott et  al., 2020) or by acquiring mutations in the genes 
encoding for penicillin-binding protein (PBP) protein (Ubukata et al., 
2001, 2002). Mutations in the ftsI gene, which encodes PBP3, lowers 
the binding affinity of beta-lactam antibiotics to PBP3 (Mendelman 
et al., 1987); hence, the diversity of mutations in the ftsI gene lead to 
several profiles that can affect differently the beta-lactam antibiotics, 
making macrolides and quinolones more important alternative 
treatment strategies (Tanaka et al., 2019). Beta-lactamase-negative 
ampicillin resistant H. influenzae or BLNAR is one of the problems for 
the treatment of H. influenzae with beta-lactam antibiotics. Specific 
amino acid substitutions have been identified by sequencing of the ftsI 
gene, producing a BLNAR phenotype (Yalçın et al., 2022). BLNARS 
are divided into groups I, II, III and III-like defined by the amino acid 
mutation patterns at specific sites (Hotomi et al., 2007). Group III and 
III-like (referred as high-BLNAR) have usually a higher ampicillin 
MIC (higher level of ampicillin resistant) compared to group I and II 

(Han et al., 2019). High BLNARs are changing worldwide, but more 
rapidly in Asia than in Europe and USA (Ubukata et  al., 2001; 
Hasegawa et al., 2003; García-Cobos et al., 2007; Barbosa et al., 2011; 
Skaare et al., 2014; Honda et al., 2018).

The existence of antibiotic resistance of H. influenzae underscores 
the necessity to investigate typeable non-b carriage and non-typeable 
H. influenzae in children. This study describes for the first time the 
carriage and antimicrobial susceptibility profile of H. influenzae 
strains in samples obtained from healthy Belgian children attending 
daycare centers (DCC) and children with acute otitis media (AOM), 
and compares it to Belgian children experiencing invasive disease 
caused by both non-typeable and encapsulated H. influenzae.

Materials and methods

Ethical statement

The study protocol, the informed consent forms, questionnaires 
and sample collection were approved by the ethics committee of 
University of Antwerp (UAntwerpen) and the Antwerp University 
Hospital (UZA; ID 15/45/471 and ID 18/31/355). Written informed 
consent was obtained from the infants’ parents or legal representatives.

Study population

Haemophilus influenzae carriage strains were collected from 
children sampled in the ongoing Belgian nasopharyngeal carriage 
study (Np carriage study) during the sample collection periods 2016–
2018 (Wouters et al., 2018; Ekinci et al., 2022). Samples were either 
taken from healthy children attending randomly selected DCCs or 
from children presenting with AOM at a physician taking part in the 
study (convenience sample, yearly average of 17 centers geographically 
equally spread across Belgium). The sample collection period covered 
October to May/June for children with AOM and November to March 
for children in DCC (except for the baseline collection between 
March–June in 2016). Background characteristics (including 
demographics, antibiotic use, and clinical data on AOM if applicable) 
from the NP carriage study (Wouters et al., 2018; Ekinci et al., 2022). 
No data was present on Hib vaccination status or date for any of the 
included children.

A total number of 554 strains, collected between 2016 and 2018 
for the NP carriage study, were analyzed. These strains include a 
stratified selection of strains from children attending DCC (n = 336) 
and all H. influenzae strains present from children suffering from 
AOM (n = 218), from the same collection period. To make an adequate 
comparison between samples taken from healthy children attending 
DCCs and AOM-children, samples were stratified on age, sex, 
vaccination status and AB treatment within the two groups were 
selected. The selected children aged between 6 to 30 months.
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Microbiological results for all invasive strains (CSF, blood) 
isolated in Belgian children under five between 2015 and 2018 
(referred to as the “invasive group”) were provided by the Belgian 
National Reference Centre (NRC) for Haemophilus influenzae 
including biotype, serotype, ftsI sequencing (when performed), AST 
to ampicillin, amoxicillin-clavulanic-acid, cefotaxime 
and ciprofloxacin.

Sampling and sample processing

Parents or legal representatives were asked to fill out a 
questionnaire before sampling. A single nasopharyngeal (NP) swab 
was taken with a flocked nylon swab and transported in 1 ml STGG 
(Skim milk – Tryptone – Glucose – Glycerol) at 2–8° C and cultured 
or stored at-80° C within 24 h.

Microbiological analysis of carriage strains

Analyses were performed at the Belgian National Reference 
Center (NRC) for Haemophilus influenzae. Before testing, strains were 
subcultured twice onto chocolate agar (in-house preparation).

Identification and typing of Haemophilus 
influenzae strains

All isolates were identified by MALDI-TOF mass spectrometry 
using a Microflex LT spectrometer and the Biotyper 4.2.80 database 
(Bruker Daltonics, Bremen, Gerrmany). Biotypes and serotypes of 
H. influenzae strains were determined using biochemical tests based 
on the production of indole, urease and ornithine decarboxylase 
(Diatabs, Rosco Diagnostica, Albertslund, Denmark) and Difco 
Haemophilus antiserum agglutination kit (Becton Dickinson, 
Erembodegem, Belgium), respectively, and following 
manufacturer’s instructions.

Determination of antimicrobial resistance to 
beta-lactam antibiotics

Antimicrobial susceptibility testing were performed following 
EUCAST V9.0 guidelines and clinical breakpoints. A disk diffusion 
test with benzylpenicillin 1 unit disk and a beta-lactamase detection 
using BBL paper disks (Becton Dickinson) were performed in parallel 
with the susceptibility testing for ampicillin, amoxicillin-clavulanic 
acid and cefuroxime; ciprofloxacin was also tested. All minimum 
inhibitory concentrations (MIC) were determined by gradient strips 
antimicrobial susceptibility testing (E-test, bioMérieux, Marcy l’Etoile, 
France).

Sequencing of the ftsI gene

The transpeptidase domain of the ftsI gene was sequenced as 
described by Ubukata et al. (2001) for all strains showing lowered 
susceptibilities to beta-lactams (MIC ampicillin > = 1 μg/ml combined 
with a negative beta-lactamase test, MIC amoxicillin-clavulanic acid 
> = 2 μg/ml, resistance to cefuroxime). Briefly, a 621 bp fragment is 
amplified by PCR and sequenced. Sequences are compared to the 
“wild-type” reference isolate Rd. KW20 (ATCC ® 51907) sequence 

(NCBI L42023.1). The amino acids substitutions are detected and 
listed using the BioNumerics™ software 7.6.2 (bioMérieux). BLNAR 
strains were classified into three groups based on amino acid 
substitutions: in group I (substitution in His 517 to Arg-517), in group 
II (substitution Lys-526 to Asn-526), and group III (substitutions in 
Met-377 to Ile, Ser-385 to Thr, and Leu-389 to Phe; Ubukata 
et al., 2001).

Statistical analysis

Sample size was based on the number of H. influenzae strains 
obtained from children with AOM during the period 2016–2018 
(n = 218). Similar numbers (n = 336) of H. influenzae strains obtained 
from children attending DCC during the period 2016–2018 
were selected.

The Chi-Square (Chi2) Test was used to assess significant 
differences between different analyzed groups (α = 0.05). On serotype 
level Chi2 Test is performed on NTHi versus encapsulated 
H. influenzae. On biotype level Chi2 Test is performed on (in our 
study) frequently circulating biotypes (biotypes I, II, III) versus less 
frequently circulating biotypes (biotype IV, V, VI, VII).

Results

Characteristics of the children

The carriage group consisted of 554 samples divided in 336 
samples obtained from healthy children attending DCC and 218 
samples obtained from children suffering from AOM (a 
non-invasive disease). Children are defined as healthy if they either 
do not have a disease condition or they have a disease that is fully 
controlled which allows the child to attend the DCC. Results from 
the carriage groups are compared to the “invasive” group, consisting 
of 94 strains.

Typing of Haemophilus influenzae strains

Non-typeable H. influenzae was most prevalent in both carriage 
(96.4%) and invasive strains (68.1%; Table 1). In the carriage group, 
also serotype “f ” (2.2%) and serotype “e” (1.8%) were present, while 
in the invasive group, serotype “b” (16.0%), serotype “f ” (11.7%), and 
serotype “a” (4.3%) were found (Table 1; Figure 1). The distribution of 
the different serotypes was similar between AOM and DCC children 
and was also similar across the different seasons 
(Supplementary Figure 1). The proportion of typeable serotypes was 
significantly higher in the invasive group compared to the carriage 
group (Table 1; Figure 1).

For the carriage group, the most frequent biotypes were 
biotype II (39.0%), biotype III (24.2%), and biotype I  (15.3%; 
Table 1; Figure 2). The distribution of the different biotypes was 
similar in the DCC and AOM population of the carriage group 
(Table  1) and did not differ across the different seasons 
(Supplementary Figure  2). For the invasive group, biotype II 
(36.2%), biotype I (27.7%), and biotype III (19.1%) were more 
frequently present (Table 1; Figure 2).
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Beta-lactam and antimicrobial resistance 
of Haemophilus influenzae strains

H. influenzae strains from the carriage group showed resistance 
to ampicillin (26.7%), cefuroxime (12.8%), amoxicillin-clavulanic acid 
(7.2%), and ciprofloxacin (0.4%). No difference was observed in 
resistance of H. influenzae strains across the different seasons, nor 
between the AOM and DCC group. Also for the invasive group, 
resistance was found to ampicillin (18.1%), amoxicillin-clavulanic acid 
(2.1%), and ciprofloxacin (1.1%). No data was provided for cefuroxime 

in the invasive group (not systematically tested at that time by 
the NRC).

Beta-lactamases were present in 23.8 and 16.0% of the 
H. influenzae strains in the carriage and invasive group, respectively 
(Table  1). In the carriage (n = 132) as well as the invasive group 
(n = 15), all of the beta-lactamase positive strains showed resistance to 
ampicillin, while 3.0% (4/132) and 6.7% (1/15) of the strains were 
resistant to amoxicillin-clavulanic acid in the carriage and invasive 
group, respectively. Resistance to cefuroxime was found in 10.6% 
(14/132) of the beta-lactamase positive strains in the carriage group.

TABLE 1 Characteristics of Haemophilus influenzae strains in the carriage (AOM and DCC) and invasive group.

Carriage Invasive Total carriage 
vs. invasive

AOM n = 218 
(n; %)

DCC n = 336 
(n; %)

Total n = 554 
(n; %)

Total n = 94 (n; 
%)

Chi2 p-value

Season* 2015 NA NA NA 24; 25.5%

2016 14; 6.4% 101; 30.1% 115; 20.8% 18; 19.1%

2017 64; 29.4% 97; 28.9% 161; 29.1% 21; 22.3%

2018 140; 64.2% 138; 41.1% 278; 50.2% 31; 32.9%

Biotype I 31; 14.2% 54; 16.1% 85; 15.3% 26; 27.7%

II 93; 42.6% 123; 36.6% 216; 39.0% 34; 36.2%

III 58; 26.6% 76; 22.6% 134; 24.2% 18; 19.1%

IV 5; 2.3% 7; 2.1% 12; 2.2% 2; 2.1%

V 26; 11.9% 49; 14.6% 75; 13.5% 11; 11.7%

VI 5; 2.3% 26; 7.7% 31; 5.6% 3; 3.2%

VII 0; 0.0% 1; 0.3% 1; 0.2% 0; 0.0%

Biotypes I, II, III 182; 83.5% 253; 75.3% 435; 78.5% 78; 83.0% p = 0.32

IV, V, VI, VII 36; 16.5% 83; 24.7% 119; 21.5% 16; 17.0%

NTHi 214; 98.2% 320; 95.2% 534; 96.4% 64; 68.1% p < 0.001

Typeables 4; 1.8% 16; 4.8% 20; 3.6% 30; 31.9%

Serotype f 3; 1.4% 9; 2.7% 12; 2.2% 11; 11.7%

e 1; 0.5% 7; 2.1% 8; 1.4% 0; 0.0%

a 0; 0.0% 0; 0.0% 0; 0.0% 4; 4.3%

b 0; 0.0% 0; 0.0% 0; 0.0% 15; 16.0%

β-LAC negative 167; 76.6% 255; 75.9% 422; 76.2% 79; 84.0% p = 0.07

positive 51; 23.4% 81; 24.1% 132; 23.8% 15; 16.0%

AMP S 161; 73.8% 245; 72.9% 406; 73.3% 77; 81.9% p = 0.07

R 57; 26.1% 91; 27.1% 148; 26.7% 17; 18.1%

AMC S 199; 91.3% 315; 93.8% 514; 92.8% 92; 97.9% p = 0.06

R 19; 8.7% 21; 6.3% 40; 7.2% 2; 2.1%

CEFUR S 141; 64.7% 224; 66.7% 365; 65.9% NA

I 45; 20.6% 73; 21.7% 118; 21.3% NA

R 32; 14.6% 39; 11.6% 71; 12.8% NA

CIP S 217; 99.5% 335; 99.7% 552; 99.6% 93; 98.9% p = 0.35

R 1; 0.5% 1; 0.3% 2; 0.4% 1; 1.1%

Mutation ftsI gene 50; 22.9% 54; 16.1% 104; 18.8% 4; 4.3%

n = number of children; Carriage = AOM and DCC children taken together; AOM = acute otitis media; DCC = daycare center; β-LAC = beta-lactamases; NTHi = non-typeable; 
AMP = ampicillin; AMC = amoxicillin-clavulanic acid; CEFUR = cefuroxime; CIP = ciprofloxacin; S = susceptible; I = intermediate; R = resistance; NA = not available. *Season 2015: is only 
applicable for the invasive group; season 2016: May–June 2016 for carriage group, January–December 2016 for invasive group; season 2017: November 2016–March 2017 for carriage group, 
January–December 2017 for invasive group; season 2018: November 2017–March 2018, January–December 2018 for invasive group.
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Mutations in the ftsI gene

From the 554 samples from the carriage group, 129 resistant or 
“less” susceptible strains were reanalyzed and were checked on 
mutations in the ftsI gene. In 81.0% (104/129) of the strains, a 
mutation in the ftsI gene was found. No difference was observed in the 
incidence of the ftsI mutation over the different time periods. Of all 

ftsI mutated strains, 93.7% corresponded to the Ubukata-group 2 and 
a small proportion (3.1%) to the Ubukata-group 3. A higher frequency 
of ftsI mutations was found in the strains of children with AOM 
compared to children attending DCCs (21.6 vs. 14.9% - p = 0.056). 
Moreover, a higher proportion of biotype III strains carried a mutated 
ftsI genein the strains of children with AOM compared to children 
attending DCCs (50.0 vs. 26.3% - p < 0.01), while no difference in 
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FIGURE 1

Non-typeable and typeable of Haemophilus influenzae in the carriage (AOM and DCC) and invasive group. Overall proportions of circulating serotypes 
in the carriage groups AOM (in orange) and DCC (in blue) as well as in the invasive group (in grey) detected in strains collected during the period 2016–
2018 for the carriage group and 2015–2018 for the invasive group.
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Biotypes of Haemophilus influenzae in the carriage (AOM and DCC) and invasive group. Overall proportions of circulating biotypes in the carriage 
groups AOM (in orange) and DCC (in blue) as well as in the invasive group (in grey) detected in strains collected during the period 2016–2018 for the 
carriage group and 2015–2018 for the invasive group.
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mutation frequency in other biotypes was seen. All strains carrying a 
mutated ftsI gene were non-typeable.

The highest resistance of the mutated strains in the carriage group 
was seen to cefuroxime (56.7%; 59/104), followed by amoxicillin-
clavulanic acid (35.6%; 37/104) and ampicillin (27.8%; 29/10).

In the invasive group, 4.3% (4/94) of the strains showed a mutation 
in the ftsI gene, all corresponding to the Ubukata-group 2. Biotype II 
was most frequently (75%; 3/4) present in these strains followed by 
biotype III (25%; 1/4). As in the carriage group, all mutated strains 
were not typeable. The mutated strains in the invasive group were 
resistant to ampicillin (50.0%; 2/4) and amoxicillin-clavulanic acid 
(50.0%; 2/4).

Discussion

This three-year study describes the carriage status and 
antimicrobial susceptibility profile of H. influenzae strains in samples 
obtained from Belgian children attending DCCs and children with 
AOM and compares it to the susceptibility profile of H. influenzae 
strains responsible for invasive disease in children.

As expected, non-typeable Haemophilus influenzae strains were 
predominantly present in the different subgroups of our study. Also, 
the NRC reports Belgium showed that mostly non-typeables were 
present in invasive disease (81/103–78.6% in 2017; 96/129–74.4% 
in 2018; 128/162–79.0% in 2019; 62/84–73.8% in 2020; 68/87–
78.0% in 2021). It is already known that invasive H. influenzae 
serotype b (Hib) strains have been replaced by non-typeable 
H. influenzae in many countries since the introduction of the Hib 
conjugate vaccines (Van Eldere et al., 2014; Zarei et al., 2016; Slack, 
2017; Slack et al., 2021). Also serotypes “a,” “e,” and “f ” have been 
reported in different countries as disease causing serotypes, and are 
also serotypes found in our study (Ladhani et al., 2012; Palaniappan 
et al., 2020; Slack et al., 2021; Reilly et al., 2022). In North America, 
an increase in proportion of serotype “a” has been observed among 
invasive disease cases (Tsang and Ulanova, 2017; Slack et al., 2021; 
Soeters et al., 2021; Ulanova, 2021). Serotype “a” is also found as 
possible disease causing serotype in our study as this serotype is 
only found in the invasive group but not in the carriage group. In 
Europe, on the other hand, serotype “f ” became the most frequent 
encapsulated serotype causing invasive disease after implementing 
Hib conjugate vaccine, but the numbers remain relatively low 
(Ladhani et al., 2012; Reilly et al., 2022), whereas there is also an 
increasing trend in infections caused by serotype “e” (Ladhani et al., 
2012; Slack et  al., 2021). In both groups of the current study, 
serotype “f ” was quite frequently present, supporting the findings 
in Europe, while serotype “e” is (rarely) present only in the carriage 
group. Also according the reports of the NRC in Belgium, serotype 
“f ” is the most prevalent serotype (12/103–11.7% in 2017; 14/129–
10.9% in 2018, 15/162–9.3% in 2019; 9/84–10.7% in 2020 and 5/87–
5.8% in 2021), while serotype “e” was rarely present (3/103–2.9% in 
2017 and 3/129–2.3% in 2018; not present in 2019–2021; Grammens 
et al., 2017, 2018; Jacquinet et al., 2021).

The most frequently found biotype in this study is biotype II, 
accounting for more than 35% in each analyzed group (DCC, AOM 
as well as the invasive group). This was followed by biotype III, 
biotype I and biotype V which is in line with observations from 
other studies (Albritton et al., 1978; Righter and Luchsinger, 1988; 

Watson et al., 1988). Different studies have found that biotype I is 
often associated with pathogenicity in children, such as severe 
meningitis, regardless whether the presence of biotype I occurred 
simultaneously with the presence of serotype “b” (Kilian, 1976; 
Long et al., 1983). These findings are supported by the results that 
we found in this study - a higher proportion of biotype I is found in 
the invasive group (27.7 vs. 15.3%). Biotype II and biotype III are 
commensal to the upper respiratory tract and colonization does 
usually not progress to invasive disease (Kilian, 1976; Long et al., 
1983). However, biotype II and biotype III may be involved in the 
pathogenesis of mucosal diseases such as sinusitis and otitis media 
as well as in the pathogenesis of invasive disease (Kilian, 1976; Long 
et  al., 1983). Also in our study, biotype II and III were more 
frequently found in the AOM (42.6 and 26.6%) group compared to 
the DCC (36.6 and 22.6%) and invasive group (36.2 and 19.1%). In 
addition, it is more commonly seen that biotypes I, II, III, and 
serotype “b” strains show resistance to ampicillin compared to other 
biotypes and non-serotype “b” strains (Jain et  al., 2006). 
Interestingly, we found a higher mutation frequency in the ftsI gene 
in the strains obtained from the AOM group, especially higher 
proportion of biotype III in this mutated strains compared to the 
strains obtained from the DCC group. It is also seen that strains 
carrying PBP3 alterations are more invasive, suggesting that these 
alterations may be involved in adhesion and invasion mechanisms 
(Okabe et al., 2010; Atkins et al., 2014; Singh et al., 2016).

In the initial Np carriage study, frequent use of antibiotics (>3 
treatments in 3 months) was an exclusion criterium in AOM 
children but not in DCC children. Children included from DCC 
turned out to have had more AB treatments than children included 
with AOM. However, AOM children may have used a broad-
spectrum antibiotic. Measuring trends in the antimicrobial 
susceptibility of H. influenzae strains is gaining importance because 
of the increased use of existing antibiotics as well as development 
of novel antibiotics. To treat H. influenzae infections, 
aminopenicillins and cephalosporins are used as first choice, but 
there are mechanisms of resistance against these aminopenicillins 
(Schotte et al., 2019). As the number of ampicillin-resistant strains 
has increased, it was important to verify the effectiveness of 
cephalosporins (such as cefuroxime) to treat ampicillin-resistant 
H. influenzae infections (Deghmane et al., 2019; Wang et al., 2019; 
Nürnberg et  al., 2021). This makes the development of novel 
antibiotic treatments important.

In conclusion, this study found that biotypes I, II and III are 
more frequently present in the carriage group as well as in the 
invasive group, while specific serotypes for carriage (serotype “e”) 
and invasive group (serotype “a” and “b”) were found. In addition, 
a higher antimicrobial resistance level for the analyzed antibiotics 
was observed in the carriage (DCC, AOM) group compared to the 
invasive group. In the strains of children suffering from AOM, a 
higher degree of mutations in the ftsI gene was found compared to 
the strains obtained from DCC children. The current study helps to 
lay the ground to understand the dynamics of H. influenzae carriage 
in Belgian children, as available data on remaining H. influenzae 
dynamics in a vaccinated child population (in a carriage as well as 
an invasive group) is scarce. This study provides an important first 
insight into the characteristics of circulating H. influenzae strains, 
especially in light of emerging antibiotic resistance to beta-lactams 
as they may have implications for the treatment of H. influenzae 

https://doi.org/10.3389/fmicb.2023.1160073
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Ekinci et al. 10.3389/fmicb.2023.1160073

Frontiers in Microbiology 07 frontiersin.org

infections. It is important to monitor changes in the microbiology 
and epidemiology of H. influenzae as it can lead to clinical failure 
caused by antimicrobial resistance.
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