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Tumor metastasis is an important factor that contributes to the poor prognosis of
patients with tumors. Therefore, to solve this problem, research on the
mechanism of metastasis is essential. Ferroptosis, a new mode of cell death, is
characterized by membrane damage due to lipid peroxidation caused by iron
overload. Many studies have shown that excessive ferroptosis can affect tumor
metastasis and thus inhibit tumor progression. Recently, circular RNA (circRNA), a
type of non-coding RNA, has been shown to be associated with the progression of
ferroptosis, thus influencing tumor development. However, the specific
mechanisms by which circRNAs affect the progression of ferroptosis and their
roles in tumor metastasis are not known. In this review, we systematically discuss
the role of circRNAs in regulating tumor ferroptosis and their mechanism of action
through sponging miRNAS in various tumors, thereby impacting metastasis. This
review helps elucidate the relationship and role of ferroptosis-related circRNAs in
tumor metastasis and may provide future researchers with new ideas and
directions for targeted therapies.
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1 Introduction

Tumor metastasis is strongly associated with patient prognosis, contributing to more
than 90% of cancer-related deaths (Dykes et al., 2019; Jakoš, 2019). Compared to limited
primary tumors with good prognoses, metastases can cause complex systemic diseases due to
the systemic spread of disseminated and circulating tumor cells, making existing treatment
measures, such as surgical resection, less effective (Fu, 2020). Therefore, studying the
mechanisms of metastasis and related molecules is beneficial for identifying detection
indicators and therapeutic targets. It helps to develop targeted preventive and
therapeutic measures to improve the prognosis of patients with cancer (Psaila and
Lyden, 2009; Peinado et al., 2017; Coban et al., 2021; Novikov et al., 2021). Many
studies have focused on the role of circular RNAs (circRNAs) and ferroptosis in tumor
progression; however, the relationship between the two is not well understood. We briefly
introduce both concepts and their links to tumor progression.
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Metastasis is a basic feature of malignant tumors (Liao et al.,
2021; Zhou et al., 2021). During this process, tumor cells spread
from the primary site of the tumor to the whole body through
circulatory channels (lymphatic vessels and blood vessels) or body
cavities. Among these, blood circulation is the main route of
metastasis (Brabletz, 2012; Welch and Hurst, 2019). Tumor
metastasis requires the completion of a complex multistep
process collectively referred to as the invasion–metastasis cascade
(Valastyan, 2011; Massagué and Ganesh, 2021) (Figure 1). This
cascade includes the following five steps: 1) Local invasion: Tumor
cells detach from the surrounding cells and primary tumor. This
process involves degrading and destroying the extracellular matrix
(ECM), mainly the basal membrane, and then invading the
surrounding normal tissue (Friedl, 2003; Novikov et al., 2021). 2)
Intravasation: Local invasion of tumor cells from the growth site into
the lymphatic vessels or vascular cavity, mainly through blood
circulation (Zavyalova, 2019). 3) Circulation: Circulating tumor
cells (CTCs) entering the bloodstream encounter multiple stresses
(such as attacks by NK cells) and adapt and survive. CTCs then
circulate through the bloodstream to distant organ sites (Massagué
and Obenauf, 2016; Dianat-Moghadam, 2021). 4) Extravasation:
CTCs that reach the target organ are captured and grow within the
lumen of the blood vessels. Eventually, they break through the vessel
wall and enter the target tissue parenchyma (Strilic, 2017; Cheng,
2021). 5) Metastatic colonization: Extravasated disseminated tumor
cells adapt to survive in a microenvironment that is different from
that of the primary tumor. Most cells are in a dormant state and
completely colonize the site (Neophytou et al., 2019; Klein, 2020;
Jehanno, 2022). The epithelial–mesenchymal transition (EMT) is an
important mechanism by which tumor cells overcome invasion

barriers, such as the endothelium (Nieto, 2016). EMT is mainly
the result of specific transcription factors (including ZEB and
TWIST) that inhibit the expression of epithelial substances (such
as E-cadherin) and cause tumor cells to lose intercellular adhesion
and detach. In addition, these cytokines increase the expression of
mesenchymal components, such as N-calmodulin (Dongre and
Weinberg, 2019; Yang et al., 2020; 2021a). EMT plays a
facilitating role at the beginning of metastasis by enhancing the
invasive ability of tumor cells (Nieto, 2016). In addition to the
complete epithelial form (E) and complete mesenchymal form (M),
there is an intermediate form of epithelial–mesenchymal plasticity
during EMT (Yang et al., 2020; 2021a). However, for extravasated
tumor cells to grow and colonize, they need to undergo an epithelial-
mesenchymal transition (MET) process that promotes the
expression of E-calmodulin (Padmanaban et al., 2019; Bakir
et al., 2020; O’Driscoll, 2020). In addition to the autonomous
mechanism of tumor cells, the predominant factor influencing
tumor metastasis is the tumor microenvironment (TME) (Quail
and Joyce, 2013; Taki et al., 2021). The TME consists of tumor cells
and non-tumor components, such as the ECM and immune cells
surrounding the tumor cells (Arneth, 2019). In most malignant
tumors, the TME promotes the growth of tumor cells and enhances
their ability to metastasize (Ren et al., 2018; Deepak, 2020). Cancer-
associated fibroblasts (CAFs) secrete cytokines and growth factors,
such as transforming growth factor-β (TGF-β). These cytokines and
growth factors promote mesenchymal transition remodeling of the
ECM or directly promote tumor cell proliferation, thereby
enhancing tumor cell invasion and metastasis (Kalluri, 2016;
Erdogan and Webb, 2017). Tumor-associated macrophages
(TAMs) affect almost every step of metastasis, enhancing the

FIGURE 1
Process of the invasion–metastasis cascade. The invasion–metastasis cascade is complex and includes the following steps: (A) local invasion, (B)
intravasation, (C) circulation, (D) extravasation, and (E) metastatic colonization.
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metastatic function of the tumor (Lin et al., 2019; Pan, 2020). For
example, TAMs can secrete protein hydrolases to degrade the ECM
and facilitate tumor cell invasion (Dykes et al., 2019; Jakoš, 2019).
They can also drive angiogenesis to promote endocytosis (Fu, 2020).
Metastasis is a complex and lengthy disease process, with each step
affected by factors in the microenvironment, including the survival
pressure during circulation (Psaila and Lyden, 2009; Peinado et al.,
2017). Metastasis can be completed only when tumor cells adapt to
these unfavorable factors (Coban et al., 2021).

Ferroptosis is a novel form of regulated cell death proposed by
Dixon et al., in 2012 (Dixon et al., 2012). The occurrence of
ferroptosis is mainly related to the balance between the oxidative
and antioxidant systems. The main mechanism is abnormal cell
membrane lipid metabolism catalyzed by an excess of ferrous ions.
Excessive accumulation of membrane reactive oxygen species (ROS)
leads to membrane lipid peroxidation, which causes membrane
damage and induces cell death (Yang and Stockwell, 2016; Jiang
X. et al., 2021). Iron overload can induce ferroptosis by generating
ROS through the Fenton reaction and increasing the activity of
oxidation-related enzymes. Iron metabolism is closely related to
ferroptosis (Chen, 2020). For example, transferrin receptors can
increase iron uptake to promote ferroptosis (Wu et al., 2019; Lu
et al., 2021), whereas solute carrier family 40 membrane 1
(SLC40A1) can promote iron release and inhibit ferroptosis (Li,
2021). Thus, factors that reduce iron accumulation, such as iron
chelators, can inhibit ferroptosis (Chen et al., 2020). Lipid
peroxidation induced by the inhibition of antioxidant systems
(mainly GPX4 and system Xc-) is an important contributor to
ferroptosis (Kuang, 2020; Tang et al., 2021). GPX4 uses reduced
glutathione (GSH) as a substrate to catalyze the reduction of lipid
peroxides; it can convert OOH-PE to OH-PE, which directly reduces
the accumulation of lipid peroxides, thus inhibiting the occurrence
of ferroptosis (Ursini, 2020; Chen et al., 2021c). Therefore, the
downregulation of GPX4 expression or decreased activity is an
important mechanism of ferroptosis. Small-molecule compounds,
such as GPX4 inhibitors, ras selective lethal 3 (RSL3), and ML162,
can inhibit GPX4 activity, leading to the accumulation of fatty acid
radicals and ultimately triggering ferroptosis (Conrad and Pratt,
2020). The rate-limiting step in the synthesis of GSH as a cofactor of
GPX4 is the uptake of cysteine 2 (Cys2) (Ursini, 2020). The Glu/
Cys2 reverse transporter of the Xc-system consists of
transmembrane transporter solute carrier family 7 member 11
(SLC7A11) and transmembrane regulatory protein solute carrier
family 3 member 2 (SLC3A2), which can transfer extracellular
Cys2 to intracellularly generate GSH (Liu, 2021a; Liu, 2021c).
Therefore, an imbalance in the Xc-system is an important
mechanism of ferroptosis. Small molecules such as erastin can
inhibit Glu/Cys2 reverse transporter and thus reduce GSH
synthesis, leading to a decrease in GPX4 activity and triggering
ferroptosis (Wang et al., 2020b). As research progresses, the role of
ferroptosis in a variety of diseases is being uncovered. In particular,
the regulation of pathological processes in cancer has attracted
extensive attention (Chen et al., 2021d).

CircRNAs are circular single-stranded RNAs formed by
covalent closure; they are stable, conserved, and widely present
across species (Memczak et al., 2013; Patop et al., 2019; Zhou et al.,
2020). In addition, circRNAs are characterized by their abundance,
diversity, and tissue specificity (Kristensen et al., 2019; Liu, 2022a).

CircRNAs can generally be classified into three categories:
exon–loop RNA (ecRNA), exon–intron loop RNA (EIcircRNA),
and loop–intron RNA (ciRNA) (Zhang, 2013; Li et al., 2015; Liu,
2022a). CircRNAs can regulate gene expression and play important
roles in transcription, shearing, and other aspects in a variety of
ways, such as by interacting with miRNAs and binding to proteins
(Kristensen et al., 2019; Chen and Shan, 2020; Zhou et al., 2020). In
addition, circRNAs can affect tumor progression, and studies have
reported their abnormal expression in a variety of cancers (Lei et al.,
2020; Chen C. et al, 2021; Kristensen, 2022), such as gastric cancer
(GC) (Chen D.-L. et al., 2021; Zhang Y. et al, 2021) and colorectal
cancer (Shang et al., 2020; Chen D.-L. et al, 2021). Therefore,
circRNAs hold potential as disease markers and therapeutic
targets. In this review, we focus on ferroptosis-related circRNAs
and discuss their functions in tumor metastasis.

2 Ferroptosis

2.1 Role of ferroptosis in tumor metastasis

Ferroptosis plays an inhibitory role in tumor metastasis and
suppresses tumor progression, mainly affecting both tumor cells and
the TME (Figure 2). In tumor cells, a variety of drugs can induce the
onset of ferroptosis and inhibit tumor cell growth and proliferation.
Thus, they can weaken the metastatic ability of tumors and exert
antitumor effects (Su, 2020). For example, curcumin inhibits tumor
growth by activating autophagy-induced ferroptosis, whereas
metformin inhibits breast cancer growth by inhibiting SLC7A11-
induced ferroptosis (Yang et al., 2021c). In addition, some enzymes
and drugs can induce the onset of ferroptosis and inhibit EMT to
reduce tumorigenesis, such as glyceric acid in melanoma (Wang,
2020) and functional deacetylase 3 in gallbladder cancer (Liu,
2021b). However, studies have also suggested the opposite,
indicating that there are some common changes in ferroptosis
and EMT and that these processes are positively correlated in
certain diseases (Sun, 2021). Additionally, ferroptosis may have a
facilitative effect on EMT (Yao, 2022). Thus, the mechanism
between these two processes needs to be further explored
(Ebrahimi, 2022). Ferroptosis can also inhibit TME remodeling
and affect the activity of tumor-associated cells to exert
antitumor effects. Ferroptosis and ferroptosis-related genes can
promote macrophage polarization toward M1 by affecting TAM
polarization. Macrophages enhance their pro-inflammatory and
antitumor capacities and inhibit tumor cell migration (Gu, 2021;
Zhou et al., 2022). Some antitumor agents and cytokines can induce
ferroptosis to inactivate CAFs and inhibit tumor metastasis, such as
disulfiram/copper in nasopharyngeal carcinoma (Li Y. et al., 2020).
Therefore, the induction of ferroptosis may be an effective measure
for inhibiting tumor metastasis.

2.2 Regulation of ferroptosis by circRNAs

CircRNAs and ferroptosis are both closely related to cancer
development and metastasis; however, the links and mechanisms
between them are not well understood (Zhi, 2021; Zuo et al., 2022).
By reviewing relevant studies, we summarize the effects of specific
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circRNAs in cancer on the process of ferroptosis, which have been
found to either promote or inhibit ferroptosis (Figure 3; Table 1).
Regarding inhibition, in terms of the antioxidant system,
circ0097009 (Lyu et al., 2021), circP4H (Pan et al., 2022),
circBGN (Wang et al., 2022), circFNDC3B (Yang et al., 2021b),
and other circRNAs can sponge or repress miRNAs to promote
SLC7A11 expression and thus inhibit the occurrence of ferroptosis
(Wang H. H. et al., 2021; Wu et al., 2021; Yao, 2021; Chen et al.,
2022). Similar to SLC7A11, circRNAs can also inhibit ferroptosis
through miRNA-targeted upregulation of GPX4 (Xu et al., 2020;
Chen, 2021c; Shanshan, 2021; Liu, 2022b), such as the “circIL4R/
miR-541-3p/GPX4” axis (Xu et al., 2020) and “circDTL/miR-1287-
5p/GPX4” axis (Shanshan, 2021). CircRNAs can also affect the
metabolism of unsaturated fatty acids by reducing lipid
peroxidation. For example, circRNA-101093 can promote the
transport of arachidonic acid with fatty acid binding protein 3
(FABP3) to produce N-arachidonyl taurine, thus inhibiting
ferroptosis (Zhang, 2022). In addition, circRNAs can bind to
miRNAs to regulate ferroptosis-related genes at both the mRNA
and protein levels. For example, circGFRA1 can attenuate the
activity of miR-1228, promote the expression of the ferroptosis
inhibitory factor apoptosis-inducing factor mitochondrial 2
(AIFM2), and inhibit ferroptosis (Bazhabayi et al., 2021). In
addition, the miR-847-3p/GDPD5 axis of circ0007142 (Wang Y.
et al, 2021) andmiR-326/CCL5 axis of circABCB10 (Xian, 2020) also
have this mechanism (Zhang H. M. et al, 2021; Zhang Y. et al, 2021).
In contrast to repression, circRNAs can also directly regulate the
expression of ferroptosis-related genes through miRNAs.
CircLMO1 may promote the expression of acyl-CoA synthetase
long-chain family member 4 (ACSL4) throughmiR-4291 to increase
its mRNA and protein levels and promote ferroptosis (Ou et al.,
2022). CircRNAs can also indirectly regulate ferroptosis-related

genes via regulating the expression of P38. For example,
circST6GALNAC6 can activate the P38/MAPK signaling pathway
through the HSPB1/P38 axis, which, in turn, regulates ferroptosis-
associated genes and indirectly promotes ferroptosis (Wang et al.,
2020a). In addition, circRNAs can promote ferroptosis by affecting
other molecules throughmiRNAs. For example, circBCAR3 binds to
miR-27a-3p to increase the expression level of transportin-1, which,
in turn, promotes ferroptosis (Xi et al., 2022). Circ0000190 promotes
ferroptosis by regulating zinc and ring finger 3 through miR-382-5p
(Jiang et al., 2022). CircRNAs can also bind directly to proteins to
regulate ferroptosis. For example, cIARS can bind to the RNA
binding protein (RBP) ALKBH5 and inhibit its function to
promote ferroptosis (Liu, 2020). As research continues, increasing
attention is being paid to the role of circRNAs and ferroptosis in
cancer. Understanding and exploring the links between circRNAs,
ferroptosis, and cancer and the mechanisms involved will help
provide new therapeutic measures.

3 Effect of ferroptosis-related circRNAs
on tumor metastasis

CircRNAs can not only regulate miRNAs in the
circRNA–miRNA–mRNA network but also interact with proteins
and even play a role in the occurrence and development of cancer as
exosomes. Exosomal circLPAR1 and methyltransferase-like 3
(METTL3) competitively bind RBP eIF3h, effectively reducing
the translation of brominated protein 4 (BRD4) and subsequently
inhibiting the proliferation, invasion, and migration of colorectal
cancer cells (Zheng et al., 2022). Moreover, the secretion of
circUHRF1 in exocrine form can promote the progression of
hepatocellular carcinoma (HCC) by degrading miR-3c-449p in

FIGURE 2
Roles of ferroptosis in tumor metastasis. (A) Inhibiting tumor cell growth and cell proliferation. (B) Inhibiting epithelial–mesenchymal transition. (C)
Promoting macrophage polarization toward M1. (D) Inactivating cancer-associated fibroblasts.
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NK cells and upregulating the expression of TIM-3, thereby
inhibiting NK cell function (Zhang et al., 2020). However,
ferroptosis-related circRNAs can sponge with miRNAs to
regulate the tumor metastasis. Some miRNAs are abnormally
expressed in tumor tissue, promoting or inhibiting malignant
behavior in tumors by modulating their downstream signaling
pathways (Huang et al., 2020). Competitive endogenous RNA
(ceRNA) can be mutually modulated at the post-transcriptional
level by competing with shared miRNAs (Qi et al., 2015). CircRNAs
contain miRNAs response elements, enabling them to act as ceRNAs
and compete with downstream targets to modulate their
downstream pathways (Xiong et al., 2018). These circRNAs bind
to miRNAs to modulate their downstream targets, which may
promote or inhibit tumor metastasis.

4 Ferroptosis-related circRNAs can
sponge with miRNA to regulate the
metastasis in cancers

4.1 Digestive system tumors

In the mechanism of tumor development and metastasis in the
digestive system, ferroptosis-related circRNAs interacts with

miRNA to regulate downstream target substances and changes
GSH content through the Xc-system to affect GPX4 or directly
change GPX4 activity. This, in turn, creates an imbalance in the
antioxidants of tumor cells, thus regulating the occurrence or
inhibition of ferroptosis in tumor cells. This mechanism occurs
in several digestive system tumors, including HCC, GC, oral
squamous cell carcinoma (OSCC), and esophageal squamous cell
carcinoma (ESCC).

Lyu et al. (Lyu et al., 2021) found that circ0097009 was
upregulated in HCC, and knockdown of circ0097009 inhibited
the growth and invasion of HCC cells, indicating that
circ0097009 plays an important role in the progression of HCC.
Further research revealed that circ0097009 functionally interacts
with miR-1261 and acts as a ceRNA by sponging miR-1261, thereby
modulating SLC7A11, the downstream target gene of miR-1261.
The researchers further found that the knockdown of
circ0097009 reduced SLC7A11, a component of the Xc-system
identified as a key regulator of ferroptosis in cancer cells. Thus,
the knockdown of circ0097009 promotes ferroptosis through the
circ0097009/miR-1261/SLC7A11 axis. In addition, the knockdown
of circ0097009 led to a decrease in the GSH/GSSG ratio, leading to
the inactivation of GPX4, another key regulator of ferroptosis that
reduces lipid peroxides. Thus, the knockdown of
circ0097009 promotes ferroptosis in HCC cells through two

FIGURE 3
Role of circRNA in the regulation of ferroptosis. (A, B) The progression of ferroptosis can be influenced by circRNAs, either by sponging miRNA or by
directly binding to proteins, which can promote or inhibit the process; (C) circST6GALNAC6 directly binding to HSPB1 to promote the ferroptosis; (D)
circ-cIARS directly binding to ALKBH5 to promote the ferroptosis; (E) circBCAR3 sponging miR-27a-3p to promote the ferroptosis; (F)
CircLMO1 sponging miR-4291 to promote the ferroptosis; (G) circABCB10 sponging miR-326 to inhibit the ferroptosis; (H) circGFRA1 sponging
miR-1228 to inhibit the ferroptosis; (I) circRHOT1 sponging miR-106a-5p to inhibit the ferroptosis; (J) circ0007142 sponging miR-847-3p to inhibit the
ferroptosis; (K) circRNA-101093 directly binding to FABP3 to inhibit the ferroptosis; (L, M) CircRNAs sponging miRNA or directly binding to proteins to
regulate the ferroptosis.
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independent pathways, system Xc- and GPX4, thereby inhibiting the
growth and invasion of HCC cells. In addition, Xu et al. (Xu et al.,
2020) identified upregulated circIL4R in HCC tissues and cell lines,
and the knockdown of circIL4Rd inhibited cell growth and
promoted ferroptosis in HCC cells. CircIL4R acts as a molecular
sponge of miR-541-3p in HCC cells and exerts positive regulation on
GPX4 in hepatocytes by sponging miR-541-3p. Moreover, the
authors further experimentally demonstrated that downregulating
miR-541-3p alleviates the inhibition of tumorigenesis and
promotion of ferroptosis caused by circIL4R knockdown, and
inhibiting circIL4R reduces GPX4 by upregulating miR-541-3p to
prevent tumor cell proliferation and inhibit HCC tumor
progression, thereby hindering HCC growth and metastasis in vivo.

In the GC, Jiang et al. (Jiang et al., 2022) found that
circ0000190 acts as a sponge for miR-385-5P to target ZNRF3 to
inhibit GC cell proliferation and motility and promote cell death.
They found that circ0000190 was downregulated in GC tissues and
cell lines, whereas overexpressed circ0000190 inhibited the
proliferation, migration, and invasion of GC cells and promoted
erastin- or RSL3-mediated ferroptosis. miR-382-5p is the target of
circ0000190, and ZNRF3 is the target of miR-382-
5p. Circ0000190 inhibits GC progression by acting as a miR-382-

5p sponge; miR-382-5p accelerates the proliferation and transfer of
GC cells and inhibits ferroptosis by regulating ZNRF3. In addition,
they found that circ0000190 overexpression inhibited the growth of
xenograft tumors in vivo.

Among oral and esophageal tumors, OSCC is a widespread head
and neck malignancy of the oropharynx and oral cavity (Panarese
et al., 2019). OSCC is life-threatening cancer, occurring in 8.0%–
8.5% of men and 4.0%–8.1% of women (Solomon et al., 2018). Cyclic
RNAs play various roles in OSCC pathogenesis (Zhang et al., 2019).
Yang et al. found that circFNDC3B as a ceRNA of miR-520d-5p
induced SLC7A11 expression through the circFNDC3B/miR-520d-
5p/SLC7A11 axis, which is involved in the regulation of ferroptosis-
related phenotypes in OSCC cells and development of OSCC (Yang
et al., 2021b). Previous studies have demonstrated the critical
function of circFNDC3B in cancer development; for example, it
promotes invasion and migration by regulating the expression of
CD44 and E-cadherin in GC cells (Hong et al., 2019). Previous
studies have also reported the function of miR-520d-5p in cancer
development, where it inhibits metastasis and tumor growth by
targeting CTHRC1 in colorectal cancer (Yan et al., 2015).
SLC7A11 is a key regulator of ferroptosis and metabolism (Lin
et al., 2020; Mukhopadhyay et al., 2021), and miR-375/

TABLE 1 Role of ferroptosis-related circRNA in cancers.

circRNA Cancers Regulatory way Function Ref

circ-0097009 Hepatocellular carcinoma miR-1261/SLC7A11 Inhibiting ferroptosis [86]

circIL4R miR-541-3p/GPX4 Inhibiting ferroptosis [120]

circ-cIARS ALKBH5(RBP) Inducing ferroptosis [107]

circ-P4HB Lung adenocarcinoma miR-1184/SLC7A11 Inhibiting ferroptosis [87]

circ-101093 FABP3/AA/NAT/ACSL4, LPCAT3 and PLTP Inhibiting ferroptosis [160]

circEPSTI1 Cervical cancer miR-375/409-3P/515-5p/SLC7A11 Inhibiting ferroptosis [91]

circACAP2 miR-193a-5p/GPX4 Inhibiting ferroptosis [97]

circLMO1 miR-4291/ACSL4 Inducing ferroptosis [108]

circPVT1 Esophageal cancer miR-30a-5p/FZD3/p-β-catenin, GPX4, and SLC7A11 Inhibiting ferroptosis [93]

circBCAR3 miR-27a-3p/TNPO1 Inducing ferroptosis [105]

circ-BGN Breast cancer OTUB1/SLC7A11 Inhibiting ferroptosis [88]

circGFRA1 miR-1228/AIFM2 Inhibiting ferroptosis [100]

circRHOT1 miR-106a-5p/STAT3 Inhibiting ferroptosis [102]

circ-0067934 Thyroid cancer miR-545-3p/SLC7A11 Inhibiting ferroptosis [90]

circCDK14 Glioma miR-3938/PDGFRA/SLC7A11 and GPX4 Inhibiting ferroptosis [92]

circFNDC3B Oral squamous cell carcinoma miR-520d-5p/SLC7A11 Inhibiting ferroptosis [89]

circDTL Non-small cell lung cancer miR-1287-5p/GPX4 Inhibiting ferroptosis [96]

circKIF4A Papillary thyroid cancer miR-1231/GPX4 Inhibiting ferroptosis [94]

circ-0007142 Colorectal cancer miR-847-3p/GDPD5 Inhibiting ferroptosis [101]

circABCB10 miR-326/CCL5 Inhibiting ferroptosis [102]

circ-ST6GALNAC6 Bladder cancer HSPB1/P38 Inducing ferroptosis [104]

circ-0000190 Gastric cancer miR-382-5p/ZNRF3 Inducing ferroptosis [106]
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SLC7A11 signaling regulates OSCC cell proliferation and invasion
(Wu et al., 2017). Therefore, circFNDC3B protects OSCC cells from
tincture, promotes OSCC progression by modulating the miR-520d-
5p/SLC7A11 axis, and may also affect the invasion andmovement of
OSCC cells. Moreover, circFNDC3B regulates cancer cell
proliferation, apoptosis, and migration in a variety of
malignancies, such as esophageal, bladder, and colon cancers (Liu
et al., 2018; Luo et al., 2018; Pan et al., 2020).

Esophageal cancer (EC), originating from esophageal epithelial
cells (Sung et al., 2021), includes two main pathological types:
esophageal adenocarcinoma and ESCC (Smyth et al., 2017).
CircRNAs play a crucial role in the pathogenesis and progression
of ESCC by participating in a variety of regulatory mechanisms, such
as ceRNAs, protein interactions, and the regulation of gene
transcription and translation in ESCC cells (Feng et al., 2020).
Circ0087378 inhibits the tumorigenesis and progression of ESCC
by acting as a competitive endogenous RNA and upregulating
E2F3 expression (Wang J. et al., 2020). Moreover,
circPVT1 regulates the chemosensitivity of ESCC cells through
ferroptosis and Wnt/β-catenin pathways via miR-30a-5p/FZD3.
The Frizzled (FZD) family is a transmembrane receptor of the
Wnt signaling pathway with 10 subtypes (FZD1–10) (Bhanot
et al., 1996). FZD3 promotes the proliferation and invasion of
cancer cells through the Wnt/β-catenin pathway (Qiao et al.,
2017; Xia et al., 2018; Li et al., 2019). In addition, Zhong et al.
(Zhong et al., 2019) demonstrated thatcircPVT1 enhances the
malignant phenotype of ESCC by modulating the miR-4663/Pax
and PPAR axes, including proliferation and invasion. Xi et al. (Xi
et al., 2022) reported that CircBCAR3 is significantly upregulated in
EC tissues and cells, and the knockdown of circBCAR3 inhibits the
proliferation, migration, invasion and ferroptosis of EC cells;
Further functional studies found that circBCAR3 can act as a
ceRNA to increase the expression of Transportin-1 (TNPO1) via
sponging with miR-27a-2p, thereby contributing to the progression
of EC.

4.2 Reproductive system tumors

Among reproductive system tumors, cervical cancer is the
fourth most common malignancy in the world and the fourth
leading cause of cancer death in women, with extremely high
morbidity and mortality rates (Sung et al., 2021). CircRNAs play
a key role in tumorigenesis and tumor progression; however, the
biological effects of most circRNAs on cervical cancer remain
unclear. As a novel form of cancer-related cell death, ferroptosis
is closely associated with cervical cancer progression (Jiang X. F.
et al., 2021; Qi et al., 2021; Wu et al., 2021). Ou et al. (Ou et al., 2022)
demonstrated that circLMO1 inhibited the growth and metastasis of
cervical cancer by triggering miR-4291/ACSL4-mediated cellular
ferroptosis. CircLMO1 levels were downregulated in cervical cancer
tissue, and circLMO1 overexpression significantly inhibited the
growth and metastasis of cervical cancer cells in vivo.
CircLMO1 silencing promoted the proliferation and invasion of
cervical cancer cells. To explore the related cellular molecular
mechanisms, the authors further explored the death pattern
induced by circLMO1, and the results showed that it promoted
cervical cancer cell death by triggering ferroptosis and apoptosis. In

addition, circLMO1 was an important mode of cervical cancer cell
death, which was observed by monitoring the response of
circLMO1 to the effects of erastin (an activator of ferroptosis) in
cervical cancer cells. Thus, by regulating ferroptosis,
circLMO1 accelerates cervical cancer cell death.

4.3 Endocrine system tumors

In endocrine system tumors, including thyroid and breast
cancer, ferroptosis-related circRNAs can regulate tumor
metastasis by acting as sponges for miRNAs.

Based on cancer statistics worldwide, thyroid cancer is the fifth
most common malignancy (Siegel et al., 2016). There are various
subtypes of thyroid cancer, and 85%–90% are papillary thyroid
cancers (Santiago et al., 2020). Approximately 90% of patients can be
treated with standard treatments (Park et al., 2020). However,
locoregional recurrences or distant metastases occur in almost
10% of thyroid carcinoma cases, which remains a challenge in
the treatment of thyroid cancer (Pelizzo et al., 2008). Chen et al.
found that the knockdown of circKIF4A could increase
GPX4 expression through the circKIF4A/miR-1231/GPX4 axis,
leading to thyroid metastasis via inhibition of cancer cell
ferroptosis (Chen W. K. et al., 2021). Thus, circRKIF4A could
inhibit ferroptosis to promote thyroid tumor progression.
Circ0067934 upregulates SLC7A1 expression via the miR-545-3p/
SLC7A11 axis, which inhibits thyroid cancer cell ferroptosis and
promotes thyroid cancer growth and metastasis (Wang et al., 2017;
Wang H. H. et al., 2021; Ji et al., 2022). Thus, targeting this
regulatory axis or blocking the function of circ0067934 could
potentially be a therapeutic strategy to combat thyroid cancer.

Breast cancer is the most common fatal cancer in women
worldwide, and despite advances in various treatments, it
remains the second leading cause of tumor-related death in
women (Rodgers et al., 2017). CircRNAs play an important role
in modulating breast cancer progression (Li S. Q. et al., 2020; Wang
R. J. et al., 2020). For example, circABCB10 promotes the
progression and proliferation of breast cancer cells by targeting
miR-1271 (Liang et al., 2017). In addition, circRHOT1 is abnormally
expressed in cancer cells, promoting proliferation, migration, and
invasion and inhibiting apoptosis (Qu et al., 2019).
CircRHOT1 promotes breast cancer cell proliferation and inhibits
the apoptosis of breast cancer cells, enhancing their invasion and
migration (Zhang H. M. et al., 2021). To evaluate the role of
circRHOT1 in myelitis, Zhang et al. analyzed the effects of
circRHOT1 on elastin-induced inhibition of cell growth,
intracellular ROS, iron levels, and the expression of GPX4 and
SLC7A11, which are markers of cellular ferroptosis. They found that
circRHOT1 can reduce ferroptosis in breast cancer cells. It was later
demonstrated that circRHOT1 induces ferroptosis by targeting
signal transducer and activator of transcription 3 (STAT3) by
sponging miR-106a-5p, thereby enhancing the invasion and
metastasis of breast cancer cells.

To improve targeted therapy, breast cancer is clinically divided
into three main subtypes according to immunohistochemical
markers: estrogen receptor-positive breast cancer, triple-negative
breast cancer, and human epidermal growth factor receptor 2 (HER-
2)-positive breast cancer. HER-2-positive tumors account for 20% of

Frontiers in Pharmacology frontiersin.org07

Meng et al. 10.3389/fphar.2023.1168458

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2023.1168458


all breast cancers (Yang et al., 2015). Tumors with elevated HER-2
levels have a high rate of tumor growth and are aggressive; therefore,
the HER-2 gene plays an important role in tumor biology (Agazie
and Hartman, 2019). Bazhabayi et al. (Bazhabayi et al., 2021) report
that circGFRA1 was upregulated in HER-2-positive breast cancer
cells and tissues, and silencing circGFRA1 inhibited the proliferation
of HER-2-positive breast cancer cells while inhibiting their
infiltration and metastasis. Furthermore, CircGFRA1 is
predominantly present in the cytoplasm, suggesting that it can
intersect with most miRNAs located in the cytoplasm, promoting
the malignant progression of HER-2-positive breast cancer by acting
as a sponge for miR-1228 and enhancing AIFM2 expression.

4.4 Nervous system tumors

Glioma is a highly prevalent and aggressive malignancy of the
central nervous system, with a poor prognosis. Despite the
availability of advanced chemotherapy, radiation therapy, and
surgery, patients with glioma have poor median survival rates. In
addition to accelerated proliferation, invasiveness, and treatment
resistance, the poor prognosis of severe glioma stems from a limited
understanding of the potential pathways as well as a lack of early
diagnosis and effective treatments (Lapointe et al., 2018). The
circRNA/miRNA/mRNA pathway is critical for the development
and progression of gliomas. Overexpression of circHIPK3 enhances
the proliferation and invasion ability of glioma cells by chelating
miR-124-3p and increasing STAT3 levels (Hu and Zhang, 2019).
Chen et al. (Chen et al., 2022) identified circRNAs in glioma by
RNA-Seq analysis, detecting 158 circRNAs with high expression,
1,090 relatively low-expression circRNAs relative to non-tumor
brain tissue, and seven downregulated and five upregulated
circRNAs using qRT-PCR. Because the parent gene CDK14 of
circCDK14 is a cell cycle-dependent kinase involved in the
occurrence and development of gliomas, further examination of
the level of circCDK14 in gliomas revealed that the level of
circCDK14 in human glioma cells was significantly increased,
and circCDK14 was expressed at higher levels in grade II–IV
gliomas than grade I–II gliomas. CircCDK14 is predominantly
expressed in the cytoplasm. The author further evaluated the
biological activity of circCDK14 in gliomas and found that
circCDK14 overexpression significantly increased the
proliferation, migration, and invasion of glioma cells in vitro. In
addition, Kaplan-Meier analysis revealed that circCDK14 levels were
negatively correlated with overall survival in patients with glioma.
Because circCDK14 is mostly localized in the cytoplasm, the authors
speculated that circCDK14 may be a glioma-chelating miRNA.
Subsequently, they predicted four miRNAs and showed that
miR-3938 and circCDK14 interact in the cytoplasm of glioma
cells by luciferase reporter gene testing. CircCDK14 plays a
sponging role for miR-3938, and miR-3938 can reverse the
biological role of circCDK14 in gliomas. Moreover, PDGFAR was
shown to be a direct target gene for miR-3938, and
circCDK14 regulated PDGFAR expression by sponging miR-
3938. To further verify the role of PDGFRA and circCDK14 in
cell ferroptosis, the authos further observed the mitochondrial
morphology of glioma cells using transmission electron
microscopy, and the results demonstrated that PDGFRA

expression was negatively correlated with glioma cell ferroptosis.
CircCDK14 can reduce the sensitivity of glioma cells to ferroptosis
by regulating PDGFRA expression, thereby promoting the
formation and metastasis of gliomas in vivo.

5 Conclusions and perspectives

Many studies have shown that circRNAs can regulate iron
death in tumor tissues and cells and that most circRNAs promote
or inhibit the occurrence of iron death and cancer progression by
affecting miRNAs, providing potential therapeutic methods for
cancer treatment. Certain cancers may be affected by a complex
circRNA functional network rather than a single circRNA;
therefore, the logical progression is to screen for circRNAs and
then study the function of a set of significantly differentially
expressed circRNAs or a single circRNA. To reveal the role of
circRNAs in tumor progression, their potential targets should be
explored in further studies. CircRNAs can not only regulate
miRNAs in the circRNA–miRNA–mRNA network but also
interact with proteins and even play a role in the development
of cancer as exosomes.

Exploring the mechanism of ferroptosis-related circRNAs in
tumor metastasis provides alternative pathways and targets for the
further exploration of cancer therapies. Ferroptosis is a metabolic
form of oxidative stress-induced cell death, and tumor cells are
more metabolically active and have higher ROS loads than normal
cells; therefore, cancer cells may have a higher tendency toward
ferroptosis than normal cells, which has been confirmed by some
studies. Initially, the chemical compounds that induce ferroptosis
were identified as novel treatments for cancer. Subsequent
mechanistic studies have shown that many cancer-related genes
and signaling pathways regulate ferroptosis. Some experiments
have shown that mesenchymal and dedifferentiated cancer cells,
which are generally resistant to apoptosis and common therapies,
as well as so-called “therapeutic persistence” cancer cells, are
highly sensitive to ferroptosis inducers, further emphasizing the
potential of ferroptosis induction as a novel cancer therapy.
CircRNAs have diverse functions in the regulation of cancer
metastasis. In addition to influencing ferroptosis-related
mechanisms, they also play a role in modulating a range of
processes, including apoptosis and cancer immunity. This
review summarizes the effects of ferroptosis-related circRNAs
on cancer metastasis. Although the regulatory mechanisms of
these circRNAs are still not fully understood, they provide
promising new targets for cancer therapy. Future research
should aim to identify the specific mechanisms by which
ferroptosis-related circRNAs regulate cancer metastasis in
different types of cancers. Notably, circRNAs are only one type
of non-coding RNA associated with tumors, and long non-coding
RNAs have a much wider range of tumor-related studies. As such,
investigating the effects of other non-coding RNAs alongside
ferroptosis-related circRNAs may offer new insights into cancer
progression. Although studies on ferroptosis-related circRNAs in
certain cancers remain limited, there is a strong rationale for
further exploration in a wider range of cancer types. Such
investigations can drive innovation and potentially uncover new
therapeutic options for the treatment of cancer.
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Glossary

ACSL4 Acyl-CoA synthetase long-chain family member 4

AIFM2 Apoptosis-inducing factor mitochondrial 2

ALKBH5 AlkB Homolog 5

CAF Cancer-associated fibroblasts

CCL5 C-C motif chemokine ligand 5

ceRNA Competitive endogenous RNA

circFNDC3B circular RNA FNDC3B

CircRNA Circular RNA

CTCs Circulating tumor cells

Cys2 cysteine

EAC esophageal adenocarcinoma

EC Esophageal cancer

ECM Extracellular matrix

ecRNA exon-loop RNA

EICircRNA exon-intron loop RNA

EMT Epithelial mesenchymal transition

MET Epithelial-mesenchymal transition

ER estrogen receptor

ESCC esophageal squamous cell carcinoma

FABP3 Fatty acid-binding protein 3

GC gastric cancer

GDPD5 Glycerophosphodiester phosphodiesterase domain containing 5

GPX4 glutathione peroxidase 4

HCC hepatocellular carcinoma

HSPB1 Heat shock protein B1

OSCC oral squamous cell carcinoma

RBP RNA binding protein

ROS reactive oxygen species

RSL3 ras selective lethality 3

SLC3A2 transmembrane regulatory protein solute carrier family 3 member 2

SLC40A1 solute carrier family 40 membrane 1

SLC7A11 transmembrane transporter solute carrier family 7 member 11

STAT3 Signal transducer and activator of transcription 3

TAM Tumor-associated macrophages

TFRC the transferrin receptor

TGF-β transforming growth factor-β

TME tumor microenvironment

TNPO1 Transportin-1

FABP3 fatty acid binding protein 3.
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