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Background: CCNF catalyzes the transfer of ubiquitin molecules from E2

ubiquitin-conjugating enzymes to target proteins, thereby regulating the G1/S

or G2/M transition of tumor cells. Thus far, CCNF expression and its potential as a

pancancer biomarker and immunotherapy target have not been reported.

Methods: TCGA datasets and the R language were used to analyze the

pancancer gene expression, protein expression, and methylation levels of

CCNF; the relationship of CCNF expression with overall survival (OS),

recurrence-free survival (RFS), immune matrix scores, sex and race; and the

mechanisms for posttranscriptional regulation of CCNF.

Results: CCNF expression analysis showed that CCNF mRNA expression was

higher in cancer tissues than in normal tissues in the BRCA, CHOL, COAD, ESCA,

HNSC, LUAD, LUSC, READ, STAD, and UCEC; CCNF protein expression was also

high in many cancer tissues, indicating that it could be an important predictive

factor for OS and RFS. CCNF overexpression may be caused by CCNF

hypomethylation. CCNF expression was also found to be significantly different

between patients grouped based on sex and race. Overexpression of CCNF

reduces immune and stromal cell infiltration in many cancers. Posttranscriptional

regulation analysis showed that miR-98-5p negatively regulates the expression

of the CCNF gene.

Conclusion: CCNF is overexpressed across cancers and is an adverse prognostic

factor in terms of OS and RFS in many cancers; this phenomenon may be related

to hypomethylation of the CCNF gene, which could lead to cancer progression

and worsen prognosis. In addition, CCNF expression patterns were significantly

different among patients grouped by sex and race. Its overexpression reduces

immune and stromal cell infiltration. miR-98-5p negatively regulates CCNF gene

expression. Hence, CCNF is a potential pancancer biomarker and

immunotherapy target.

KEYWORDS

CCNF, pancancer, bioinformatics, immune cell infiltration, methylation, biomarker
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1109378/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1109378/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1109378/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1109378&domain=pdf&date_stamp=2023-04-24
mailto:Weiruda@163.com
mailto:wengshilina@163.com
https://doi.org/10.3389/fonc.2023.1109378
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1109378
https://www.frontiersin.org/journals/oncology


Wei et al. 10.3389/fonc.2023.1109378
Introduction

Globally, there were approximately 19.3 million new cancer

cases and 10 million related deaths worldwide in 2020, and

morbidity and mortality rates are rising rapidly year by year (1).

Cancer presents the greatest social and economic burden among all

human diseases, and lung cancer, breast cancer and prostate cancer

are the top three (2). In recent years, the discovery of new tumor

markers and immunotherapeutic targets has become increasingly

important in the early diagnosis and treatment of cancer (3, 4).

Precision medicine based on tumor markers and immune targets

provides a new strategy for cancer research (5).

Cyclin F (CCNF, also known as FBXO1), a founding member of

the F-box protein family, was first reported in 1994. It is located in

the nucleus and participates in the transfer of ubiquitin molecules

from the E2 ubiquitin binding enzyme to the target protein

catalyzed by the E3 ubiquitin ligase Skp1-Cul1-F-box (SCF)

through the F-box motif (6). CCNF expression oscillates during

the cell cycle and reaches its peak only in the G2 phase (7). Studies

have shown that CCNF not only regulates the transformation of

tumor cells from G1 to S phase by affecting the expression of E2F

family genes (8) but also promotes the degradation of E2F7/8

protein via ubiquitination to induce the transition of tumor cells

from the G2 phase to the M phase, and both of these processes

occur independent of the interaction between cyclin-dependent

kinase (CDK) and anaphase-promoting complex/cyclosome

(APC/C) (9). Moreover, CCNF regulates the cell cycle and

maintains the stability of the genome and dNTP pool by

promoting the degradation of ribonucleotide reductase subunit

M2 (RRM2) (10, 11). According to DESHMUKH R S, CCNF

reduced the carcinogenici ty of the R132H isocitrate

dehydrogenase 1 (IDH1) mutation by directly downregulating the

recombination signal binding protein for immunoglobulin kappa J

region (RBPJ) (12). The report from FU J indicated that the low

expression of CCNF led to poor differentiation and a poor

prognosis in hepatocellular carcinoma (13). These two reports

suggest that CCNF is likely to be a tumor suppressor gene.

However, studies have also shown that the overexpression of

CCNF predicts a poor prognosis in ovarian cancer (14), liver

cancer (15) and skin melanoma (16), suggesting that CCNF is an

oncogene. Although contradictory, the above reports revealed that

the functions of CCNF are likely to be related to the state of cells

(11). In addition, the expression level of CCNF is closely related to

the activity of cells in human tissues, mainly in the lung, skin and

immune system (17). Therefore, CCNF is a potential biomarker and

immunotherapy target for multiple cancers.

With the development of genetics and cancer genomics

technologies, it has been recognized that key gene mutations,

mutations in signaling cascades and immunological changes

have certain genetic commonness and specificity in different

types of cancer. Pancancer analysis not only has very important

guiding significance for the diagnosis and treatment of different

types of cancer (18) but also greatly facilitates the study of
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posttranscriptional regulation in cancer (19). The Cancer Genome

Atlas (TCGA) pancancer dataset provides publicly available human

gene expression profiles for 33 cancer types (20), which lays a

foundation for cross-cancer studies of the molecular and

pathological features of tumors and the corresponding clinical

characteristics of patients (21). Recently, through pancancer

analysis based on the TCGA database, molecular changes between

cancer and normal tissues have been discovered at the genome,

transcriptome and proteome levels in many cancers.

At present, there are only a few single-cancer analyses on the

correlation between CCNF and cancer features using the TCGA

database. Although the pancancer expression of CCNF and its effect

on clinical prognosis have not been reported, existing studies

suggest that there may be a close relationship between CCNF and

the occurrence and development of cancer.

In this study, bioinformatics analysis based on the TCGA

database was performed to analyze the correlation between CCNF

expression level and survival, sex, race, clinicopathological stage,

tumor mutation burden (TMB), microsatellite instability (MSI)

status, DNA methylation level, single nucleotide variation (SNV),

copy number variation (CNV), immune cell infiltration, immune

matrix score and immune checkpoint gene expression across

cancers. The CCNF protein-protein interaction (PPI) network

was generated, and Gene Ontology (GO) and Kyoto Encyclopedia

of Genes and Genomes (KEGG) enrichment analysis was

performed. The mechanism of CCNF posttranscriptional

regulation and the basic physical and chemical properties and

spatial structure of CCNF were also analyzed. The results of this

study could provide helpful information for further exploring the

complex relationship between CCNF and multiple cancer types.
Materials and methods

Comparison of CCNF gene expression and
protein expression levels in pancancer
tissues, normal tissues or adjacent tissues

The expression level of CCNF in 33 kinds of cancer tissues and

adjacent normal tissues from TCGA database was statistically

analysed by Wilcoxon test via TIMER 2.0 (22) (http://

timer.cistrome.org/). Using GEPIA2 (23) (http://gepia2.cancer-

pku.cn/#index) based on the standardized calculation method of

the UCSC Xena database (24) (http://xena.ucsc.edu/), the RNA-seq

expression of CCNF in 33 kinds of cancer tissues in the TCGA

database and normal tissues in the GTEx database was analysed by

one-way ANOVA. The RNA expression of CCNF in 33 kinds of

cancer tissues and normal tissues or paracancerous tissues was

analysed by Mann-Whitney U test by Xiantao academic (https://

www.xiantao.love/) based on R language 3.6.3 ggplot2 package and

RNA-seq data. In addition, The Human Protein Atlas (HPA)

database (25) (https://www.proteinatlas.org/) was used to assess

CCNF protein expression in the pancancer tissues and normal
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tissues; the HPA071600 antibody-stained cancer tissue and normal

tissue specimens were selected for immunohistochemistry analysis.
Effect of CCNF expression on patient
survival in multiple cancer types

Through Kaplan-Meier Plotter (26) (https://kmplot.com/

analysis/) based on the GEO, EGA and TCGA databases, the

correlation of CCNF mRNA expression with OS and RFS in 21

cancer types was evaluated. The gene chip data of 33 pancancer types

were downloaded through UCSC Xena, and the R language 4.2.1

ggforest package was used to perform Cox regression analysis of

fac tors aff ec t ing surv iva l . PrognoScan (27) (ht tp : / /

dna00.bio.kyutech.ac.jp/PrognoScan/index), which contains cancer

microarray data, was first applied to group patients into high and

low CCNF expression groups via the minimum p value method and

was then used to evaluate the correlation between CCNF expression

and the survival of the two groups by log-rank test.
Effect of sex and race on the expression of
CCNF across cancers

The expression of CCNF in different sex and race subgroups in

the pancancer cohort was compared using UALCAN (28) (http://

ualcan.path.uab.edu/); the expression of CCNF estimated by the

RSEM algorithm based on the 31 cancer types transcripts RNA-seq

data downloaded from R 3.2.2 TCGA-Assembler, and the clinical

data regarding sex and race were obtained from Genomic Data

Commons (GDC) (https://gdc.cancer.gov/) to analyse the effect of

sex and race on pancancer CCNF expression.
Correlation between expression of CCNF
and clinicopathological stage

The correlation between mRNA expression of CCNF and

clinicopathological stage across cancers was analysed via GSCA

(29) (http://bioinfo.life.hust.edu.cn/GSCA/#/); pathological,

clinical, Masaoka and IGCCCG stage data for 27 cancer types

were assessed via Wilcoxon test (number of subgroups=2) or

ANOVA test (number of subgroups>2) and Mann-Kendall Trend

Test. The expression of CCNF in pancancer and clinical stages were

analysed by one-way ANOVA by GEPIA2.
Correlation between CCNF expression and
TMB and MSI in pancancer

The correlation of CCNF expression with TMB and MSI across

cancers was analyzed by the R language 4.2.1 ggpubr package based

on the gene chip data of 33 cancer types downloaded from the

UCSC Xena database.
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Assessment of the methylation level of
CCNF in pancancer tissues and its effect
on survival/prognosis and prediction of the
microRNA that post transcriptionally
regulates CCNF

The methylation level of CCNF in pancancer tissues was

compared with that in normal tissues by UALCAN. MethSurv

(30) (https://biit.cs.ut.ee/methsurv/) was used for multivariate

analysis of factors affecting survival based on DNA methylation

data for 7358 patients from the TCGA GDAC Firehose dataset

(with 25 types of cancer) and to analyze the effect of CCNF

methylation level on survival/prognosis of pancancer patients.

TargetScanHuman 8.0 (31) (http://www.targetscan.org/vert80/)

was used to predict the microRNAs that target CCNF based on

the presence of conserved loci in the 3’-untranslated region (3’-

UTR) in Homo sapiens.
SNV and CNV of the CCNF gene
across cancers

The SNV and CNV of the CCNF gene in pancancer were

analyzed by GSCA.
Correlation between the expression of
CCNF and immune cell infiltration,
immune score, matrix score, and immune
checkpoint gene expression across cancers

With R version 4.2.1 and the CIBERSORT algorithm, gene chip

data for 33 cancer types downloaded from the UCSC Xena database

were analyzed to determine the correlation between the expression

of CCNF and the infiltration of 22 kinds of immune cells across

cancers. The relationship between the expression of CCNF and the

immune score and matrix score was analyzed via the ESTIMATE

algorithm in R version 4.2.1. The expression of the CCNF gene and

immune checkpoint genes was extracted by the R language 4.2.1

limma package. The correlation between the CCNF gene and

immune checkpoint genes was calculated by the cor.test function.

Then, the correlations between the CCNF gene and immune

checkpoint genes were mapped via the ggpubr, ggExtra and

ggplot2 packages and visualized via the ComplexHeatmap package.
PPI network and GO and KEGG enrichment
analyses of CCNF

STRING 11.5 (32) (https://cn.string-db.org/) was used to

predict the PPI network of CCNF, setting the species as “Homo

sapiens” and the minimum combined score as 0.4. The top 5 hub

coding genes in the PPI network were screened by the cytoHubba

app of Cytoscape software (33). The top 5 hub genes were further
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enriched and analyzed by GO and KEGG through the R version

4.2.1 packages limma, org.Hs.eg.db, cluster Profiler, and enrichplot.
Prediction of basic physical and chemical
properties and secondary structure of the
CCNF protein

The amino acid sequence of the CCNF protein in Homo sapiens

wa s o b t a i n e d f r om t h e NCB I d a t a b a s e ( h t t p s : / /

www.ncbi.nlm.nih.gov/). The physical and chemical properties of

the CCNF protein were predicted by ProtParam (https://

web.expasy.org/protparam/). The hydrophilicity of the CCNF

protein was predicted by ProtScale (https://web.expasy.org/

protscale/). The transmembrane topology of the CCNF protein

was predicted by TMHMM 1.0.12 (https://dtu.biolib.com/

DeepTMHMM). The phosphorylation sites of serine, threonine

and tyrosine residues in the CCNF protein were predicted by

NetPhos 3.1 (34) (https://services.healthtech.dtu.dk/service.php?

NetPhos-3.1). The signal peptide of the CCNF protein was

predicted by SignalP 6.0 (35) (https://services.healthtech.dtu.dk/

service.php?SignalP). The secondary structure of the CCNF

protein was predicted by SOPMA (https://npsa-prabi.ibcp.fr/cgi-

bin/npsa_automat.pl?page=npsa_sopma.html).
Prediction of the tertiary structure, enzyme
binding activity, and ligand binding sites of
the CCNF protein

The tertiary structure data of the CCNF protein in Homo

sapiens were extracted by the AlphaFold database (36) (https://

alphafold.ebi.ac.uk/). The tertiary structure of the CCNF protein

was further modelled, and the enzyme binding activity and ligand

binding site were predicted by PyMOL 2.6 software.
Results

Comparison of CCNF gene expression and
protein expression levels in pancancer
tissues, normal tissues, or adjacent tissues

The expression level of CCNF in 33 kinds of pancancer tissues

and adjacent normal tissues was compared by TIMER2.0. The

results showed that CCNF was significantly upregulated in cancer

tissues vs. adjacent normal tissues in 14 types of cancer (P<0.001),

including bladder urothelial carcinoma (BLCA), breast invasive

carcinoma (BRCA), cholangiocarcinoma (CHOL), colon

adenocarcinoma (COAD), esophageal carcinoma (ESCA), head

and neck squamous cell carcinoma (HNSC), kidney renal clear cell

carcinoma (KIRC), kidney renal papillary cell carcinoma (KIRP),

liver hepatocellular carcinoma (LIHC), lung adenocarcinoma

(LUAD), lung squamous cell carcinoma (LUSC), rectum

adenocarcinoma (READ), stomach adenocarcinoma (STAD)

and uterine corpus endometrial carcinoma (UCEC) (Figure 1A).
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The differences in CCNF expression between cancer tissues and

normal tissues for 33 kinds of cancer were analyzed by GEPIA2.

CCNF was significantly upregulated in BRCA, cervical squamous

cell carcinoma and endocervical adenocarcinoma (CESC), CHOL,

COAD, lymphoid neoplasm diffuse large B-cell lymphoma (DLBC),

ESCA, HNSC, LUAD, LUSC, ovarian serous cystadenocarcinoma

(OV), pancreatic adenocarcinoma (PAAD), READ, STAD,

testicular germ cell tumors (TGCT), thymoma (THYM), UCEC

and uterine carcinosarcoma (UCS) tissues than in normal tissues

(P<0.0001) (Figure 1B).

The differences in CCNF expression between cancer tissues and

normal tissues and between cancer tissues and paracancerous

tissues for 33 kinds of cancer were analyzed by Xiantao Academy.

CCNF was significantly upregulated in adrenocortical carcinoma

(ACC), BLCA, BRCA, CESC, CHOL, COAD, DLBC, ESCA,

glioblastoma multiforme (GBM), HNSC, KIRC, KIRP, brain

lower grade glioma (LGG), LIHC, LUAD, LUSC, OV, PAAD,

READ, skin cutaneous melanoma (SKCM), STAD, TGCT,

THYM, UCEC and UCS tissues vs. normal tissues (P<0.001)

(Figure 1C). CCNF was significantly upregulated in BLCA,

BRCA, CHOL, COAD, ESCA, HNSC, KIRC, KIRP, LIHC,

LUAD, LUSC, READ, STAD and UCEC tissues vs. paracancerous

tissues (P<0.001) (Figure 1D).

In summary, CCNF is significantly upregulated in BRCA,

CHOL, COAD, ESCA, HNSC, LUAD, LUSC, READ, STAD and

UCEC tissues.

In addition, the expression level of CCNF protein in cancer

tissues and normal tissues for multiple cancer types was compared

analysis of immunohistochemical staining data in the HPA

database. CCNF protein staining intensity was moderate in

cervical cancer, endometrial cancer, liver cancer, ovarian cancer,

pancreatic cancer, and urothelial cancer and high in breast cancer,

colorectal cancer and stomach cancer. However, CCNF protein

staining was not detected in normal tissues (Figure 2).
Correlation of CCNF expression with
survival in patients in a pancancer cohort

The correlation of CCNF expression with OS and RFS for 21

cancer types was evaluated by Kaplan-Meier Plotter. The

overexpression of CCNF was an adverse prognostic factor in

terms of OS in patients with KIRC, KIRP, LIHC, LUAD,

pancreatic ductal adenocarcinoma (PDAC), Sarcoma (SARC),

STAD, TGCT, THYM and UCEC (Figure 3A), and an adverse

prognostic factor in terms of RFS in patients with bladder

carcinoma (BC), HNSC, KIRC, KIRP, LIHC, LUAD, LUSC,

PDAC, SARC, thyroid carcinoma (THCA) and UCEC (P<0.05)

(Figure 3B). According to Cox risk regression analysis of data for 33

kinds of cancer, the overexpression of CCNF was an adverse

prognostic factor in terms of OS in patients with ACC, kidney

chromophobe (KICH), KIRC, KIRP, LGG, LIHC, LUAD,

mesothelioma (MESO), PAAD, READ, SARC, SKCM and UCEC

(P<0.05) (Figure 3C), and an adverse prognostic factor in terms of

RFS in patients with
frontiersin.org
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ACC, KICH, KIRC, KIRP, LGG, LIHC, LUAD, MESO, PAAD,

prostate adenocarcinoma (PRAD), SARC, THCA and UCEC

(P<0.05) (Figure 3D). Therefore, CCNF is often correlated with a

poor prognosis in cancer patients.

Furthermore, the effect of CCNF expression on the survival of

patients with pancancer was evaluated by PrognoScan. CCNF was

an adverse prognostic factor in terms of OS for patients with brain

astrocytoma, brain glioma and breast cancer and in terms of RFS for

patients with breast cancer and lung adenocarcinoma. In addition,

CCNF was an adverse prognostic factor in terms of distant

metastasis-free survival (DMFS) in patients with breast cancer

and for distant relapse-free survival (DRFS) in patients with soft

tissue liposarcoma (P<0.01) (Figure 3E).
Effect of sex and racial differences on the
expression of CCNF in pancancer

The UALCAN database was applied to compare the expression

of CCNF in different sex and race subgroups with in the same

cancer cohort. As shown in Table 1, the expression level of CCNF in
Frontiers in Oncology 05
male patients with HNSC (P=0.0010) and LUAD (P=0.0329) was

significantly higher than that in female patients, but CCNF

expression in male patients with KIRP (P=0.0161) and SARC

(P=0.0064) was significantly lower than that in female patients

with these cancers.

Regarding the expression level of CCNF in BLCA patients,

African Americans presented significantly higher expression levels

than Caucasians (P=0.0236) and Asians (P=4.450E-05), and

Caucasians presented significantly higher expression levels than

Asians (P=0.0012). The expression level of CCNF in EC patients

was significantly lower in Caucasians than in Asians (P=0.0487).

The expression level of CCNF in HNSC patients was significantly

higher in Caucasians than in Asians (P=0.0402). The expression

level of CCNF in KICH patients was significantly higher in

Caucasian patients than in African American patients (P<0.05).

The expression level of CCNF in LIHC patients was significantly

lower in Caucasians than in Asians (P=0.0166). The expression level

of CCNF in LUAD patients was significantly lower in African

Americans than in Asians (P=0.0122). The expression level of

CCNF in OV patients was significantly higher in African

Americans than in Asians (P=0.0476). Regarding the expression
A

B

D

C

FIGURE 1

(A) Comparison of CCNF expression between pancancer tissues and adjacent normal tissues in the TCGA database (*P<0.05, **P<0.01, ***P<0.001).
(B) The expression of CCNF was significantly different in cancer tissues from TCGA database and normal tissues from the GTEx database (|Log2FC|
>1, P<0.0001, log scale: log2 (TPM+1), Jitter Size: 0.4). (C) The expression of CCNF in cancer tissues in the TCGA database was compared with that
in normal tissues (ns: P≥0.05, *P<0.05, **P<0.01, ***P<0.001). (D) The expression of CCNF in pancancer tissues and adjacent tissues of TCGA
database was compared (ns: P≥0.05, *P<0.05, **P<0.01, ***P<0.001).
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level of CCNF in THYM patients, African Americans presented

significantly higher expression levels than Caucasians (P=0.0167),

and Caucasians presented significantly higher expression levels than

Asians (P=0.0327).
Correlation between the expression of
CCNF and clinicopathological stage

The correlation between the mRNA expression of CCNF and

the clinicopathological stages of 27 cancer types was analyzed by

GSCA. The results indicated that the mRNA expression levels of

CCNF in ACC, BRCA, CESC, ESCA, KICH, KIRC, KIRP, LIHC

and LUSC were s i gn ificant l y cor re l a t ed wi th the i r

clinicopathological stages (P<0.05). Specifically, the mRNA

expression levels of CCNF in ACC, BRCA, KICH, KIRC and

KIRP increased gradually with disease progression, and stage IV

tumors presented the highest CCNF expression (Figure 4A). The

expression of CCNF and the clinical stage of pancancer were

analyzed by GEPIA2. The expression of CCNF in ACC, BRCA,

CESC, ESCA, KICH, KIRC, KIRP, LIHC, OV and SKCM was

significantly different in different clinical stage subgroups

(P<0.05); the expression of CCNF in ACC, KICH, KIRC and

KIRP was the highest in clinical stage IV (Figure 4B). In

summary, the expression of CCNF in ACC, BRCA, CESC, ESCA,

KICH, KIRC, KIRP and LIHC is closely related to the

clinicopathological stage. The expression of CCNF in ACC,
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KICH, KIRC and KIRP was the highest in clinical stage IV

tumors, which may contribute to a poor prognosis and

cancer progression.
Effect of CCNF expression on TMB and MSI
across cancers

The correlation between CCNF expression and TMB and MSI

in 33 cancer types was analyzed with R based on the UCSC Xena

database. As indicated in Figure 5A, there were positive correlations

between the expression of CCNF and TMB in ACC (P=0.0015),

BLCA (P=5.987E-07), BRCA (P=1.786E-17), CESC (P=0.0003),

COAD (P=0.0002), KICH (P=0.0009), KIRC (P=0.0308), LAML

(P=0.0228), LGG (P=5.771E-18), LIHC (P=0.0224), LUAD

(P=2.857E-22), LUSC (P=0.0067), MESO (P=0.0068), PAAD

(P=0.0005), PRAD (P=0.0004), SARC (P=1.393E-08), SKCM

(P=0.0181), STAD (P=3.602E-19) and UCEC (P=2.163E-10),

while there was a negative correlation between the expression of

CCNF and TMB in THYM (P=2.170E-18). As shown in Figure 5B,

there were positive correlations between the expression of CCNF

and MSI in ACC (P=0.0025), BLCA (P=0.0010), CESC (P=0.0022),

COAD (P=0.0017), GBM (P=0.0064), LIHC (P=0.0118), LUAD

(P=0.0097), LUSC (P=0.0033), SARC (P=3.218E-06), STAD

(P=1.249E-06) and UCEC (P=3.367E-11), while there were

negative correlations between the expression of CCNF and TMB

in LAML (P=0.0271) and READ (P=0.0464).
FIGURE 2

The protein expression levels of CCNF in pancancer tissues and normal tissues were compared via the HPA database. Cancer tissues and normal
tissues stained with HPA071600 antibody were selected for immunohistochemistry analysis. Cancer tissues presenting medium or high expression
and normal tissues with undetected expression were included.
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Methylation levels of CCNF in pancancer
tissues and its effect on patient survival/
prognosis and prediction of the microRNA
that post transcriptionally regulates CCNF

The methylation level of CCNF in pancancer tissues was

compared with that in normal tissues via UALCAN. The

methylation level of CCNF in pancancer tissues was significantly

lower in BLCA (P=4.042E-10), BRCA (P=6.974E-10), CHOL

(P=0.0108), CESC (P=0.0019), HNSL (P=0.0003), LUAD

(P=0.0001), LUSC (P=0.0379), PAAD (P=0.0022), SARC

(P=0.0160), and UCEC (P=0.0340) tissues than in normal tissues

but was significantly higher in PRAD (P=1.648E-12) and KIRP

(P=2.469E-07) tissues than in normal tissues (Figure 6A).

MethSurv was used to analyze the effects of the methylation levels

of CCNF on patient survival/prognosis across cancers. High

methylation levels of CCNF resulted in poor survival/prognosis in
Frontiers in Oncology 07
cancer patients with ACC, BLCA, CESC, COAD, KIRC, KIRP, LAML,

LGG, LIHC, MESO, PAAD, STAD, UCEC, and UVM (Figure 6B).

The microRNAs that post transcriptionally regulate CCNF based

on conservation of the 3’-UTR in Homo sapiens were predicted by

TargetScanHuman. The aggregate PCT of CCNF andmiR-98-5p was

0.94, indicating that miR-98-5p may be involved in the

posttranscriptional regulation of CCNF. In addition, the conserved

site in the 3’-UTR of miR-98-5p was in the 1786-1793 nt region, and

the conserved sequence was GAUGGAG.
SNV and CNV of the CCNF gene
across cancers

SNV and CNV of CCNF across cancer were analyzed by GSCA.

SKCM, UCEC and COAD had the highest numbers of SNVs at 24,

18 and 10, respectively. Missense mutations and single nucleotide
A

B
D

E

C

FIGURE 3

(A) Kaplan-Meier-Meier plotter was used to assess the impact of CCNF expression on the OS of patients with 21 types of cancer (P<0.05).
(B) Kaplan-Meier-Meier plotter was used to evaluate the effect of CCNF expression on the RFS of 21 cancer patients (P<0.05). (C) Cox risk regression
analysis of the value of CCNF expression in predicting the OS of cancer patients with 33 cancer types (P<0.05, hazard ratio (HR)>1). (D) Cox risk
regression analysis of the value CCNF expression in predicting the RFS of patients with 33 cancer types (P<0.05, HR>1). (E) PrognoScan evaluated
the effect of CCNF expression on OS, RFS, DMFS and DRFS in pancancer patients (P<0.01).
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TABLE 1 Effects of sex and race differences on CCNF expression in the same cancer type.

Patient’s gender Patient’s race

Male Female Caucasian African American Asian

ACC 2.160 [1.440, 3.115] 2.077 [1.387, 3.555] 2.231 [1.390, 3.711] NA NA

BLCA 11.096 [6.915, 15.234] 10.012 [7.591, 13.559] 11.015 [7.030, 14.989] 14.651 [11.802, 17.770] b 8.477 [5.535, 11.466] gd

LGG 2.715 [1.958, 3.517] 2.822 [2.025, 3.809] 2.735 [1.990, 3.561] 3.237 [2.105, 4.311] 3.036 [2.767, 3.395]

BRCA 14.854 [11.007, 20.960] 11.104 [7.406, 16.429] 10.437 [7.070, 15.845] 11.542 [7.788, 15.827] 12.590 [9.344, 17.880]

MBC NA NA NA NA NA

CESC NA NA 1.989 [10.168, 17.492] 12.756 [8.265, 19.296] 14.061 [10.571, 16.199]

CHOL 3.974 [2.541, 4.809] 2.828 [2.285, 4.032] 2.910 [2.433, 4.326] 3.301 [3.052, 3.550] 4.311 [3.265, 4.955]

COAD 10.946 [8.281, 15.304] 12.186 [8.168, 15.781] 11.598 [8.126, 15.879] 11.966 [8.560, 14.942] 11.061 [6.619, 14.510]

EC 13.478 [9.318, 18.591] 13.347 [8.711, 20.808] 12.138 [8.808, 17.383] 22.425 [22.238, 22.462] 14.302 [10.490, 19.306] g

GBM 6.266 [4.127, 9.380] 5.385 [3.586, 8.319] 6.064 [3.857, 8.802] 6.098 [2.366, 9.377] 5.795 [5.398, 6.922]

HNSC 11.727 [8.354, 17.417] 10.535 [7.284, 14.372] a 11.456 [7.887, 16.353] 11.960 [9.482, 17.778] 9.354 [6.594, 14.329] g

KICH 0.713 [0.490, 1.039] 0.808 [0.613, 0.988] 0.805 [0.553, 1.407] 0.594 [0.386, 0.784] b 1.974 [1.440, 2.508]

KIRC 1.531 [1.201, 2.080] 1.516 [0.967, 1.908] 1.531 [1.136, 2.037] 1.266 [0.969, 1.701] 1.872 [1.338, 2.322]

KIRP 1.086 [0.805, 1.307] 1.418 [0.866, 2.211] a 1.146 [0.829, 1.634] 1.037 [0.777, 1.176] 2.733 [1.195, 5.206]

LAML 12.029 [7.987, 16.703] 9.235 [5.411, 13.433] 11.212 [6.763, 15.770] 9.909 [5.793, 13.416] 5.975 [5.644, 6.306]

LIHC 1.521 [0.767, 3.078] 2.230 [1.119, 3.965] 1.595 [0.765, 3.765] 1.642 [1.206, 3.309] 2.070 [1.059, 4.017] g

LUAD 6.754 [3.387, 9.978] 6.152 [3.876, 8.935] a 6.244 [3.647, 9.557] 5.733 [3.336, 8.874] 11.444 [7.171, 14.935] d

LUSC 10.037 [7.347, 13.488] 9.809 [6.082, 14.158] 10.206 [7.171, 14.188] 9.710 [7.445, 10.526] 9.172 [8.640, 23.088]

DLBC 14.949 [10.028, 18.396] 13.696 [10.726, 17.277] 14.497 [11.539, 21.021] NA 14.450 [9.019, 18.319]

MESO 3.471 [2.197, 5.092] 3.645 [1.534, 4.925] 3.542 [1.894, 5.353] NA NA

OV NA NA 8.758 [6.029, 13.150] 9.034 [6.064, 13.746] 7.096 [5.892, 7.881] d

PAAD 3.088 [2.309, 4.330] 3.260 [2.034, 4.654] 3.129 [2.157, 4.455] 2.652 [2.015, 4.032] 3.780 [3.302, 4.209]

PCPG 2.232 [1.500, 3.027] 2.235 [1.594, 3.312] 2.231 [1.537, 2.994] 2.206 [1.983, 3.383] 2.215 [1.347, 2.766]

PRAD NA NA NA NA NA

MPC NA NA NA NA NA

READ 12.418 [9.769, 15.480] 11.897 [8.643, 16.306] 10.737 [7.725, 15.585] 12.892 [10.073, 15.358] NA

SARC 6.335 [3.606, 10.140] 7.742 [4.549, 11.598] a 6.842 [3.729, 10.859] 7.727 [6.016, 14.098] 5.721 [3.111, 8.869]

SKCM 10.083 [7.279, 13.636] 9.837 [6.986, 13.754] 10.007 [7.102, 13.636] NA 13.845 [10.336, 15.287]

STAD 9.916 [6.402, 14.649] 11.411 [7.529, 15.870] 10.238 [5.997, 14.870] 12.572 [9.556, 15.000] 9.631 [6.819, 15.231]

TGCT NA NA 29.607 [23.212, 39.737] 30.064 [19.190, 39.444] 39.923 [32.859, 44.088]

THYM 16.191 [9.817, 22.234] 17.015 [8.689, 24.395] 16.718 [10.048, 23.417] 26.352 [22.602, 34.163] b 9.022 [5.272, 16.517] gd

THCA 1.151 [0.909, 1.455] 1.125 [0.864, 1.455] 1.163 [0.916, 1.493] 1.032 [0.760, 1.425] 1.163 [0.869, 1.509]

UCS NA NA 11.198 [8.490, 14.231] 11.431 [8.476, 14.640] 14.570 [11.129, 15.348]

UCEC NA NA 7.588 [4.552, 12.102] 7.768 [4.922, 11.781] 5.634 [3.095, 13.703]

UVM 3.527 [2.671, 4.369] 3.560 [2.536, 4.515] NA NA NA
F
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All data were expressed using interquartile spacing. a: Male vs. Female, P<0.05; b: Caucasian vs. African American, P<0.05; g: Caucasian vs. Asian, P<0.05; d: African-American vs. Asian, P<0.05;
MBC, Metastatic breast cancer; EC, Oesophageal carcinoma; LAML, Acute myeloid leukemia; PCPG, Pheochromocytoma and paraganglioma; MPC, Metastatic prostate cancer; UVM, Uveal
melanoma; NA, Not applicable.
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polymorphisms (SNPs) were the main variation types, and C>T was

the main variation type (Figures 7A, B). For CNVs, heterozygous

amplification variations of CCNF were most common in KIRP,

ACC and BRCA, with amplification percentages of 52.4%, 51.1%

and 48.2%, respectively. Loss-of-heterozygosity variations in CCNF

were most common in OV, UCS and BLCA, with loss percentages

of 53.7%, 53.6% and 40.0%, respectively. Homozygous

amplifications of CCNF were most common in BRCA, DLBC and

ACC, with amplification percentages of 5.0%, 4.2% and 3.3%,

respectively. Homozygous loss of CCNF was most common in

BLCA, STAD and ESCA, with loss percentages of 1.5%, 1.4% and

1.1%, respectively (Figures 7C, D).
Correlation between the expression of
CCNF and immune cell infiltration,
immune score, matrix score, and immune
checkpoint gene expression in pancancer

The R language was used to analyze the correlation between

CCNF expression and immune cell infiltration. The expression of
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CCNF in TGCT was positively correlated with the infiltration of

naive B cells, and the expression of CCNF in THYM and THCA was

positively correlated with the infiltration of plasma cells. The

expression of CCNF in BRCA, UCEC, THCA and KIRC was

negatively correlated with the infiltration of T cells and resting

memory CD4 T cells. The expression of CCNF in STAD, BRCA,

LUAD, UCEC and LIHC was positively correlated with the

infiltration of T cells and CD4 memory activation. The expression

of CCNF in STAD, UCEC, LIHC, THCA, TGCT and SARC was

positively correlated with the infiltration of follicular helper T cells.

The expression of CCNF in KIRC and BRCA was positively

correlated with the infiltration of T-cell regulators (Tregs), while

the expression of CCNF in UCEC was negatively correlated with the

infiltration of Treg cells. The expression of CCNF in THYM was

positively correlated with the infiltration of resting NK cells, while

the expression of CCNF in LUSC and COAD was positively

correlated with the infiltration of activated NK cells. The

expression of CCNF in THYM was negatively correlated with the

infiltration of activated NK cells, while the expression of CCNF in

BRCA, PAAD, and THCA was negatively correlated with the

infiltration of monocytes. The expression of CCNF in BRCA,
A

B

FIGURE 4

(A) Analysis of the correlation between CCNF mRNA expression and the clinical pathological stage for 27 cancer types by GSCA (P<0.05). (B) The
expression of CCNF and the clinical stage of multiple cancers were analyzed by GEPIA2 (P<0.05).
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LUAD, SARC and STAD was positively correlated with the

infiltration of M0 macrophages, while the expression of CCNF in

THYM was negatively correlated with the infiltration of M0

macrophages. The expression level of CCNF in UCEC, LUAD,

THCA, BRCA and STAD was positively correlated with the

infiltration of M1 macrophages, while the expression level of

CCNF in THYM was negatively correlated with the infiltration of

M1 macrophages. The expression level of CCNF in THYM, LIHC

and KIRP was negatively correlated with the infiltration of M2

macrophages, while the expression level of CCNF in THYM was

positively correlated with the infiltration of resting dendritic cells.

The expression of CCNF in HNSC and LUAD was negatively

correlated with the infiltration of resting dendritic cells, while the

expression of CCNF in KIRC was negatively correlated with the

infiltration of activated dendritic cells. The expression of CCNF in

LUAD, THYM, KIRC, STAD and BRCA was negatively correlated

with the infiltration of resting mast cells, and the expression of

CCNF in LUSC was negatively correlated with the infiltration of

neutrophils (P<0.0001) (Figure 8A).

The R language was used to analyze the expression of CCNF

and the immune score and matrix score across cancers. The

expression of CCNF was negatively correlated with the infiltration

of immune cells in GBM, LGG, LUAD and UCEC (P<0.0001), while

the expression of CCNF was positively correlated with the

infiltration of immune cells in KIRC (P<0.0001) (Figure 8B). The

expression level of CCNF was negatively correlated with the

infiltration of stromal cells in BLCA, BRCA, GBM, HNSC, LGG,

LIHC, LUAD, LUSC, SKCM, STAD, TGCT, THYM, and UCEC

(P<0.0001) (Figure 8C).

The R language was used to analyse the correlation of the

CCNF gene and immune checkpoint gene across cancers. There
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was a significant negative correlation between the CCNF gene and

the EDNRB gene (R=-0.5751, P=7.861E-12), VEGFA gene (R=-

0.6083, P=2.161E-13), TLR4 gene (R=-0.5862, P=2.484E-12), and

CD40 gene (R=-0.5405, P=2.221E-10) in THYM. There was a

significant positive correlation between the CCNF gene and the

ADORA2A gene (R=0.7431, P=3.788E-22), PDCD1 gene

(R=0.7560, P=2.855E-23), HMGB1 gene (R=0.7394, P=7.757E-

22), CD28 gene (R=0.6638, P=1.915E-16), ICOS gene (R=0.7617,

P=8.523E-24), and ITGB2 gene (R=0.5928, P=1.224E-12) in

THYM. The CCNF gene was positively correlated with the

ADORA2A gene (R=0.5337, P=6.792E-39) in THCA. The CCNF

gene was positively correlated with the CD70 gene (R=0.7168,

P=1.874E-11) and TNFSF9 gene (R=0.7168, P=5.970E-09) in

KICH. The CCNF gene was significantly negatively correlated

with the CX3CL1 gene (R=-0.5162, P=1.078E-05) in

KICH (Figure 8D).
PPI network and GO and KEGG enrichment
analyses of CCNF and related genes

The PPI interaction network of CCNF was analyzed by STRING

and Cytoscape. The PPI interaction network was composed of 11

coding genes (CCNF, CDC6, CDC20, CDK1, NUSAP1, CCP110,

CUL1, SKP1, CCNE1, RRM2, and ESPL1) and 46 edges

(Figure 9A). The top 5 hub genes were predicted by the

cytoHubba plugin, and CCNF, CDK1 and CDC6 were most

closely related (Figure 9B). GO enrichment analysis consists of

three categories: biological process (BP), cellular component (CC)

and molecular function (MF). Negative regulation of the cell cycle

process was the main enriched BP of the top 5 hub genes, and
A B

FIGURE 5

(A) Correlation between CCNF expression and TMB in 33 cancer types. (B) Correlation between the expression of CCNF and MSI in 33 cancer types.
The abscissa represents the correlation value between CCNF expression and TMB and MSI of 33 cancer types, the ordinate represents different
cancer types, different colors represent significance levels, and the size of the point represents the size of the correlation coefficient.
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spindle was the main enriched CC term. The main enriched MF

term was RNA polymerase II CTD heptapeptide repeat kinase

activity (P<0.05) (Figure 9C). KEGG signaling pathway

analysis results reflect the network of interactions, reactions

and relationships between molecules. There were 7 KEGG

signaling pathways enriched in the top 5 hub genes, and the

cell cycle signaling pathway was the main enriched pathway

(P<0.05) (Figure 9D).
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Prediction of basic physical and chemical
properties and secondary structure of
CCNF protein

According to the prediction of the basic physical and chemical

properties of the CCNF protein, the total number of amino acids in

the CCNF protein was 786, the proportion of isoleucine was the

highest, the content was 12.3%, the total molecular weight was
A

B

FIGURE 6

(A) Comparison of the methylation level of CCNF between pancancer tissues and normal tissues (P<0.05). (B) MethSurv was used to analyze the
effects of hypermethylation in the CpG site of the CCNF gene on the survival/prognosis of patients in the pancancer cohort (cut-off: HR>1, LR test P
value<0.01).
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87639.81, the theoretical PI value was 5.92, the total number of

positively charged residues (Arg+Lys) was 84, the total number of

negatively charged residues (Asp+Glu) was 98, the molecular

formula was C3854H6112N1082O1174S39, and the total number of

atoms was 12261. At a wavelength of 280 nm, all paired cysteine

residues are assumed to form cystine with an extinction coefficient

of 1.099, and all cysteine residues are assumed to decrease with an

extinction coefficient of 1.076. Instability index: 51.10, which is

unstable protein. Aliphatic index: 88.33, Grand average of

hydropathy (GRAVY): -0.245, maximum hydrophilic position:

358, score: 2.956, maximum hydrophobic position: 572, score:

-3.722, was hydrophilic protein (Figure 10A). The transmembrane

topology of the CCNF protein has no transmembrane region

(Figure 10B). There were 62 phosphorylation sites for serine

residues, 20 phosphorylation sites for threonine residues, and 6

phosphorylation sites for tyrosine residues (Figure 10C). The signal

peptide of the CCNF protein is not a signal peptide (Figure 10D).

The CCNF protein included 361 a-helices (45.93%), 54 b-folds
(6.87%), 31 b-turns (3.94%) and 340 random coils (43.26%)

according to the predicted secondary structure of CCNF

protein coils.
Prediction of the tertiary structure, enzyme
binding activity, and ligand binding sites of
the CCNF protein

The tertiary structure data for the CCNF protein were extracted

by the AlphaFold database and visualized by PyMOL software

(Figure 11A). The enzyme binding activity and ligand binding
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site of the CCNF protein were predicted by PyMOL software. The

best model was selected according to the C-score. The higher the

value of the C-score is, the higher the reliability of the model. The

following parameters were extracted: C-score of enzyme binding

activity of CCNF protein: 0.077, active site: 285, 287, C-score of

ligand binding: 0.03, and binding site: 430, 437 (Figures 11B, C).
Discussion

In recent years, pancancer analysis has become very important

in revealing commonalities among cancer types and facilitating

individualized treatment. It has been applied not only in the

discovery of new tumor markers and the development of new

anticancer drugs (37) but also in the online analysis of the

underlying molecular mechanism and clinical prognostic value of

a gene (38). For the first time, we analyzed the differential

expression of CCNF across cancers and its correlation with

clinical prognosis. In our study, CCNF was generally highly

expressed in 33 cancer types, and the results were cross-validated

with the TIMER 2.0, GEPIA2 and Xiantao Academic online

databases. The expression levels of CCNF in BRCA, CHOL,

COAD, ESCA, HNSC, LUAD, LUSC, READ, STAD and UCEC

were significantly higher than those in adjacent tissues or normal

tissues, suggesting that overexpression of CCNF is an adverse

prognostic factor for cancer. At the same time, our study also

found that the expression level of CCNF protein was high in many

cancer tissues, especially in breast cancer, colorectal cancer, and

stomach cancer tissues. CCNF, as a key component of the ubiquitin

proteasome, may maintain genome integrity by mediating the
A

B

D
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FIGURE 7

(A) The SNV profile of genes of interest in the selected cancers. (B) Figure summarizes the SNV classes of the genes of interest in the selected
cancers. (C) The profiles of heterozygous CNV of the genes of interest in the selected cancers. (D) Profile of homozygous CNV of the genes of
interest in the selected cancers.
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degradation of intracellular proteins, while overexpression of CCNF

causes dysregulation of DNA replication, repair and cell cycle

checkpoints, thereby inducing the progression of cancer cells (6,

39). However, CHANG S C et al. (40) reported that CCNF reduced

the activity of cancer cells and inhibited the migration and invasion

of BRCA cancer cells by downregulating the expression of the

RRM2 gene. Although their conclusions are contrary to ours, CCNF

and its encoded proteins may be potential biomarkers for the

diagnosis of cancer.

In the era of precision medicine for cancer, pancancer

biomarkers and clinicopathological features can be used to assess

the condition and prognosis of cancer patients more

comprehensively than traditional markers alone (41). Our results

show that CCNF is an adverse prognostic factor in terms of OS and

RFS in patients with KIRC, KIRP, LIHC, LUAD, SARC and UCEC,

which was also confirmed in the Cox hazard regression analysis.

The correlation between the expression level of CCNF and the
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clinicopathological stage of multiple cancer types was analyzed via

GSCA and GEPIA2 online, and the results also showed that the

overexpression of CCNF was associated with advanced disease and

a poor prognosis, suggesting that CCNF could be used as a potential

pancancer biomarker. Increasing evidence has shown that the

instability of cancer genomes differs between males and females,

which leads to differences in mutation rates during tumor evolution

in these groups (42). DONG M et al. (43) and WANG Y et al. (44)

showed that when patients are younger than 65 years old, the

morbidity and survival rates of male patients are lower than those of

female patients in a variety of cancers, and male sex is an

independent risk factor for cancer development and distant

metastasis. This conclusion is consistent with our findings. The

expression level of CCNF in male patients is generally higher than

that in female patients, which also suggests that CCNF is a potential

pancancer therapeutic target influenced by sex. There are similar

differences in patients grouped by race (45, 46). In our study, the
A B

DC

FIGURE 8

(A) Correlation analysis between the expression of CCNF and the infiltration of 22 types of immune cells in 33 cancer types (P<0.0001).
(B) Correlation analysis between the expression of CCNF and immune scores of 33 cancer types (P<0.0001). (C) Correlation analysis between CCNF
expression and the matrix score of 33 cancer types (P<0.0001). (D) Correlation analysis of CCNF gene and immune checkpoint gene expression in
33 cancer types (P<0.0001, |R|>0.5, R: correlation coefficient).
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expression level of CCNF in Caucasians with BLCA and THYM

cancer was significantly lower than that in African Americans but

significantly higher than that in Asians. Therefore, we will consider

the influence of sex and race more carefully in future

cancer treatment.

Immune checkpoint inhibitors (ICIs) have facilitated great

achievements in the field of cancer immunotherapy, and TMB

and MSI are the only two factors that have been approved by the

Food and Drug Administration (FDA) as indicators of the response

to ICI treatment (47). TMB reflects the number of gene mutation

sites in tumor cells, while MSI is caused by a defect in mismatch

repair (MMR) function. Tumors with high TMB and MSI are more

readily infiltrated with immune cells, which facilitates a stronger

antitumor immune response (48, 49). In our study, the CCNF

expression level was significantly positively correlated with TMB

andMSI status in ACC, BLCA, CESC, COAD, LIHC, LUAD, LUSC,

SARC, STAD, and UCEC and was closely related to the expression
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levels of many immune checkpoint genes in THYM and KICH.

These results suggest that CCNF and its encoded proteins may be

biomarkers for predicting the effect of ICI treatment in cancer

patients. DNA methylation can control the expression of certain

genes without changing gene sequences, which is an important

form of genome epigenetic modification (50). This is mainly

reflected by the observation that the hypermethylation of CpG

islands in the promoter region leads to the silencing of tumor

suppressor genes, while the hypomethylation of CpG sites in the

gene body promotes the activation of oncogenes. However, this

methylation level can be changed (51). Studies have shown that

abnormal DNA methylation is an important cause of genomic

instability in cancer cells, and methylation levels constantly affect

the occurrence and progression of tumors (52, 53), consistent with

our results. The hypomethylation of CCNF in BLCA, BRCA,

CHOL, CESC, HNSC, LUAD, LUSC, PAAD, SARC and UCEC

leads to the overexpression of the CCNF gene. In addition, we have
A B

D

C

FIGURE 9

(A) Analysis of the PPI interaction network of CCNF through STRING and Cytoscape. (B) The top 5 hub genes predicted through the cytoHubba app
for the PPI interaction network of CCNF. (C) GO enrichment analysis of the top 5 hub genes was conducted via the R language. (D) The KEGG
signaling pathways enriched in the top 5 hub genes were analyzed with the R language.
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shown that high methylation levels of CCNF in ACC, COAD,

KIRC, KIRP, LAML, LGG, LIHC, MESO, STAD, and UVM patients

lead to poor survival/prognosis. Therefore, the methylation level of

CCNF is also a very important factor affecting the survival/
Frontiers in Oncology 15
prognosis of patients with different cancer types, suggesting that

combined assessment of methylation level and expression level of

CCNF may become a new method for the diagnosis and treatment

of cancers in the future.
FIGURE 10

(A) The hydrophobicity of the CCNF protein. The abscissa is the sequence position, and the ordinate is the scale value of the amino acid. (Hphob./
kyte & Doolittle: positive value indicates hydrophobicity, negative value indicates hydrophilicity). (B) The transmembrane topology of the CCNF
protein. (C) The phosphorylation sites of serine, threonine and tyrosine residues of the CCNF protein. (D) Signal peptide of CCNF protein.
A B

C

FIGURE 11

(A) AlphaFold database and PyMOL software predictions of the tertiary structure of the CCNF protein. (B) PyMOL software was used to predict the
enzyme binding sites of the CCNF protein. (C) PyMOL software was used to predict the ligand binding sites of the CCNF protein.
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The tumor microenvironment (TME) is a complex entity

composed of cancer cells, stromal cells and immune cells, and the

invasion of cancer cells is the main factor affecting the occurrence

and development of tumors and immune escape (54, 55). In recent

years, the antitumor effect of infiltrating immune cells on the TME

and the response to treatment have been widely studied (56), and

comprehensive antitumor therapy, including treatment with

immunotherapies that enhance the infiltration of innate and

adaptive immune cells in the TME, is very important (57). Our

results showed that THYM cancer was mainly infiltrated by resting

NK cells, plasma cells and resting dendritic cells. Activated memory

CD4 T cells, follicular helper T cells, M0 macrophages and M1

macrophages infiltrate widely in many cancer types, which is

consistent with the conclusion of ZUO S et al. (55). Although the

high heterogeneity of the TME affects the ability of immune cells to

infiltrate, the extent of T-cell and macrophage infiltration is an

important prognostic factor for many cancer types. In addition,

CCNF overexpression also reduced the infiltration of immune cells

and stromal cells in GBM, LGG, LUAD and UCEC cancers, thereby

promoting the growth of tumor tissues. We predicted the

microRNA that targets the CCNF gene, and the results showed

that miR-98-5p may be involved in the posttranscriptional

modification of the CCNF gene. According to previous studies,

miR-98-5p not only inhibits the growth and invasion ability of

gastric cancer cells (58) and thyroid papillary cancer cells (59) but

also enhances the sensitivity to cisplatin and paclitaxel. Moreover,

the downregulation of miR-98-5p often predicts the later clinical

stage and distant metastasis of non-small cell lung cancer (NSCLC)

(60), indicating that miR-98-5p may be a microRNA that negatively

regulates the CCNF gene. PPI interaction network analysis showed

that the CCNF gene, CDK1 gene and CDC6 gene are closely related,

indicating that these genes, as key regulators of the G2/M or G1/S

checkpoint of the cell cycle, promote the occurrence and

progression of many cancers. CCNF is a potential pancancer

biomarker and immunotherapeutic target (61, 62).
Conclusion

The CCNF gene is overexpressed in BRCA, CHOL, COAD,

ESCA, HNSC, LUAD, LUSC, READ, STAD and UCEC cancers and

is also an adverse prognostic factor in terms of OS and RFS in many

cancers, suggesting that it promotes the progression of many

cancers and indicates a poor prognosis. In addition, the

hypomethylation of the CCNF gene promotes its own expression,

leading to decreased infiltration of immune cells and stromal cells,

and the expression level of CCNF clearly differs between patients

grouped by sex and race. miR-98-5p negatively regulates the

expression of the CCNF gene at the posttranscriptional level.
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Therefore, CCNF and its encoded proteins are potential

biomarkers and immunotherapeutic targets for pancancer.
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