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Behavioral approaches and electrophysiology in understanding human

sensorimotor systems have both yielded substantial advancements in past

decades. In fact, behavioral neuroscientists have found that motor learning

involves the two distinct processes of the implicit and the explicit. Separately,

they have also distinguished two kinds of errors that drive motor learning: sensory

prediction error and task error. Scientists in electrophysiology, in addition, have

discovered two motor-related, event-related potentials (ERPs): error-related

negativity (ERN), and feedback-related negativity (FRN). However, there has been

a lack of interchange between the two lines of research. This article, therefore,

will survey through the literature in both directions, attempting to establish a

bridge between these two fruitful lines of research.
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Introduction

Whether it is learning to ride a bike, play a musical instrument, or perform a complex
surgical procedure, motor learning is a critical component of our ability to interact with
the world around us. It occurs throughout the lifespan and enables us to acquire new
skills, refine existing ones, and adapt to changing environmental demands. Through careful
experimental designs, behavioral neuroscientists have dissected two parallel processes in
motor learning: implicit vs. explicit motor learning. Implicit motor learning refers to the
involuntary learning process evoked by movement errors. Explicit motor learning, on the
other hand, involves the deliberative adjustment of movement given explicit instructions of
the task. Subsequently, a crucial inquiry is what drives each motor learning process. The
initial theories have formalized two different kinds of error signals: sensory prediction error
vs. task error. Sensory prediction error, the difference between the actual sensory feedback
and expected sensory feedback for a given motor command, drives implicit motor learning;
task error, the signal that reflects general task performance, drives explicit motor learning.
However, recent studies have challenged this view and ask for a more intricate theory for
both. A prospective approach is to first nail down the electrophysiological correlates for
both implicit vs. explicit motor learning and sensory prediction error vs. task error. At the
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meanwhile, error-related negativity (ERN) and feedback-related
negativity (FRN) are the two heavily investigated motor-related,
event-related potentials. Error-related negativity (ERN) is a
negative deflection in the EEG signal that occurs in response
to the commission of an error during a task. Feedback-
related negativity (FRN) is a negative deflection in the EEG
signal that occurs in response to the presentation of feedback
about the outcome of a task, particularly when the feedback
indicates an error. Numerous theoretical frameworks have been
proposed to understand these two clearly distinct event-related
potentials. However, the behavioral correlates of error-related
negativity (ERN) and feedback-related negativity (FRN) still
remain controversial and intriguing topics in the field. Hence, in
this article, we seek to provide a systematic review of the existing
literature on both aspects, and discuss several recent works that
endeavor to bridge the two lines of research. By systematically and
comprehensively reviewing what we currently know, we aim to
create a reference guide that can serve as a valuable resource for
future researchers and experimental designs.

Implicit and explicit motor learning

Experiments reveal that there are two distinct processes when
humans learn to counter perturbation: an implicit component,
which is an involuntary response to sensory prediction error
and which may deteriorate task performance, and an explicit
component, which is a deliberative adjustment of aiming direction
given explicit instructions from the experimenter. In a canonical
experiment of visuomotor rotation, the participant was instructed
to reach for a target with a cursor corresponding to the participant’s
reaching hand. The cursor path was perturbed by a 45-degree
counterclockwise rotation, and the participant was explicitly
instructed about the nature of the perturbation. The participant
was asked to employ the following explicit strategy: aim for the
position that is 45-degree clockwise from the presented target. By
applying this strategy, the participant should have been able to
eliminate errors. Surprisingly, the performance of the participant
was accurate at the beginning of the experiment, but continually
deteriorated as the experiment proceeded (Mazzoni and Krakauer,
2006). This result suggests the existence of an implicit learning
process distinct from the explicit one of re-aiming.

Jordan and Rumelhart (1992) further analyzed the two
processes of motor learning through a novel task design. In their
work, the participant was asked to continuously verbally report his
aiming direction while learning a visuomotor rotation (Taylor et al.,
2014). The explicit learning was measured as the difference between
the reported aiming direction and the target. By subtracting this
measure from the actual hand position, Jordan and Rumelhart
(1992) estimated the magnitude of implicit motor learning. Explicit
learning exhibited large fluctuations early in training before settling
into smaller adjustments late in training. In contrast, implicit
learning was slow and monotonic. This study shows that motor
learning is a product of both fast learning of an explicit re-aiming
direction and slower implicit learning. It appears that the overall
task performance reflects the joint operation of both processes.

The explicit and implicit processes of motor learning were
further investigated and observed in many other paradigms, such

as mirror reversal where the feedback cursor is mirror reversed
rather than rotated (Shadmehr et al., 2010; Krakauer et al.,
2019; Kim et al., 2021; Deng et al., 2022). As to implicit motor
learning, the cerebellum is commonly regarded as its neural
correlate in neurophysiology, while recent studies have indicated
involvement of prefrontal, parietal, and premotor cortices as well
(Shadmehr et al., 2010; Kim et al., 2021). Explicit strategy is
usually regarded as a form of motor planning (Wong et al.,
2015; McDougle and Taylor, 2019), and some studies suggest
that neural dynamics in motor cortices, primarily PMd and
M1, are neural correlates for such motor planning (Kaufman
et al., 2014; Wong et al., 2015; Deng et al., 2022). Other studies
reveal involvements of premotor and supplementary motor areas
(Churchland et al., 2006; Russo et al., 2020). In addition, studies
in mice show that motor planning is more global, involving
circuits that cover the whole brain; primary circuits include
cortico-cortical loops, cortico-thalamocortical loops, and cortico–
basal ganglia–thalamocortical loops (Inagaki et al., 2022). The
neurophysiology for the two processes still remains unclear; as
a result, future application of electrophysiological approaches in
complex behavioral experiments have substantive potential to push
forward our understanding of implicit and explicit motor learning.

Sensory prediction error vs. task
error

One question that remains is what drives the two processes of
motor learning. The two concepts of sensory prediction error and
task error have been proposed. Sensory prediction error refers to
the difference between the actual sensory feedback and expected
sensory feedback for a given motor command (Tseng et al., 2007;
Shadmehr et al., 2010; Haith and Krakauer, 2013; Tsay et al.,
2022). To bring this to light, visuomotor adaptation occurs when a
perturbation is imposed that causes discrepancies in gaze vs. reach
directions, leading to a difference between where the arm is seen
and where the brain expects to see it based on the motor command.
On the contrary, task error refers to the failure to achieve an
internally determined task goal and is the signal that reflects general
task performance (Taylor and Ivry, 2011; Kim et al., 2019; Leow
et al., 2020; Tsay et al., 2022).

It was originally thought that implicit motor learning is driven
by sensory prediction errors and that explicit motor learning is
driven by task errors (Taylor et al., 2014). To examine the effects
of task errors and sensory prediction errors on implicit motor
learning, Leow et al. (2020) designed a method, the target jump,
in which they could enhance or remove task errors during learning
by perturbing target locations; namely, the target location was not
in a fixed position. The experimenter was able to manipulate the
task error by moving the target position while the participant was
reaching (Leow et al., 2020). Implicit motor learning improved
when there were task errors, yet did not improve when task errors
were eliminated by the target jump. Hence, Leow et al. (2020)
argued that task errors were sufficient and necessary to improve
implicit motor learning. Morehead et al. (2017) designed another
method to dissect the effects of sensory prediction error and task
error in implicit motor learning, known as clamped visual feedback.
During the clamp, the trajectory of the feedback cursor was hard
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coded and therefore spatially independent of hand trajectory. The
experimenter was able to eliminate task error by always presenting
the cursor hitting the target, regardless of how the participant
performed. The participants were informed of the nature of the
feedback and asked to ignore it. The remaining effect of learning
should have been solely due to sensory prediction error. However,
the rate and magnitude of implicit motor learning remained the
same even across a large range of clamp offsets (Morehead et al.,
2017). This result revealed that sensory prediction errors were also
sufficient and necessary to drive implicit motor learning.

These results, in fact, prompted further investigation into the
relations between sensory prediction errors and task errors. Instead
of using the target jump like Kim et al. (2019) and Leow et al. (2020)
invented a method meant to simply vary the size of the target. They
showed that task error has a modulating effect on learning based
on sensory prediction error (Kim et al., 2019). Melding the three
methods of, varying target jump, varying target size, and clamped
visual feedback, Tsay et al. (2022) showed that task error alone does
not drive implicit motor learning; sensory prediction error does,
but it is continuously modulated by task error through the course
of implicit motor learning.

All things considered then, the story between implicit vs.
explicit motor learning and sensory prediction error vs. task error is
a more intricate one. Further research may utilize electrophysiology
to investigate neural correlates of sensory prediction error and task
error. For instance, a starting question could be to ask if sensory
prediction error correlates error-related negativity and if task error
correlates feedback-related negativity. We will discuss this specific
suggestion with further details in our later section. Even if such is
not the case, electrophysiology could offer physiological anchors
for behavioral frameworks like implicit vs. explicit motor learning
or sensory prediction error vs. task error. Further understanding
in electrophysiology could inform a more intricate and directed
behavioral experimental design.

Error-related negativity and
feedback-related negativity

Both Falkenstein et al. (1991) and Gehring et al. (1993, 2018)
groups have independently found error-related negativity in a
sentence verification task as well as a key responding task. Ever
since, ERN has been found in many other experiments, including
Eriksen Noise-Compatibility Task and Sternberg Memory Search
Task (Gehring et al., 1995). In general, ERN refers to the
large negative deflection in EEG recording at the time of error
commission. By subtracting the correct trial average from the
incorrect trial average, the EEG signal yields a negative peak at
approximately 80 ms after the motor movement onset in the
frontal–central regions of the scalp, normally having the most
amplitude over the supplementary motor area (Gehring et al., 1993,
1995; Rugg and Coles, 1996; Holroyd and Coles, 2002). The onset
of motor movement was usually marked by the electromyograph
signal of the corresponding hand.

Feedback-related negativity was found in a time-estimation
task by Miltner et al. (1997). The experiment started with a cue
when the participants were asked to produce a time interval of 1 s
by pressing the button. After 600 ms, the participants received the

feedback of correctness for the time interval they produced. The
feedback could be in visual, auditory, or somatosensory form. The
EEG waveform yielded a similar pattern of negativity to that of
ERN. However, three main differences existed between ERN and
FRN: (1) FRN was time-locked to the onset of feedback, while ERN
was time-locked to the onset of hand movement; (2) FRN peaked
at nearly 200 ms after the feedback was given, while ERN did so
80 ms after movement onset; and (3) while ERN was observed
at the general the frontal–central regions of the scalp, the scalp
distribution of FRN was dependent on the modality of the feedback
(Miltner et al., 1997).

Several explanatory models of ERN and FRN have been
proposed. Holroyd and Coles believed that ERN was the emergent
phenomenon of human reinforcement learning by the anterior
cingulate cortex. What they proposed was a “generic” mechanism;
i.e., both the ERN and FRN shared the same underlying mechanism
of error-processing instantiated by the anterior cingulate cortex
(Holroyd and Coles, 2002). Under this notion, there was no real
difference between ERN and FRN; in fact, they were both errors
that occurred under certain conditions and would be processed
and learned under reinforcement learning principles. While Yeung
et al. (2004) also had a “generic” notion and believed ERN and
FRN originated from the anterior cingulate cortex, they argued the
function was not reinforcement learning, but instead, performance
monitoring for conflict during information processing. This theory
was proposed based on the evidence that ERN could also take
place under correct trials (Vidal et al., 2000; Coles et al., 2001).
Another possibility was that perhaps a “generic” mechanism for
ERN and FRN does not exist; rather, the two signals resulted from
completely different processing streams (Heldmann et al., 2008).
Jutta Stahl proposed that ERN and FRN were actually internal
and external error indicators. While ERN indicated internal errors
from our motor system, FRN indicated external errors from outside
turbulence. This theory explained several data well. First, the reason
for an ERN in a correct trial was that while the overall result
of the task was correct, the motor system could still commit
errors and, through corollary discharge, be aware of it (Crapse and
Sommer, 2008). Second, the time course difference between ERN
and FRN was due to completely different processing streams (Stahl,
2010). That is to say that while ERN occurred around 80 ms after
movement onset, FRN did so 200 ms after the feedback. However,
these behavioral models were based on rather simple behavioral
experiments and were limited in their explanatory power and
ability to be applied to understand sensorimotor systems in general.
Given ERN and FRN are two well-defined experimental ERPs, a
promising research direction is to combine ERN and FRN with
behavioral frameworks like implicit vs. explicit motor learning and
sensory prediction error vs. task error.

Bridging together

Further, we discuss recent studies that attempt to bridge
the behavioral frameworks and electrophysiology aforementioned
(Figure 1). A number of electrophysiology studies have been
designed under the inspiration of a forward model (Lutz et al., 2013;
Joch et al., 2018). A forward model refers to the idea that there
exists in our brain a predictor model of future motor consequences
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FIGURE 1

Conceptual map for error-related negativity vs. feedback-related negativity, sensory prediction error vs. task error, and implicit vs. explicit motor
learning.

based on previously issued motor commands, which is the basis
for continuous movement (Jordan and Rumelhart, 1992). It is
generally thought that sensory prediction error updates a forward
model (Shadmehr et al., 2010). Thus, it is reasonable to suggest that
the electrophysiological correlate of updating a forward model is
namely the electrophysiological correlate of the sensory prediction
error. Lutz et al. (2013) looked into electrophysiology during the
development of a forward model for audio-motor associations in
playing the piano. Five keys on an electronic piano covered with
a specially designed plastic screen were tuned from a diatonic
scale into a whole-tone scale. The participant had to select an
appropriate key to reproduce the target tone, without knowing,
at the beginning, the audio-motor re-mappings. Results showed
that the occurrences of ERN decreased along with the development
of a forward model for the novel audio-motor mappings, which
was behaviorally signified by the decrease in sensory prediction
errors (Lutz et al., 2013). It is important to acknowledge that the
rationale here is reasoning by correlation. The relationship between
ERN and a forward model updating from sensory prediction errors
is only suggested by their parallel reduction. Thus, it is more
elucidating if the same question could be investigated through
recent more cornered behavioral paradigms of forward model and
sensory prediction errors, such as the target jump methodology that
we have mentioned in the previous section (Leow et al., 2020).

Joch et al. (2018) designed their experiments based on the
British pub game, “Skittles,” to ask a similar question: is ERN related
to the forward-model predictions of errors? In an experimental
trial, the participant would throw the ball with the help of a
manipulandum. At 850 ms after ball release, static feedback about
the ball flight trajectory together with a verbal cue were presented
to provide information about the action outcome. The online

feedback of the ball was masked for the experimental group. The
results showed that ERN occurred along with a correct prediction
of the error from the forward model, before the static feedback
was presented and without online feedback, confirming that ERN
is an electrophysiological correlate of the forward model (Joch
et al., 2018). In short, sensory prediction error is what updates
the forward model, and ERN is the electrophysiological correlate
of the forward model. However, little effort has been made to
explicitly investigate the relationship between sensory prediction
error and ERN. Future experimental design that could take these
ideas into account. To be specific, researchers who are interested
in this issue could consider the following three methods. First,
the researchers could use the clamp method to cleanly dissect
sensory prediction error in behavioral experiments. In the clamp
method, the trajectory of the feedback cursor is hard coded
and therefore spatially independent of hand trajectory. Thus, the
element of task error could be eliminated and the researchers could
cleanly examine the remaining sensory prediction error and its
electrophysiological correlates given availability of EEG (Morehead
et al., 2017). Another two methods, target jump and varying target
size, could also be utilized to eliminate task error and help the
researchers to obtain cleanly dissected behavioral substrates of
sensory prediction error (Kim et al., 2019; Leow et al., 2020). The
operational description of these three methods is given in our
previous sensory prediction error vs. task error section.

A recent study should be mentioned here. Matsuhashi et al.
(2021) explicitly investigated the roles of ERN in the context of
two canonical motor learning experiments. They investigated ERN
in a motor sequence learning task and a motor adaptation task
(Matsuhashi et al., 2021). They showed that ERN was strongly
related with performance improvement in the motor sequence
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learning task, but not in the motor adaptation task. This is worth
noting in that it reveals that even within canonical paradigms
of motor learning, empirical findings may differ tremendously
across experiments, thereby rendering it difficult for a single
theoretical framework to account for all. Nevertheless, several
nuances present themselves here. First, Matsuhashi et al. (2021)
performed a vertical motor adaptation task. The feedback cursor
did not correspond to the veridical reaching hand position.
In addition, the vertical screen was a transformed space. The
participant must establish a transformation from the participant’s
hand position to the cursor position. This transformation was
apparently cognitive and explicit. It, therefore, may have been
fragile. Non-veridical motor adaptation tasks are indeed different
from veridical motor adaptation tasks (Krakauer et al., 2019).
Second, motor adaptation was online feedback based. As a result,
the error was distributed throughout the participant’s reaching
movement. For motor adaptation, there are significant differences
between online and endpoint feedback (Shadmehr et al., 2010;
Taylor et al., 2014; Brudner et al., 2016; Wang et al., 2022).
Consequently, it is worth taking both veridical and online feedback
into consideration for future experiment design.

There is also an intricate relationship between FRN and motor
learning. van der Helden et al. (2010) conducted a canonical study
showing that FRN was predictive of whether subjects learned to
avoid an erroneous response the next time the same action had to
be performed. In their task, the participants learned a sequence of
button presses through trial and error. Each time the participants
chose the correct button press, they moved to the next item in
the sequence of 12 button presses; on the contrary, if they chose
the wrong button, the sequence would restart at item 1 of that
sequence. This design allowed van der Helden et al. (2010) to
relate FRN amplitude elicited by feedback on a particular button
press to performance on that same button press when it was
encountered in the sequence. The results showed that the FRN
amplitude associated with a mistake was predictive of whether
the participants would learn from the mistake, or repeat the
mistake (van der Helden et al., 2010). Palidis et al. (2019) designed
an experiment that isolated task error and sensory prediction
error in motor adaptation, and they used electroencephalography
in humans to identify and dissociate the neural correlates of
task and sensory prediction error feedback processing. Their
experiment was divided into two kinds of conditions. In task
error condition, the participants were only presented with binary
feedback, successful or unsuccessful, of their reaching toward the
target. In the sensory prediction error condition, the sensory
feedback, namely the cursor, which would reflect the position of
the hand, as well as the target were shown. They observed that
the FRN was elicited by binary task error feedback, but not by
sensory error feedback (Palidis et al., 2019). This suggests that the
process generating the FRN may not be based on sensory prediction
error, so a working hypothesis for future experiments is to test
whether ERN is the neural correlate for sensory prediction error
and whether FRN is the neural correlate for task error. Based on
the results of these experiments, further research may be conducted
incorporating behavioral frameworks of implicit vs. explicit motor
learning. Mushtaq et al. (2022) have conducted a related study on
the issue. They designed an experiment that dissected the action
process into three stages that would, respectively, elicit reward

error, selection error, and execution error. They observed a robust
FRN in response to both selection and execution errors, but only
the former correlated with behavioral adjustment. In contrast, the
amplitude of a positive deflection in the ERP, both before and after
the FRN, correlated with choice behavior after execution errors
(Mushtaq et al., 2022). This finding suggests a need for a more
nuanced interpretation of what FRN represents and how it may be
shaped by contextual information.

It is promising that the electrophysiology of sensorimotor
systems has been investigated with increasingly complex paradigms
from behavioral motor learning and control research. Future
research may further take into account sensory prediction
error vs. task error as well as implicit vs. explicit motor
learning frameworks. Just such a combination may help to solve
mysteries on both sides.

Conclusion

In this article, we have provided a substantive review of
the history and literature of both ERN and FRN, the implicit-
explicit distinction, and the sensory prediction error vs. task
error distinction. We see, of outmost importance, that there
should exist a bridge between the two lines of research, and
from such will burgeon an ample harvest of scientific discoveries.
For instance, one immediate investigation foreshadowed by our
discussions is to examine the precise relationship of sensory
prediction error and error-related negativity. Research methods
could combine previous behavioral experiments for sensory
prediction error and electrophysiological experiments for error-
related negativity. Subsequent research could be done in a
similar manner for task error and feedback-related negativity.
Combining insights from these inquiries with our previous
knowledge from behavioral experiments of sensory prediction
error vs. task error and implicit vs. explicit motor learning,
electrophysiological experiments with more sophisticated
behavioral designs are open to us for understanding the
computational principles and neurophysiological underpinnings
of motor learning. Ultimately, we hope that this review will
contribute toward a better understanding of the topics, facilitate
the development of new conceptual frameworks, and inspire future
experimental designs.
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In memoriam

We grieve the passing of our reviewer, Dr. An Wu, on March
16. She was a generous mentor, a young and exceptional scientist,
and a rising star in the field of neuroscience.

Dr. Wu’s works have shown us what a beautiful piece of
science ought to be: a combination of outstanding methodological
innovations, empirical delicacy through clever experimental
design, and rigorous reasoning coupled with visionary overarching
thesis. Her works not only contribute substantially to our
understanding of how our senses of smell and taste are encoded
in the brain, but also more generally, give us important insights of
how we perceive and how we learn to perceive our world.

Here we highlight some of her remarkable scientific works.
Her work in 2015 introduces large-scale in vivo Ca2+ imaging

of gustatory sensory afferent neurons to investigate how taste is
coded in the brain. The results implicate the dominant coding
mechanism of taste: a small number of neurons are “specialists”
tuned to single taste quality, while many other neurons are
“generalists” who have tuning profiles for two or more taste
qualities. These findings fundamentally challenge the “labeled-line
coding” hypothesis and show strong support for the “population
pattern coding” of taste (Wu et al., 2015). The work is regarded
as revolutionary and many researchers have followed up on this
inspiring work.

She has also been a force of progress in the field of olfactory
sensory coding. Her 2020 work excites us with a method of

imaging adult-born granule cells (abGCs) in the olfactory bulb.
The results show that the plasticity of young abGCs might be a
source of learning for olfactory discrimination. Using optogenetics,
she found that feedback from the piriform cortex likely guides
plasticity and learning in abGCs. Her findings imply a unique
learning mechanism on a neuronal level that relies on adult
neurogenesis (Wu et al., 2020a). She proposed a theory suggesting
that the plasticity in the olfactory bulb allows for optimal adaptive
representation of odors in the dynamic world (Wu et al., 2020b).

We mourn the loss of a brilliant mind. We extend our most
sincere condolences to her families, friends, and colleagues. Dr. An
Wu will be deeply missed, and her personal and professional legacy
will live on.
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