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Revealing the roles of
glycosphingolipid metabolism
pathway in the development of
keloid: a conjoint analysis of
single-cell and machine learning

Binyu Song1†, Yu Zheng2†, Hao Chi3†, Yuhan Zhu1, Zhiwei Cui1,
Lin Chen1, Guo Chen1, Botao Gao1, Yichen Du1, Zhou Yu1*

and Baoqiang Song1*

1Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an,
Shaanxi, China, 2Hospital for Skin Disease (Institute of Dermatology), Chinese Academy of Medical
Sciences and Peking Union Medical College, Nanjing, Jiangsu, China, 3Clinical Medical College,
Southwest Medical University, Luzhou, China
Keloid is a pathological scar formed by abnormal wound healing, characterized

by the persistence of local inflammation and excessive collagen deposition,

where the intensity of inflammation is positively correlated with the size of the

scar formation. The pathophysiological mechanisms underlying keloid formation

are unclear, and keloid remains a therapeutic challenge in clinical practice. This

study is the first to investigate the role of glycosphingolipid (GSL) metabolism

pathway in the development of keloid. Single cell sequencing and microarray

data were applied to systematically analyze and screen the glycosphingolipid

metabolism related genes using differential gene analysis and machine learning

algorithms (random forest and support vector machine), and a set of genes,

including ARSA,GBA2,SUMF2,GLTP,GALC and HEXB, were finally identified, for

which keloid diagnostic model was constructed and immune infiltration profiles

were analyzed, demonstrating that this set of genes could serve as a new

therapeutic target for keloid. Further unsupervised clustering was performed

by using expression profiles of glycosphingolipid metabolism genes to discover

keloid subgroups, immune cells, inflammatory factor differences and the main

pathways of enrichment between different subgroups were calculated. The

single-cell resolution transcriptome landscape concentrated on fibroblasts. By

calculating the activity of the GSL metabolism pathway for each fibroblast, we

investigated the activity changes of GSL metabolism pathway in fibroblasts using

pseudotime trajectory analysis and found that the increased activity of the GSL

metabolism pathway was associated with fibroblast differentiation. Subsequent

analysis of the cellular communication network revealed the existence of a

fibroblast-centered communication regulatory network in keloids and that the

activity of the GSL metabolism pathway in fibroblasts has an impact on cellular
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communication. This contributes to the further understanding of the

pathogenesis of keloids. Overall, we provide new insights into the

pathophysiological mechanisms of keloids, and our results may provide new

ideas for the diagnosis and treatment of keloids.
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Introduction

Keloids are usually pathological scars resulting from abnormal

repair of injured skin tissues and are clinically manifested by scar

growth beyond the trauma (1, 2). Immune cells and inflammatory

factors also play an important role in the development of keloid

treatment (3). Keloids are a considerable clinical challenge for

physicians, given their persistent growth, high recurrence rate

following excision, and the substantial physical and psychological

burden they impose on patients. Keloids can cause significant

cosmetic and functional impairments, leading to pronounced

emotional distress. Consequently, healthcare professionals strive

to effectively manage keloids to enhance patients’ quality of life and

alleviate their suffering (4). Common clinical treatments for keloid

include medication, surgical excision, laser treatment, etc. (5).

Keloids have a high recurrence rate, making existing treatments

unsatisfactory. Understanding the underlying pathogenesis can

lead to the development of new treatments to improve

outcomes.Because keloids are characterized by increased fibroblast

proliferation and a large excess of ECM components, research on

keloids has focused on the involvement of fibroblasts in the

development of these lesions (2).

Sphingolipid (SL) is an important class of lipids in eukaryotes.

Research into their metabolic regulation in dermatology has

potential implications for the development of new therapeutic

targets (6, 7). SL metabolism can be involved in maintaining the

skin barrier and regulating cellular processes with exerting

important biological roles in the skin (8, 9). Recent research has

revealed that dermal fibroblasts with different phenotypic functions

have different lipid status composition, and SL was shown to be the

main markers of different lipid composition status. More

importantly, SL harbors the capacity to control the heterogeneity

of dermal fibroblasts (7). Glycosphingolipids (GSL, sphingolipids

with one or more sugars attached) is a subtype of SL. GSL metabolic

reprogramming has also been shown to be an integral part of cell

development, and the heterogeneity of GSL determines the specific

developmental patterns of cellular tissues (10). In contrast to SL,

GSL metabolism has been less studied in skin diseases and even less

studied in keloids.

The advent of single-cell RNA sequencing (scRNA-seq)

technology provides unprecedented molecular information and

serves as one of the most important methodological advances and

breakthrough technologies that allow us to systematically decipher
02
the cellular heterogeneity and complexity of different tissues (11–

13). Thus, exploring fibroblast heterogeneity, cell fate and

intercellular communication in keloids with unprecedented

single-cell resolution has become a reality.

In this study, we combined keloid microarray datasets and

scRNA-seq to comprehensively analyze the potential mechanisms

of GSL metabolism pathway in keloids and the roles they play in

keloid development and treatment, deepening our understanding of

new mechanisms underlying keloid and providing a theoretical basis

for subsequent treatment of keloid patients with improved prognosis.
Materials and methods

Data processing

Three keloid microarray datasets (GSE7890, GSE145725,

GSE44270) and one keloid single-cell transcriptome sequencing

dataset (GSE163973) were downloaded from the publicly available

Gene Expression Omnibus (GEO) database. Among them, 5 keloid

samples and 5 normal samples were from GSE7890, 9 keloid

samples and 10 normal samples were from GSE145725, and 9

keloid samples and 7 normal samples were from GSE44270. We

normalized the microarray datasets and integrated them using a

common set of annotated genes. Batch effects removal was

performed by the combat function in the “sva” R package and the

integrated expression data was log2 transformed.
Screening hub genes based on
differential expression and
machine learning algorithms

This study contained 46 glycosphingolipid metabolism-related

genes (GSLMRGs) from the Reactome database (Supplementary

Table S1). We performed differentially expressed gene analysis of

the 46 GSLMRGs in the integrated dataset by the “limma” R

package and obtained 9 differential genes (p-value<0.05) and

visualized the differential genes by heatmap. We applied two

machine learning algorithms to predict significant GSLMRGs.

Support vector machine (SVM) is a machine learning technique

widely used for classification and regression analysis, and support

vector machine-recursive feature (SVM-RFE) algorithm was used in
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the “caret” R package to screen out significant diagnostic candidates

among 46 GSLMRGs. Random forest is a popular classifier and is

widely used in medical applications. We use the “randomforest” R

package to predict key candidate genes. We took the intersection of

the top10 genes predicted by each of the two machine learning

algor i thms and screened out 6 of the DEGs as the

candidate GSLMRGs.
Diagnostic model building and evaluation

We constructed the diagnostic model by multi-factor logistic

regression algorithm using the six candidate GSLMRGs by

application of the integrated dataset as the training dataset, and

plotted the ROC curve and calculated the area under the curve

(AUC) to evaluate the prediction results. The bootstrap analysis was

replicated on 1000 different samples of the same sample size drawn

with replacements from the original samples. The training samples

were regenerated, and the model was reconstructed. And the

bootstrap algorithm was used to evaluate the accuracy of the

diagnostic model we built. The nomogram was built in

expectation of making the correct diagnosis.
Immune cell infiltration analysis

A pearson correlation analysis was carried out to reveal the

association among the 6 GSLMRGs based on the RNA expression

data by corrplot R package. We used the CIBERSORT and EPIC

algorithm by the “IOBR” R package to calculate the degree of

immune cell infiltration in the samples (34276676) and correlated

the 6 GSLMRGs with immune cell infiltration and inflammatory

factor expression, respectively.
Consensus clustering

We performed consensus clustering by k-means method to

identify different subtypes associated with GSLMRGs expression

using “ConsensusClusterPlus” R package.
Functional enrichment analysis

The Gene Ontology (GO) and the Kyoto Encyclopedia of Genes

and Genomes (KEGG) functional enrichment analysis were

performed for the DEGs using the “clusterProfifiler”, “circlize”, and

“fgsea” R package. And Proteomap (https://www.proteomaps.net/)

was applied to analyze the functional categories of DEGs.
Single-cell RNA statistical processing

The “seurat” R package was used to create seurat objects from

scRNA-seq data, and cells were normalized and scaled.29608179

We filtered cells by the “seurat” R package based on the following
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exclusion criteria: 1) cells with less than 200 genes expression. 2)

cells with >5000 genes expression. 3) cells having >10%

mitochondrial gene content. We retained a total of 43,910 cells.

The number of principal components (PCs) was set to 15 for

subsequent dimensional clustering, and the “harmony” function

31740819 was used to integrate the samples and remove batch

effects. The unsupervised cell clusters based on the top 15 PCA

principles were acquired using the graph-based cluster method

(resolution = 0.5). Cell clusters were visualized by t-distributed

stochastic neighbor embedding (tsne) plot. The “FindAllMarkers”

function of the Wilcoxon rank-sum test algorithm was used to

calculate the marker gene for each cell cluster under the following

conditions: 1) logFC >0.25; 2) P<0.05; 3) minimum percentage

(min.pct) >0.1. For detailed identification of fibroblast clusters,

clusters of fibroblasts were selected by using re-tSNE analysis,

graph-based clustering, and marker gene analysis. Furthermore,

the “AddModuleScore” function was used to calculate the score of

GSL metabolism pathways in each cell for the re-clustered

fibroblasts, and the cells were divided into three groups of high-,

medium- and low-GSL metabolism by quartiles.
Pseudotime analysis

Pseudotime analysis is a cell fate analysis method, the single-cell

trajectory analysis was conducted using Monocle2 algorithm

(http://cole-trapnell-lab.github.io/monocle-release) (14). The

“sample” function was used to randomly select 4000 cells for the

subsequent pseudotime analysis. Then we used the “DDRTree”

method to reduce the dimensionality of the cell, and then utilized

the “reduceDimension” function to calculate the type of cell

differentiation state. Finally, we used the “plot cell trajectory”

function to display the graph of cell differentiation trajectory. We

also applied the “plot pseudotime heatmap” to visualize the change

of GSLMRG expression with cell differentiation trajectory (adj

p-value<0.05).
Cell-Cell communication analysis

To enable a comprehensive analysis of intercellular

communication molecules, the authors applied the cell-cell

communication analysis by “CellChat” R package, a recently

developed tool that generates and plots cell-cell communication

probabilities and interaction strengths from single-cell

transcriptomic data. The normalized count and cell types by Seurat

were used for this analysis.
Results

Sample data processing

Figure 1 illustrated the flow of our study. We integrated the

expression profiles of the three datasets, as samples from different

dataset sources usually have severe batch effects. To eliminate the
frontiersin.org
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batch effects among different datasets, ‘ComBat’-based batch effects

adjustment was performed. The results for keloid samples and

normal samples expression distribution before and after

adjustment were illustrated by boxplots (Figures 2A, B) and PCA

plots (Figures 2C, D), respectively. Finally, we obtained a

comprehensive dataset of 23 keloid and 22 normal samples after

integration, removing batch effects, and normalization.
Identification of diagnostic markers

Differential gene analysis was performed to determine the DE-

GSLMRG between keloid and normal samples to obtain relevant

differentially expressed genes(p-value<0.05) and finally obtained 9
Frontiers in Immunology 04
genes, and we could see the distribution of differential gene

expression in each sample by heatmap (Figure 3A). To further

precisely obtain the key genes, we entered 46 GSLMRGs into the RF

classifier and we calculated the gene importance and visualized the

top ten genes (Figure 3B). In addition, we detected 39 genes as

diagnostic markers with the highest accuracy when modeled by the

SVM-RFE algorithm (Figure 3C). We took their respective TOP10

through importance rankings predicted by the two machine

learning algorithms and intersected them with 9 DEGs, and

finally the common 6 intersected genes (ARSA, GBA2, SUMF2,

GLTP, GALC, HEXB) were used as the final diagnostic markers

(Figure 3D), and the 6-GSLMRG diagnostic model were

constructed by multifactorial logistic regression, which was

evaluated by using the receiver operating characteristic (ROC)
FIGURE 1

The study workflow.
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curve and areas under the curve (AUC), and the AUC value was

0.945 (Figure 3E). The model was re-sampled 1000 times by

bootstrap algorithm to verify the stability and accuracy of the

model, and the mean AUC value was 0.919 with 95% confidence

interval (CI) of 0.864-0.943, which all indicated the high accuracy of

our 6-GSLMRG model (Figure 3F). We further constructed the

nomogram (Figure 3G), and the efficacy of nomogram was

evaluated by calibration plot (Figure 3H) and decision curve

(Figure 3I), respectively, demonstrating the high accuracy and

sensitivity of the nomogram.
Frontiers in Immunology 05
Immune infiltration analysis

To investigate the co-expression relationship between these six key

genes to predict their intrinsic possible regulatorymechanisms, we used

Pearsoncorrelationanalysis tovisualize their co-expression relationship

(Figure 4A), in which some genes were significantly correlated. For

example, GALC and GLTP had the highest negative correlation

coefficient of -0.6, and HEXB and SUMF2 had the highest positive

correlation coefficient of 0.5. In addition, we performed immune cell

infiltration analysis on keloid and normal tissue samples.We calculated
B

C D

A

FIGURE 2

Combining different datasets. (A, B) Boxplots of mRNA expression distribution before and after removing batch effects. (C, D) PCA plots before and
after removing batch effects.
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the degree of immune cell infiltration in the samples by two immune

infiltration algorithms (CIBERSORT and EPIC) and correlated 6

GSLMRGs with the predicted degree of immune cell infiltration and

the currently known inflammatory factor expression distribution in the

samples (Figures 4B–D), where T cells were more strongly correlated

with 6 GSMRG. We found that CD8+ T cells showed significantly

negative correlationwithGALC,ARSA,HEXB, andSUMF2,whileCD4
Frontiers in Immunology 06
+ T cells showed significantly positive correlation with ARAS.

Macrophages showed significantly negative correlation with GLTP

and positive correlation with HEXB. NK cells showed positive

correlation with GLTP and negative correlation with GALC and

HEXB. Further, we visualized the top5 correlation plots between

GSMRG and the corresponding immune cells in the CIBERSORT

and EPIC algorithm, respectively (Figures 4E, F).
B C

D E F

G H

I

A

FIGURE 3

Diagnostic model of keloid was constructed and evaluated. (A) Heatmap for differential analysis of GSLERGs between keloid and normal samples.
(B) Random forest algorithm screening for gene importance ranking. (C) SVM-REF algorithm screening for genes. (D) Venn plot showed the
intersection genes of the top 10 of RF, SVM-REF and DEGs. (E) ROC curves under AUC values in the diagnostic model built using the 6 GSLERG.
(F) Bootstrap resampling algorithm to validate the model. (G) Keloid prediction by nomogram. (H) Calibration curve to evaluate the nomogram.
(I) Decision curves to assess the predictive performance of the model.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1139775
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Song et al. 10.3389/fimmu.2023.1139775
GSLMRG-based keloid classification

Next, we use k-means cluster analysis to classify keloids into

groups. The categorical variable k was increased from 2 to 10, and

we found that the lowest correlation between groups and the highest

correlation within groups when k=2. Therefore, the 23 keloid
Frontiers in Immunology 07
samples could be classified into two clusters based on the

expression of genes related to glycosphingolipid metabolism

(Figures 5A–D). We visualized the distribution of GSMRG

expression between subtypes by heatmap (Figure 5D) and further

compared the immune cell infiltration and the expression

ofinflammatory factors in these two clusters (Figures 5E–H).
B

C D

E

F

A

FIGURE 4

Correlation between candidate genes and immune cell infiltration. (A) Co-expression patterns of 6 GSMRG in all samples based on the Pearson correlation
analysis. (B, C) Heatmap of correlation between 6 GSMRG and immune cell infiltration in Cibersort and EPIC algorithm. (D) Heatmap of correlation between
GSMRG and inflammatory factors. (E–F) Top 5 correlation plots in Cibersort and EPIC algorithm. *p < 0.05, **p < 0.01, ***p < 0.001.
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Enrichment analysis

In order to explore the functional and pathway differences

between subtypes and reveal the potential mechanisms of disease

progression between subtypes, we used pathway enrichment

analysis based on the differential genes between the two subtypes,

and the results of GO enrichment analysis showed that DEGs from

the two subtypes were enriched in organel le fiss ion,

ribonucleoprotein complex biogenesis, nuclear division, and other

biological functions (Figures 6A, C and Supplementary Table S2).
Frontiers in Immunology 08
Further, we analyzed the specific biological functions of two

subtypes by GSEA enrichment analysis, the results showed that

Cluster 1 is mainly enriched in metaphase plate congression,

meiotic cell cycle process, cell cycle checkpoint signaling pathway,

etc. Cluster 2 is mainly enriched in ossification, urogenital system

development, bone morphogenesis pathway, etc. (Figure 6E and

Supplementary Table S3). KEGG enrichment analysis showed that

DEGs were mainly enriched in PI3K-Akt signaling pathway, Ras

signaling pathway, mTOR signaling pathway, autophagy, cell cycle,

and other pathways (Figures 6B, D). Then, protein map pathway
B C

D

E F

G H

A

FIGURE 5

Unsupervised clustering analysis in keloid. (A) The empirical cumulative distribution function (CDF) plots revealed the consensus distributions for
each k. (B) The area change under CDF curve when k=2-10. (C) The circular manhattan (CM) plot exhibited the clusters at k = 2. (D) The bar plot
showed the score of each subtype for the number of clusters k from 2 to 10. (E) Heat map showing the distribution of GSLMRG expression between
different clusters. (F–H) Box plots of the distribution of immune cell infiltration and inflammatory factors expression in different clusters.
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analysis was performed to classify their functions. It was found that

these genes were enriched in five pathways, namely Environmental

Information Processing, Genetic Information Processing, Human

Disease, Metabolism, and Cellular Processes (Figure 6F), mostly in

transcription factors, steroid hormone biosynthesis, glycolysis,

cytoskeleton proteins, notch signaling pathway, and amino acid

metabolism (Figure 6G), which proved to be highly relevant to the

occurrence, development, and treatment of keloids. All these results

demonstrated the application value of GSLMRG-based keloid

staging and provided potential mechanisms for how these

GSLMRGs influence keloid progression.
Frontiers in Immunology 09
Analysis of high cellular heterogeneity in
human keloid tissues by single-cell RNA-
seq profiling

We used the scRNA-seq data of three normal and three keloid

tissues from the GEO database to reveal the inherent cellular

heterogeneity of skin tissues. After strict quality control, we

excluded cells of lower quality and selected a total of 43,910 cells

for subsequent analysis (Figure 7A), with a mitochondrial UMI rate

of less than 10% per cell, and detected a significant correlation

between gene number and sequencing depth (Figure 7B). We
B

C D

E

F G

A

FIGURE 6

Functional enrichment analysis. (A, C) GO enrichment analysis of DEGs between fibroblasts of different subtypes. (B, D) KEGG enrichment analysis of
DEGs between fibroblasts of different subtypes. (E) GSEA enrichment analysis of biological functions between two clusters. (F, G) Functional
categories of differentially expressed genes between fibroblasts of different subtypes.
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identified 19 cell clusters by performing PCA dimensionality

reduction using the first 15 principles and setting a resolution

value of 0.5. Different cell populations exhibited high

heterogeneity (Figures 7C, D). We identified detailed cell types

based on marker genes from previous studies (15), and 8 categories

were annotated (Figures 7E, F, H), including melanocytes (cluster

12, marker genes are TYRP1, PMEL), lymphatic endothelial cells

(cluster 11, marker CCL12, LYVE1), immune cells (cluster 9,
Frontiers in Immunology 10
marker genes are LYZ, HLA-DRA), sweat gland cells (cluster 18,

marker genes are SCGB1B2P, SCGB1D2), fibroblasts (clusters

0,4,6,13,15, marker genes are COL1A1, COL1A2 COL3A1),

keratinocyte (clusters 5, 8, 17, marker genes are KRT14, KRT1,

KRT10, KRT5), smooth muscle cells (clusters 3, 7, marker genes are

TAGLN, ACTA2, TPM2), endothelial cells (clusters 1, 2, 14, marker

genes are SELE, TM4SF1, PECAM1). Figure 7G also showed the

proportion of cells in each sample.
B

C D

E

F

G

A

H

FIGURE 7

Cell populations and marker genes in keloid and normal skin. (A) After standard quality control of all cells from three keloids and three normal
tissues, 43,910 cells were included in the analysis. (B) The number of genes detected was significantly correlated with the sequencing depth, with a
Pearson correlation coefficient of 0.91; the same number of mitochondria was detected at different sequencing depths. (C) The cell clusters
visualized by the dimensional reduction of t-distributed stochastic neighbor embedding (t-SNE). (D) Heatmap showing the top 5 genes per cell
cluster after differential analysis to obtain marker genes. (E) Dot plot showed annotation of cell clusters by known markers. (F) tSNE plot presented
cell type annotation for each cluster. (G) Proportions of distinct cell types for different samples. (H) Heatmap showed the top 5 marker genes
between cell types.
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Pseudotime analysis revealed changes in
glycosphingolipid metabolism pathway
activity during fibroblast differentiation

Due to the significant difference in GSL metabolism pathway

activity in fibroblasts between keloid and normal tissues

(Figure 8A), fibroblasts were considered to be the focus cell
Frontiers in Immunology 11
population in this study. All fibroblasts were highly expressed

with marker genes COL1A1, COL1A2, COL3A1 (Figure 8B). We

then further extracted the transcriptome data of fibroblasts and

reanalyzed with tsne visualization (Figure 8C). We scored the

activity of GSL metabolism pathway in each cel l by

“AddModuleScore” function in fibroblasts of different subtypes

and displayed them in Figures 8D, E, in which cluster 3 had the
B

C D

E

F

G H I

A

J

FIGURE 8

Progression of fibroblast cell profiles revealed by pseudotime analysis. (A) GSL metabolic pathway scores of fibroblasts in keloid and NS. (B) tSNE
plots showed the expression of marker genes in fibroblasts. (C) Fibroblasts were clustered again by downscaling and shown by tSNE plots. (D) tSNE
plots of the GSL metabolic pathway scores of individual fibroblasts. (E) The GSL metabolic pathway scores of the fibroblast subpopulations that were
downscaled again. (F) Heatmap showing the expression changes of genes in GSL metabolic pathway with fibroblast differentiation. (G–J) Trajectory
differentiation maps according to cell differentiation status, cell development time coloring, cell cluster and tissue type. ****p < 0.0001.
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highest activity and cluster 7 had the lowest activity. To further

investigate the detailed cell trajectory of fibroblasts, we performed

pseudotime analysis. Figure 8G indicates that there are seven states

during fibroblast differentiation, marked by different colors.

Figure 8H indicates that the darker the blue color, the earlier the

cells differentiate, indicating that fibroblasts differentiate from right

to left over time, with the lightest blue color being the most recently

differentiated cells, and cluster2 is the latest differentiated fibroblast.

Figure 8I shows how cell subpopulations evolves and differentiates

from each other and Figure 8J displays the distribution of keloid and

normal skin fibroblasts during the differentiation process. In keloid

tissues, due to the increase of myofibroblasts and stromal

fibroblasts, we further analyzed the expression of ADAM12 and

a-SMA (encoded by ACTA2) in fibroblasts. Supplementary Figure

S1 showed that both genes were relatively highly expressed in

cluster2, indicating that cluster2, as the terminal stage of

fibroblast differentiation, almost exclusively consisted of

myofibroblasts and stromal fibroblasts in keloid tissues.We also

showed the expression changes of GSL metabolism genes during the

differentiation of these fibroblasts, Figure 8F visualized the heatmap

of GSL metabolism genes that changed accompanying with the

differentiation of fibroblasts. These genes are grouped into 2 types,

where their expression increases or decreases with cell

differentiation, respectively, indicating these genes may

exert different functions in the pathogenesis of fibroblast

differentiation induction and influence the activity of the GSL

metabolism pathway.
Cell-cell communications

To decipher intercellular signaling, we used the “CellChat” R

package to perform cell-cell communication analysis between

different cell types. We classified fibroblasts into three types of

high-, median-, low-GSL metabolism activity based on quartiles

bounded by 25% and 75% of previous scores. The aggregated cell-

cell communication networks were constructed by interaction

numbers (Figure 9A) and interaction weights (Figure 9B). The

interaction strengths of cell incoming and outgoing signaling were

plotted in Figure 9C, which indicated that fibroblasts play a key role

in intercellular communication. Fibroblasts with low GSL

metabolism activity had lower strengths in both incoming and

outgoing signaling pathways than the other two types of fibroblasts.

We further investigated the signaling sources of 2 types of cells

(high-GSL metabolism activity fibroblasts and low-GSL metabolism

activity fibroblasts) and we analyzed the different incoming and

outgoing signaling pathways of the two types of fibroblasts based on

the relative expression of ligand-receptor (L-R) pairs (Figure 9C),

and we compared the intercommunication between the two types of

fibroblasts and other cells, and the high-GSL metabolism activity

fibroblast could additionally communicate cellularly with smooth

muscle cells through PDGFD-PDGFRB interaction, with keratin-

forming cells through ITGA6-ITGB1 interaction, with endothelial

cells through SEMA3B signaling pathway, and with endothelial cells

through ITGA5-ITGB1, with immune cells through IL34-CSF1R,

PROS1-AXL, TNFSF12-TNFRSF12A interaction, the fibroblasts
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with high-GSL metabolism activity can additionally communicate

with keratinocytes via HBEGF-EGFR interaction, with endothelial

cells via PROS1-AXL interaction, with sweat gland cells via EGFR-

ERBB2 interaction, with lymphatic endothelial cells via SEMA3C-

PLXND1 interaction, suggesting that the levels of GSL metabolism

pathway activity in fibroblasts may affect other cell types through

these receptors.
Discussion

Keloid is a fibrous tissue hyperplastic disease after trauma and

inflammatory stimulation of the skin, characterized by fibroblast

proliferation and collagen deposition (16, 17). keloid causes patients

not only serious cosmetic problems, but also functional traits such

as pruritus and pain around the lesion and lesions, which seriously

affect the quality of life of patients (18). Currently, the efficacy of

conventional treatment on keloid is limited. Therefore, exploring

the potential new mechanisms and new biomarkers may benefit the

treatment of keloid and improve the prognosis of keloid.

SL serves as one of the major components of eukaryotic lipids,

its metabolism in the skin is currently receiving increasing

attention. Recent studies showed that SL controls the

heterogeneity of dermal fibroblasts and that GSL, a subtype of SL,

is involved in determining the developmental differentiation of cells

(10, 19). However, GSL metabolism pathway have been less well

studied in the skin, and by combining microarray datasets and

Single-cell RNA-seq, our study was the first comprehensive analysis

to reveal the role of GSL metabolism in the development of keloid.

We constructed a keloid diagnostic model using GSLMRGs. In

addition, this study also investigated the role of GSL metabolism

pathway in cell differentiation and communication.

In this study, the differential GSLMRGs of keloid and the top

ten genes with the highest importance from machine learning

algorithms Random Forest and SVM-RFE were intersected, and

six candidate GSLMRGs were identified: ARSA, GBA2, SUMF2,

GLTP, GALC, and HEXB. GSL can play a regulatory role in the

airway of lung inflammatory fibrotic diseases, such as Cystic

fibrosis, and inhibition of GBA2 can control the role of Cystic

fibrosis inflammatory response (20). SUMF2 is a member of the

formylglycine-generating enzyme family and may mediate airway

inflammation in allergic asthma by regulating IL-13 expression

(21). GLTP is a small (24 kD) amphipathic protein. They have been

shown to be involved in the non-vesicular transport of various SLs.

In addition, their potential functions such as drug resistance,

differentiation, neurodegeneration, surface adhesion, and

apoptosis have been reported (22). High GALC expression can

regulate migration during tumor growth by regulating senescent

fibroblasts in tumors (23). And the higher expression of HEXB is

associated with poor prognosis in glioblastoma patients. But none

of these genes have been studied in keloid, implying their great

research value in keloid. By constructing a diagnostic model of

keloid by multi-factor logistic regression of these six genes, we could

find high AUC value under the ROC curve and evaluated the model

by bootstrap resampling method, indicating that our diagnostic

model constructed by GSLMRG has high diagnostic accuracy.
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Since multiple immune cells and inflammatory factors are

involved in the formation and development of keloid 28108895,

we applied the CIBERSORT, EPIC algorithm to generate immune

cell expression profiles of keloid. Previous study showed that

reducing CD8+ T cells may serve as a biomarker and therapeutic

method for keloids (24). Based on this, we calculated the correlation

between the six diagnostic genes and the degree of immune cell

infiltration and found that CD8+ T cells were correlated with

GALC,ARSA,HEXB and SUMF2, CD4+ T cells were correlated

with ARSA, implying that GSL metabolism pathway may impact on

the growth and development of keloid through regulating immune

T cells. IL-7 is involved in ECM production by exogenous TGF-b1-
activated subconjunctival fibroblasts, suggesting that IL-7

administration could be a novel therapeutic target to prevent
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undesirable bleb scar formation during post-surgical healing (25).

A strong correlation between IL-7 and GLTP, GALC, ARSA, HEXB,

and SUMF2 was found, suggesting that IL-7-based inflammatory

factors may involve in keloid growth and development through

associating with the GSL metabolism pathway. Revealing the

important role of the GSL metabolism pathway may facilitate

keloid immunotherapy.

Because of the presence of heterogeneity in keloids, the curative

effects of the available clinical treatments are often unsatisfactory

(2). To achieve the precise treatment for keloids, we divided keloids

into two clusters by GSLMRGs expression,We compared the

differences between the two groups in terms of immune

infiltrating cells, inflammatory factors, and explored the

enrichment pathways between the two groups. It has been
B

C

A

FIGURE 9

(A) Integrated cell-cell communication networks drawn by number and weight of interactions. (B) The heatmap of outgoing/incoming interaction
strength for 10 cell types. (C) The dot plot of outgoing and incoming interaction signal pathways for fibroblasts of two subtypes.
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documented that macrophages promote collagen production and

angiogenesis to accelerate wound healing. The occurrence of keloids

in different parts of the body is associated with the number and

subtype of macrophages (26). NK cell is an important component of

the innate immune system and may be involved in keloid

formation. Overexpression of Smad7 inhibits NK cell in keloids

proliferation and migration (27). B cells were shown to be

significantly upregulated in keloids compared to normal skin (28).

TGFB2 was shown to play an important role in the development of

fibrotic disease, and inhibition of TGFB2 attenuated fibrosis and

inflammation (29). CD8 T cells, macrophages, NK cells, B cells, and

TGFB2 expression were significantly different in two subtypes of

keloids (P-value<0.05), demonstrating that they could be studied in

depth as important targets for treatment.

We identified a total of 19 cell clusters by the harmony

integration algorithm (based on Seurat v4) to eliminate batch

effects between multiple samples, with 5 cell clusters in Fibroblasts,

3 cell clusters in Endothelial cells, 2 cell clusters in Smooth muscle

cells Keratinocyte 3 clusters, 1 cell cluster in Immune cells, 1 cell

cluster in Lymphatic endothelial cells, 1 cell cluster inMelanocytes, of

which 2 cell clusters are unknown. Since studies have demonstrated

that fibroblasts play an important role in the development of keloids,

our next study focused on fibroblasts (30).

We further divided fibroblasts into 8 cell clusters and calculated

the GSL metabolic pathway activity for each cell cluster. It has been

found that the SL metabolic pathway regulates the heterogeneity of

dermal fibroblasts, resulting in phenotypic alterations in fibroblasts

of different subtypes (19). We further investigate whether a similar

effect of the GSL metabolic pathway exists for dermal fibroblasts. In

the cell differentiation trajectory, fibroblast differentiation ended

with two different cell fates and overall GSL metabolism pathway

activity increased with the cell differentiation trajectory, which

suggest that the GSL metabolic pathway may have involved in the

differentiation and phenotypic function regulation of dermal

fibroblasts. Among them, the expression of ARSJ, GLTP, GLA,

NEU1, and UGCG decreased with the differentiation of fibroblasts,

while the expression of SUMF2, GALC, HEXB, and ARSA increased

with the differentiation trajectory of cells. These findings suggest

that these GSLMRGs can be divided into two classes with

potentially opposite roles in fibroblast differentiation trajectories.

Then these two classes of genes may function in balancing with each

other and result in different cellular functions and cell fates once the

state is disrupted, which provides a basis for our subsequent

treatment of keloids by regulating GSL metabolism mechanisms.

However, more experiments are needed to validate the hypothesis.

We then compared the cell-cell communication between the

two subtypes of fibroblasts and cells of other types. Fibroblasts with

high GSL metabolism pathway activity can communicate with

smooth muscle cells through PDGFD-PDGFRB interaction,

which functions in fibrosis and neovascular formation (31).

Besides, fibroblasts with high GSL metabolism pathway activity

can also communicate with keratinocytes through ITGA6-ITGB1

interaction, which play a role to promote cancer cell invasion and

metastasis in a variety of cancers, such as cholangiocarcinoma and

triple-negative breast cancer (32, 33). In addition, the fibroblasts

with high GSL metabolism pathway activity can communicate with
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endothelial cells through the SEMA3B signaling pathway, while

SEMA3B is known to be an inhibitor of angiogenesis and cell

proliferation. Except for these mentioned above, these fibroblasts

can communicate with the immune cells through IL34-CSF1R,

ITGA5-ITGB1, PROS1-AXL, and TNFSF12-TNFRSF12A

interactions as well. Previous study confirmed that IL34 functions

in skin during development, therapeutic interventions targeting

IL34 and CSF1 may provide satisfactory immunotherapy effects

(34). PROS1-AXL is also a key regulator in inflammation and

angiogenesis, and TNFSF12-deficient mice exhibit reduced

epidermal proliferation (35, 36). Fibroblasts with low GSL

metabolism pathway activity can communicate with keratinocytes

via HBEGF-EGFR interaction, which is activated in many patients

with malignancies and can promote skin wound healing (37).

Besides, fibroblasts with low GSL metabolism pathway activity

can communicate with endothelial cells via PROS1-AXL

interaction, with sweat gland cells via EGFR-ERBB2 interaction,

and with Lymphatic endothelial cells via SEMA3C-PLXND1

interaction. EGFR-ERBB2 is considered as an anti-cancer target

in a variety of cancers, such as breast cancer, malignant peripheral

nerve sheath tumors, suggesting that the changes in GSL

metabolism pathway activity in fibroblasts may affect cells of

other types through these specific ligand-receptor interaction (38).

However, more investigations are needed to reveal the

exact mechanisms.

In conclusion, we combined the microarray datasets and single-

cell analysis to explore the role of GSL metabolism pathways in

keloid for the first time, providing new insights into the role of

communication between keloid fibroblasts and cells of other types,

suggesting potential diagnostic and therapeutic strategies and

having important implications for the study of keloid.
Conclusion

We explored the potential role of GSL metabolism pathway in

keloid, classfied keloids based on GSLMRGs expression patterns,

provided a set of gene markers including GLTP, GALC, ARSA,

HEXB, SUMF2, and GBA2, and constructed a diagnostic model for

keloid. We further revealed the alteration of GSL metabolism

pathway activity in the differentiation of fibroblasts by single cell

analysis and the role of GSL metabolism in cell-cell communication.
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