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Background: Cholangiocarcinoma (CCA) is a silent tumor with a high mortality

rate due to the difficulty of early diagnosis and prediction of recurrence even

after timely surgery. Serologic cancer biomarkers have been used in clinical

practice, but their low specificity and sensitivity have been problematic. In this

study, we aimed to identify CCA-specific glycan epitopes that can be used for

diagnosis and to elucidate the mechanisms by which glycosylation is altered with

tumor progression.

Methods: The serum of patients with various cancers was fractioned into

membrane-bound and soluble components using serial ultracentrifugation.

Lectin blotting was conducted to evaluate glycosylation. Proteins having

altered glycosylation were identified using proteomic analysis and further

confirmed using immunoblotting analysis. We performed HPLC, gene analysis,

real-time cargo tracking, and immunohistochemistry to determine the origin of

CCA glycosylation and its underlying mechanisms. Extracellular vesicles (EV)

were isolated from the sera of 62 patients with CCA at different clinical stages and

inflammatory conditions and used for glycan analysis to assess their clinical

significance.

Results: The results reveal that glycosylation patterns between soluble and

membrane-bound fractions differ significantly even when obtained from the same

donor. Notably, glycans with a1-3/4 fucose and b1-6GlcNAc branched structures

increase specifically in membrane-bound fractions of CCA. Mechanically, it is

primarily due to b-haptoglobin (b-Hp) originating from CCA expressing

fucosyltransferase-3/4 (FUT 3/4) and N-acetylglucosaminyltransferase-V (MGAT5).

Newly synthesized b-Hp is loaded into EVs in early endosomes via a KFERQ-like

motif and then secreted fromCCA cells to induce tumor progression. In contrast, b-
Hp expressed by hepatocytes is secreted in a soluble form that does not affect CCA

progression. Moreover, evaluation of EV glycosylation in CCA patients shows that

fucosylation level of EV-Hp gradually increases with tumor progression and

decreases markedly when the tumors are eliminated by surgery.
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Conclusion: This study suggests that terminal fucosylation of Hp in cancer-

derived exosomes can be a novel glycan marker for diagnosis and prognosis of

CCA. These findings highlight the potential of glycan analysis in different fractions

of serum for biomarker discover for other diseases. Further research is needed to

understand the role of fucosylated EVs on CCA progression.
KEYWORDS

cholangiocarcinoma (CCA), glycosylation, haptoglobin (Hp), exosome, biomarker
1 Introduction

CCA is a malignant epithelial tumor arising from the

intrahepatic and extrahepatic bile ducts with a five-year survival

rate of 10%, accounting for 13% of total cancer-related mortality (1,

2). CCA is diagnosed based on a combination of clinical,

radiological, serological, and histological findings. However,

differentiating benign from malignant biliary strictures during

early diagnosis is challenging because CCA is often confused with

a wide spectrum of inflammatory conditions within the bile ducts

(3). General biomarkers, including carcinoembryonic antigen

(CEA), CA19‐9, and CA125, are widely used for diagnosis, but

there are issues of low sensitivity and specificity (4, 5). Therefore, it

is necessary to develop non-invasive biomarkers for diagnosing

CCA at an early stage and predicting prognosis.

Glycosylation is a major post-translational modification that

plays a pivotal role in the function and stability of proteins, lipids,

and nucleotides (6–8). The discovery of aberrant glycosylations in

cancers has highlighted their potential for diagnosis (6, 7). b-Hp is

an acute-phase glycoprotein mainly secreted by hepatocytes and

changes glycosylation status in various cancers (9). In prostate

cancer, b-Hp exhibits an increased amount of glycans with b1-
6GlcNAc side chain and a1-3/4 fucose (10, 11). Among the four N-

glycosylation sites in b-Hp (Asn 184, 207, 211, and 241), fucosylated

glycans were specifically increased at Asn 211 in prostate and

pancreatic cancer, as opposed to that at Asn 241 in colorectal

cancer (10, 12, 13). How b-Hp glycosylation is regulated in cancers

has been investigated. Okuyama et al. uncovered that pancreatic

cells secrete IL-6, which induced expression of fucosylation-

regulatory in hepatocytes to produce a1-6 fucosylated b-Hp (14).

We previously found that a1-3/4 fucosylated b-Hp is expressed in

colon cancer cells (13, 15). However, the molecular understanding

of how b-Hp with aberrant glycosylation is secreted from different

cells remains unclear.

Proteins can be secreted from cells in two forms: (i) soluble

forms and (ii) membrane-bound forms involving EV. EVs are

nano-sized vesicles and produced in the multivesicular body

(MVB) or plasma membrane by the endosomal sorting complex

required for transport (ESCRT) complex and Rab27 GTPase (16,

17). Since EVs carry several factors implicated in long-distance

intercellular communication, tumor progression, organotropic

metastasis, and immune suppression (18–20), it has been
02
considered as potential biomarkers and therapeutic carriers. How

proteins are secreted in a soluble form was extensively studied, but

the mechanism by which they are secreted through EV remains

unclear (21, 22). Cytosolic cargoes are sorted into the EV during

vesicle formation through binding to ubiquitinated adaptor

proteins and ESCRT complex (23, 24). Conversely, secretory

molecules bind to LAMP2A via KFERQ motif and are then

sorted into EVs in the early endosome (25, 26). Recent studies

uncovered that many cargoes, previously known to be secreted in a

membrane-free form, can also be secreted through EV (27).

However, how the two forms differ needs to be determined.

In the present study, we initially performed lectin-based glycan

analysis on different fractions of sera from patients with various

solid cancers and found that a1-3/4 fucosylation in a branched

glycan structure was explicitly increased in membrane fraction of

CCA. The molecular mechanisms of how CCA-specific

glycosylation is regulated were elucidated. Moreover, the clinical

significance of EV glycosylation in cancer diagnosis and prognosis

was investigated. Our results provide novel insights into how cancer

glycosylation is regulated, along with their significance as a

biomarker for CCA.
2 Materials and methods

2.1 Patients and sample collection

For this retrospective study, we enrolled patients previously

diagnosed at Chungnam National University Hospital (Daejeon,

Korea) between January 2009 and March 2021: 87 patients with

solid cancer who underwent surgical treatment, 20 with

inflammatory biliary disease, and 28 healthy volunteers. The solid

cancers included cholangiocarcinoma (CCA, n=42), hepatocellular

carcinoma (HC, n=10), lung adenocarcinoma (LC, n=10), gastric

adenocarcinoma (GC, n=10), breast ductal carcinoma (BC, n=5),

and prostatic adenocarcinoma (PC, n=10) at various clinical stages.

Of the 42 pat ients wi th CCA, 31 had extrahepat ic

cholangiocarcinoma (EHCC) and 11 had intrahepatic

cholangiocarcinoma (IHCC). Patients were diagnosed with stage I

(n=8), II (n=27), III (n=6), or IV (n=1) disease. Pre-operative blood

samples (within a week before the operation) from patients with

solid cancer were collected during the first surgery. During
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preoperative serum sample collection, none of the patients received

preoperative chemotherapy or radiotherapy. Patients with stage II

tumors were administered adjuvant gemcitabine and cisplatin

chemotherapy. Follow-up blood samples were collected from 10

patients during recurrence evaluation after chemotherapy. Forty-

two primary CCA tissue samples were obtained in the form of

formalin-fixed, paraffin-embedded tissue blocks. The inflammatory

biliary diseases included cholangitis (n=15) and cholecystitis (n=5).

This study was approved by the Institutional Review Board of

Chungnam National University Hospital (IRB file no. CNUH 2020-

09-015).
2.2 Cells and plasmids

Cholangiocarcinoma cell lines, SNU-1079, was cultured in

completed RPMI1640 (Welgene) and HepG2 in completed MEM

with EBSS (cytiva) at 37°C and 5% CO2. Transfection of DNA

plasmids was performed using Genjet (SignaGenLab). The custom

plasmid encoding GFP-tagged haptoglobin was obtained from

VectorBuilder. The mutant form of haptoglobin was generated

using QuickChange II Site-Directed Mutagenesis (Agilent). For

retention using the selective hooks (RUSH) system, GFP-Hp was

subcloned into pIRESneo3 using PCR. To examine cell growth

upon treatment with EV and soluble Hp, SNU-1079 cells (1 × 105)

in 24-well plates were treated with EVs (100 mg/ml) or soluble Hp

(0.2 mg/ml), followed by counting the cell number every 1 day.
2.3 Antibodies, lectins, and chemicals

The antibodies used were rabbit anti-giantin antibody

(ab80864), rabbit anti-Rab11A antibody (ab128913), and rabbit

anti-CD9 antibody (ab92726) from Abcam; rabbit anti-Rab5

antibody (3547) from Cell Signaling Technology; mouse anti-Alix

antibody (sc-53540) from Santa Cruz Biotechnology; mouse anti-

CD63 antibody (556019) from BD Biosciences; rabbit anti-TSG101

antibody (102286-T38) from Sino Biological; polyclonal rabbit

antibody against haptoglobin (H8636) from Sigma Aldrich;

polyclonal rabbit antibody against FUT3 (DF4068) from Affinity

Biosciences; rabbit antibody against FUT4 (A16320) from

ABclonal; HRP-conjugated goat anti-mouse IgG (H+L) (145553),

HRP-conjugated goat anti-rabbit IgG (H+L) (145164), Cy3-

conjugated goat anti-mouse IgG (H+L) (144931), and Alexa Fluor

647-conjugated goat anti-rabbit IgG (H+L) (145016) from Jackson

ImmunoResearch Laboratories. HRP-conjugated streptavidin

(21126) was obtained from Thermo Scientific. The following

lectins were purchased from Vector Laboratories: biotinylated

Sambucus nigra lectin (SNA, B-1305), biotinylated Phaseolus

vulgaris leucoagglutinin (PHAL, B-1115), biotinylated Aleuria

aurantia lectin (AAL, B-1395), and biotinylated wheat germ

agglutinin (WGA, B-1025). Flavobacterium meningosepticum

PNGase F (P0704S), Arthrobacter ureafaciens a2-3,6,8,9
Neuraminidase A (P0722S), Streptococcus pneumoniae b1-4
galactosidase S (P0745S), and Xanthomonas manihotis b-N-

acetylglucosaminidase S (P0744S) were purchased from New
Frontiers in Oncology 03
England Biolabs. X. manihotis a1-3,4 fucosidase (E-F134) was

obtained from QA-bio.
2.4 Glycan analysis of different fractions in
serum using various lectins

To isolate soluble components and membrane-bound

components from serum, we employed serial centrifugation. 500

mL of serum was diluted five times with PBS and then centrifuged at

2,000 × g for 30 min at 4°C. The supernatant was subjected to

ultracentrifugation at 200,000 × g for 2 h at 4°C. Soluble

components were collected from the supernatant and the

membrane-bound components were obtained from the pellet

fraction. Glycosylation profiles were determined via lectin blotting

(15). Briefly, isolated soluble components and membrane-bound

components (2–10 mg) were subjected to SDS-PAGE, followed by

transfer to a PVDF membrane (Millipore). After blocking with 3%

BSA, the membrane was incubated with biotinylated lectins for 18 h

at 4°C. The following lectins were used: PHAL (GlcNAcb1-
6Mana1-6Man side chain; 1:500 dilution), SNA (NeuAca2-3/
6Gal/GalNAc; 1:1000), WGA (GlcNAc and NeuAc; 1:500), and

AAL (Fuca1-3/4/6GlcNAc; 1:1000). The membrane was incubated

with HRP-conjugated streptavidin (1:10000) in TBS-T+ (20 mM

Tris pH 7.4, 150 mMNaCl, 0.9 mM CaCl2, 0.5 mMMgSO4, and 0.1

mM MnCl2, and 0.5% Tween-20) for 30 min and then developed

using ECL solution (Enzynomics). For reblotting, the membrane was

incubatedwith stripping buffer (LPS solution) for 1 h, blockedwith 5%

skim milk/TBS-T, and then incubated with an anti-haptoglobin

antibody (1:2000). The membrane was then incubated with goat

anti-rabbit IgG-HRP (1:5000) and developed using ECL solution.

The reactivity of lectins was quantified using Image J.
2.5 Isolation and characterization of EV

We employed serial centrifugation or Exoquick (EXOTC10A-1,

System Biosciences) to isolate EVs from the patient serum as

previously described (28). To isolate EV using serial

centrifugation (SC), 500 ml of serum centrifuged at 2,000 × g for

30 min at 4°C. The supernatant was subjected to ultracentrifugation

at 200,000 × g for 2 h at 4°C. EV was obtained from the pellet

fraction. To isolate EV using Exoquick (EQ), 500 ml of serum

centrifuged at 3000 × g for 30min at 4°C. The supernatant was

mixed with 200 ul of Exoquick, followed by incubation for 18hr at

4°C and centrifuged at 1500 × g for 30 min at 4°C. EV was obtained

from the pellet fraction. To isolate EV from cell cultured media, we

employed serial centrifugation. Cells were cultured to 80%

confluence in a serum-free medium for 2 days. The culture

medium centrifuged at 2,000 × g for 30 min at 4°C. The

supernatant was subjected to ultracentrifugation at 175,000 × g

for 2 h at 4°C. EVs were obtained from the pellet. Isolated EVs were

characterized using western blot with antibodies against TSG101,

Alix, and CD9, nanoparticle tracking analysis, and electron

microscopy. Glycosylation profiles of EV were determined via

lectin blotting using PHAL, SNA, WGA and AAL.
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2.6 Purification of b-haptoglobin
from serum using immune-
affinity chromatography

b-Hp was purified from soluble and membrane-bound fraction

of serum using immunoaffinity chromatography, as previously

described (15). Briefly, soluble fraction (1 mL) and membrane-

bound fraction (5 mg) were loaded onto an anti-Hp antibody-

conjugated sepharose 4 B column (2 mL). The column was washed

with 25 mL of PBS at 1 mL/min using a peristaltic pump. b-Hp was

eluted using 6 mL elution buffer (0.1M Glycine, 0.5M NaCl, pH 2.8)

and neutralized with 250 mL of neutralization buffer (1.0M Tris-

HCl, pH 9.0). The eluent was concentrated using a centrifugal filter

(MWCO 10,000; Amicon Ultra; Millipore). Purified b-Hp was

quantified using a Bradford assay and stored at -80°C until use.
2.7 Detailed examination of N-glycan
structures using HILIC-HPLC

N-Glycosylation structures on isolated EVs were characterized

using a hydrophilic interaction chromatography (HILIC)-HPLC

system (15). N-Glycans of EV-Hp were released by treatment with

PNGaseF using in-gel digestion and then labeled with 2-

aminobenzamide (2-AB) using a LudgerTag 2AB Glycan Labeling

Kit (Ludger). The 2-AB-labeled glycans were separated from free 2-

AB using LudgerClean S cartridges (Ludger), separated via HPLC

through Xbridge Glycan BEH Amide XP 2.5 mm, 3.0 mm × 150 mm

column (Waters, Milford, MA, USA) using the e2695 separation

module, and finally detected using a 2475 fluorescence detector.

Chromatography was performed at 60°C. The mobile phase

consisted of Sol A (25%, v/v, 50 mM ammonium formate pH 4.4

(Sigma Aldrich) and Sol B (75%, v/v, acetonitrile), followed by a

linear gradient of Sol A from 25% to 45% over 65 min at a flow rate

0.56 mL/min. The retention time of N-glycans was compared with

that of the 2-AB dextran ladder. For exoglycosidase treatment, 2-

AB-labeled glycans were incubated with different combinations of

exoglycosidases in 50 mM sodium acetate buffer (pH 5.5) at 37°C

for 24 h and then subjected to HILIC-HPLC.
2.8 In vivo transport assays

We employed a quantitative assay that tracks protein transport

in cells using a RUSH system (29). Briefly, cells were transfected

with GFP-Hp in pIRESneo3 to synchronize b-Hp conjugated with

streptavidin-binding peptide in the ER through interaction of the

ER-localized “hook” with streptavidin. The cells were then treated

with 40 nM D-biotin (B4501, Sigma Aldrich) to release b-Hp by

competing with streptavidin for SBP binding, and fixed at different

time points using 4% PFA/PBS for 10 min and stained using

antibodies against giantin, Rab5, Rab11, and CD63. The cells

were imaged using a Zeiss LSM800 confocal microscope with a

Plan-Apochromat 63x objective, Zeiss URGB (488, 561, and 647

nm) laser lines, and Zen 2.3 confocal acquisition software. Images
Frontiers in Oncology 04
were merged using Image J and analyzed using MetaMorph 7.7

(MDS Analytical Technologies).
2.9 Immunohistochemistry

Immunohistochemical analysis was performed on samples from

42 patients. Whole FFPE tissues were sectioned on coated slides,

deparaffinized with xylene, and hydrated in serial solutions of

alcohol. The sections were heated for 3 min in a pressure cooker

(containing 10 mM sodium citrate, pH 6.0) for antigen retrieval.

Endogenous peroxidase was blocked using 0.03% hydrogen

peroxide for 10 min. The sections were incubated at room

temperature for 1 h with the following primary antibodies: FUT3

(1:200), FUT4 (1:200), TSG101 (1:200), CD63 (1:200), and

haptoglobin (1:400). Hepatocytes in liver FFPE samples were used

as positive controls, and tonsil tissues were used as negative

controls. The staining intensities were designated as negative,

weak, moderate, or strong, and the staining proportions were

determined in increments of 5% across a 0–100% range. The

histo-score (H-score), a summation of the proportion of area

stained at each intensity level multiplied by the weighted staining

intensity (e.g., 0, negative; 1, weak; 2, moderate; 3, strong), was

determined for the sections (30).
2.10 Statistical analysis

Data are presented as mean ± s.e.m. Biological repeat counts are

indicated in the figure legend. Statistical analysis was performed

using GraphPad Prism (v. 9) using an unpaired two-tailed Student’s

t-test for data with homogeneity of variance. A Mann-Whitney u-

test was performed on data with heteroscedasticity of variance. A P-

value of less than 0.05 was considered statistically significant.
3 Results

3.1 Glycan analysis on different fractions in
the serum of cancer patients

To investigate whether the glycosylation status differs between

soluble and membrane-bound fractions in the blood, we used serial

centrifugation to fractionate the sera of patients with various

cancers (CCA, HC, LC, GC, BC, and PC) (Figure 1A). We then

analyzed the glycosylation patterns using various lectins

(Figure 1A). We found that the membrane-bound components of

CCA, LC and GC contained an increased amount of glycans with

b1-6GlcNAc branching structure, which was not changed in the

soluble components between samples (Figure 1B). SNA blotting

revealed that most cancers contained enhanced sialylation in the

soluble components compared to controls (Figure 1C). However,

we did not observe any significant difference in the level of

sialylation in the membrane-bound fraction between samples

(Figure 1C). Additionally, AAL blotting showed that the soluble
frontiersin.org
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components of CCA and PC contained higher levels of fucosylation

than other cancers and healthy controls (Figure 1D). Interestingly,

the membrane-bound components of CCA showed a specific

increase in fucosylation, with the AAL signal predominantly

increasing at 40 kDa (Figure 1D; arrowhead). However, we did

not find significant difference in the glycans detected by WGA

between the different fractions and cancer types (Figure 1E).
3.2 Aberrant glycosylation in the
sera of CCA is attributed to
membrane-bound b-Hp

We next conducted proteomic analysis and identified b-Hp as

the glycoprotein with increased fucosylation in the membrane-

bound components of CCA (Supplementary Figure 1A). We then

purified b-Hp from membrane-bound fractions using immune-

affinity chromatography and confirmed that b-Hp from CCA

exhibited higher fucosylation than that from normal (Figure 2A).

Given that the amounts of b-Hp were comparable between CCA

and normal (Supplementary Figure 1B), the increased fucosylation

was attributed to the glycosylation status, rather than changes in

protein amount. We then noted that b-Hp exists in the blood in two

forms: soluble forms (s-Hp) and membrane-bound forms

associated with EV (EV-Hp) (31–33). To determine which form

is more correlated with CCA, we purified b-Hp from soluble and

membrane-bound fractions in the sera of the same patient. We

found that EV-Hp showed higher reactivity to AAL and PHAL than
Frontiers in Oncology 05
s-Hp, whereas both forms of b-Hps showed similar signal

intensities for WGA and SNA (Figure 2B). These results suggest

that the aberrant glycosylation observed in CCA is attributed to

membrane-bound b-Hp, not soluble b-Hp.
3.3 Detailed analysis of glycosylation
structures of membrane-bound b-Hp

To analyze the detailed glycosylation structures of EV-Hp, we

conducted HILIC-HPLC and found that the glycans of EV-Hp

from normal and CCA exhibited similar chromatograms with 12

major peaks (Figures 3A, B). The most abundant structure in both

Hps was A2G2S2 (Figures 3A, B; peak “g”). Major differences

between samples were tri-antennary glycans shown in the peak “k”

and “l”. Afucosylated glycans were higher in normal than in CCA,

whereas the opposite occurred for glycans having terminal

fucosylation, which were higher in CCA than in normal

(Figures 3A, B). The glycan structures were verified by

treatment with exo-glycosidases. In particular, the peak “l” was

shifted to peak “p” by neuraminidase and then to peaks “t” and “r”

by sequential treatment with b1-4 galactosidase and a1-3/4
fucosidase (Figure 3B). However, core fucosylated glycans in the

peak “v”, which disappeared by treatment with a1-6 fucosidase,

did not show a significant difference between samples (Figure 3B).

These results suggest that EV-Hp from CCA patients exhibits

increased a1-3/4 fucosylated glycans (terminal fucosylation)

compared to that from healthy controls.
B C

D E

A

FIGURE 1

Comparison of glycosylation between soluble and membrane-bound fraction in the serum of different cancers. Quantitative data are shown as mean ±
S.E.M. Statistical analysis was performed using the two-tailed Student’s t-test. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns p > 0.05. (A)
Schematic illustration of glycosylation comparison between soluble fraction and membrane-bound fraction. ◼: GlcNAc, ●: mannose, ○: galactose, ▲:
fucose, ◆: sialic acid. (B) PHAL blotting for different fractions in the sera from different cancers; n = 5. CCA, cholangiocarcinoma; HC, hepatocellular
carcinoma; LC, lung adenocarcinoma; GC, gastric adenocarcinoma; BC, breast ductal carcinoma; PC, prostatic adenocarcinoma.
(C) SNA blotting for different fractions in the sera from different cancers; n = 5. (D) AAL blotting for different fractions in the sera from different cancers; n
= 5. (E) WGA blotting for different fractions in the sera from different cancers; n = 5. ns, not significant.
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3.4 Membrane-bound b-Hp with terminal
glycosylation originated from CCA cells

We next sought to examine how b-Hp, previously known as a

soluble secretory protein, could be detected in membrane-bound

fraction. When b-Hp was expressed in SNU-1079, it was

preferentially secreted through EV (Figure 4A). On the other

hand, b-Hp expressed by HepG2 was secreted in a soluble from

(Figure 4B). Additionally, real-time tracking of protein trafficking

using RUSH system showed that newly synthesized b-Hp was

secreted through the conventional secretory pathway in SNU-

1079 cells (Supplementary Figure 2A). When b-Hp exited the

Golgi, it was transported through Rab5-positive endosome, which

co-localized with CD63, but not through Rab11-positive endosome

(Figure 4C). We also noted that b-Hp possesses the

phosphorylation-generated KFERQ-like motif required for

cargoes to be sorted into EV (Supplementary Figures 2B) (25).
Frontiers in Oncology 06
When the motif was disrupted, b-Hp was secreted in a soluble form

from SNU-1079 (Figure 4D).

We next investigated whether genes associated with EV-Hp

fucosylation are upregulated in CCA. Evaluating GSE26566 dataset

revealed that multiple genes involving glycosylation showed altered

expression in CCA compared with the surrounding liver and

normal intrahepatic bile duct (Supplementary Figure 3A). Among

a family of FUT required for a1-3/4 fucosylation (34), FUT3 and

FUT4 were particularly increased in CCA (Supplementary

Figures 3B, C). We also found in OncoDB that MGAT5

required for b1-6GlcNAc side chain was upregulated in

CCA (Supplementary Figure 3C). Our analysis using

immunohistochemistry staining on 42 patients with CCA

revealed high expression levels of b-Hp, TSG101, CD63, FUT3,

and FUT4 (Figures 5A–C). Interestingly, FUT3 was highly

expressed from early-stage cancer, whereas FUT4 gradually

increased with tumor progression (Figure 5C). Collectively, our
BA

FIGURE 2

Glycosylation of EV-Hp is correlated with CCA. Quantitative data are shown as mean ± S.E.M. Statistical analysis was performed using the two-tailed
Student’s t-test. ****p < 0.0001, ns p > 0.05. (A) AAL blotting for b-Hp purified from EVs; n = 6. (B) Lectin blotting for s-Hp and EV-Hp; n = 3. ns, not
significant.
BA

FIGURE 3

Detailed analysis of glycosylation structures in EV-Hp. (A-B) The chromatogram of 2-AB glycans extracted from EV-Hp of normal (A) and CCA (B).
Chromatograms of 2-AB glycans digested with various exoglycosidases are shown in lanes 2-6; n = 4. Glycan structures corresponding to peaks were
shown below. ◼: GlcNAc, ●: mannose, ○: galactose, ▲: fucose, ◆: sialic acid.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1183442
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Choi et al. 10.3389/fonc.2023.1183442
data suggest that terminal fucosylation of EV-Hp is regulated and

secreted by CCA cells.
3.5 Clinical significance of fucosylated
membrane-bound b-Hp in CCA diagnosis

To investigate the diagnostic value of fucosylated membrane-

bound Hp, we first ensured that the isolation procedure did not alter

the glycosylation of EVs. We obtained EVs from the serum using

two different methods: serial centrifugation (SC) and Exoquick

(EQ) (Figure 6A). We confirmed that the EVs obtained from

both methods were spherical and had a diameter of

approximately 100 nm using electron microscopy and

nanoparticle tracking analysis (Figures 6B, C). We also detected

similar levels of CD9, TSG101, and ALIX in both EVs, while the

intracellular organelle component such as giantin was excluded

(Figure 6D). Glycan analysis using various lectins confirmed that

our isolation procedures did not affect the glycosylation status of

EVs (Figure 6E).

We next isolated EVs from the sera of patients with CCA (42

cases), inflammatory conditions (20 cases), and healthy volunteers

(28 cases). AAL blotting revealed that the degree of EV-Hp

fucosylation increased progressively with tumor progression

(Figures 7A, B and Table 1). Fucosylation levels of cholecystitis

and cholangitis were clearly distinct from that of the early-stage

CCA patients (Figure 7B). We also observed that EV-Hp from

EHCC was more fucosylated than that from IHCC (Figure 7C and

Table 1). Next to examine the prognostic significance, EVs were

obtained from patients with CCA before and after surgery to

remove tumors. Six of the 10 cases showed a significant reduction

in fucosylation, with a dramatic decrease in serum CA19-9
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following the removal of the primary tumor (Figure 7D and

Supplementary Table 1). Intriguingly, the AAL reactivity was not

altered in four patients diagnosed with distant metastasis (CCA no.

38), tumor recurrence (CCA no. 39 and 40), and incomplete tumor

removal (CCA no. 42) after surgery (Figure 7D). We further

confirmed that fucosylation level of unfractionated serum was not

correlated with prognostic factors (Supplementary Figure 4). These

results suggest that fucosylated EV-Hp can be used not only for

early diagnosis of CCA, but also for predicting variability following

surgical intervention and tumor recurrence after surgery.
3.6 Fucosylated EV promotes the growth
of CCA cells

We next investigated the impact of fucosylated EV-Hp on tumor

progression. The results showed that treatment with fucosylated EVs

isolated from patients with CCA led to a significant increase in the

growth of SNU-1079 cells (Figure 8A). However, treatment with

the same amount of EVs isolated from healthy controls did not affect

the growth of CCA cells (Figure 8A). Moreover, we demonstrated

that the treatment of the soluble form of fucosylated Hp isolated from

the serum of CCA patients did not influence cell growth, further

emphasizing the importance of the EV-associated Hp (Figure 8B).

Collectively, these findings suggest that fucosylated EVs derived from

CCA contribute to tumor progression.
4 Discussion

Tumor glycosylation has been proposed as potential cancer

biomarkers (6, 7). Many studies have focused on characterizing the
B

C

DA

FIGURE 4

EV-Hp is secreted from CCA cells via KFERQ-like motif. (A, B) Two forms of Hp obtained from cultured media of (A) SNU-1079 and (B) HepG2 were
examined; n = 5. (C) Colocalization of b-Hp with Rab5, Rab11, and CD63. Representative images are shown, Scale bar = 10 µm. n = 3. (D) Western
blotting to assess the effects of KFERQ-like motif on b-Hp secretion through EV; n = 5.
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B CA

FIGURE 5

Fucosylation of EV-Hp is upregulated by CCA. (A) IHC staining of b-Hp in CCA tissue. Scale bar = 50 mm. IHC scores are shown. (B) IHC staining of TSG101
and CD63 in CCA tissue. Scale bar = 50 mm. IHC scores are shown. (C) IHC staining of FUT3 and FUT4 in CCA tissue. Scale bar = 50 mm. IHC score is
shown. Quantitative data are shown as mean ± S.E.M. Statistical analysis was performed using the Mann-Whitney u-test. ****p < 0.0001, **p < 0.01,
*p < 0.05, ns p > 0.05. ns, not significant.
B

C D

E

A

FIGURE 6

Comparison of glycosylation between EVs isolated via two different approaches. (A) Schematic of the EV isolation methods. SC, serial centrifugation.
EQ, ExoQuick. (B) Electron microscopy (EM) assessment of the size and morphology of isolated EVs. Representative images are shown. Scale bar =
20 nm. (C) Nanoparticle tracking analysis for the quantitation of EV size. (D) Western blotting using antibodies against EV components. n = 3.
(E) Lectin blot assessing the glycosylation profiles of isolated EVs. The blotted membrane was stained with Coomassie Brilliant Blue, n = 3.
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B
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FIGURE 7

Diagnostic and prognostic value of EV-Hp fucosylation in CCA. Quantitative data are shown as mean ± S.E.M. Statistical analysis was performed
using the two-tailed Student’s t-test. ****p < 0.0001, ***p < 0.001, **p < 0.01, *p < 0.05, ns, p > 0.05. (A) AAL blotting for EV-Hp of CCA and healthy
volunteers. The fucosylation level was examined using a blotting index; n = 7. (B) Comparison of EV-Hp fucosylation for different stages of CCA,
inflammatory conditions, and normal. (C) Effect of tumor location on EV-Hp fucosylation. IHCC, intrahepatic cholangiocarcinoma. EHCC,
extrahepatic cholangiocarcinoma. (D) Effect of pre- and post-surgery to remove tumors on fucosylation of EV-Hp; n = 5. ns, not significant.
TABLE 1 Blotting index of CCA cases with tumor stage, location, sex, and age.

　 Total
Blotting index (case no, %)

<0.25 0.25-0.5 >0.5

Normal 28 28(100%) – –

CCA 42 9(21.43%) 16(38.09%) 17(40.48%)

Clinical stage

Stage I 8 – 7(88.89%) 1(11.11%)

Stage II~IV 34 9(26.47%) 9(26.47%) 16(47.06%)

Tumor location

EHCC 31 6(19.35%) 10(32.26%) 15(48.39%)

IHCC 11 3(27.27%) 6(54.55%) 2(10.18%)

Sex

Male 29 7(24.14%) 12(41.38%) 10(34.48%)

Female 13 2(15.39%) 4(30.77%) 7(53.84%)

Age

40~50 1 – – 1(100%)

50~60 6 2(33.33%) 2(33.33%) 2(33.33%)

60~70 13 4(30.77%) 7(53.85%) 2(15.38%)

70~80 20 3(15%) 6(30%) 11(55%)

80~90 2 – 1(50%) 1(50%)
F
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CCA, cholangiocarcinoma; EHCC, extrahepatic cholangiocarcinoma; IHCC, intrahepatic cholangiocarcinoma.
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aberrant glycosylation of secreted molecules circulating the blood in

their soluble form (35). In this study, we provide new evidence that

terminal fucosylation of membrane-bound components correlated

with EVs correlates with CCA. The fucosylation was progressively

increased with tumor stage, but was not increased in inflammatory

conditions. Notably, EV fucosylation was significantly reduced

when the tumors were removed by surgery.

Glycomic analysis revealed that CCA-EV contained more a1-3/
4 fucosylated glycans (terminal fucosylation) than normal EVs.

Notably however, a1-6 fucose (core fucosylation) was comparable

between samples, and bisected fucosylated structures reported to

increase in tissues of intrahepatic CCA could not be found (36). Our

current approach did not distinguish the linkage of terminal a-L-
fucose attached to tri-antennary structures. However, we pursued to

explain it by evaluating the expression of different FUTs. For

example, FUT3 is involved in type I Lewis antigens (Galb1-
3GlcNAc-R) with a1-4 fucosylation, whereas FUT4 is required

for the synthesis of type II Lewis antigens (Galb1-4GlcNAc-R) with
a1-3 fucosylation (37–39). Our data showed that FUT3 was

upregulated from the early stage, while FUT4 progressively

increased with the tumor stage, suggesting a linkage conversion of

a-fucosylation as the tumor progresses. Since expression of N-

acetylglucosaminyltransferase V (GnT-V) increases during caner

development (40, 41), a1-3/4 fucose is often attached to b1-
6GlcNAc branched structure. Consistent with previous findings, we

found that a1-3/4 fucosylation was detected only in tri-antennary

structures and MGAT5 expression was upregulated in CCA.

Terminal fucosylation of CCA-EV was primarily attributed to

the membrane-bound b-Hp. Our data uncovered that the

glycosylation of soluble b-Hp was significantly different from

EV-Hp. Remarkably, only the fucosylation of EV-Hp showed

positive correlation with CCA. The key question raised how the

two forms of b-Hp present differential glycosylation. As glycans

are conjugated to the four N-linked glycosylation sites that are

found in b-Hp (ASN-184, ASN-207, ASN-211, and ASN-241),

site-specific glycan analysis will determine how the two forms of

b-Hp differs. We also noted that b-Hp is primarily produced in

hepatocytes and a small fraction is secreted by cancer cells (14,
Frontiers in Oncology 10
15). One intriguing possibility is that the trafficking pathway

through which b-Hp is secreted differs cell-to-cell. Our data

uncovered that b-Hp expressed in CCA cells was secreted

through EV, whereas b-Hp expressed in HepG2 was secreted in

a soluble form. Considering that genes encoding b-Hp, EV

biogenesis, and terminal fucosylation were upregulated in CCA

cells, we conclude that fucosylated membrane-bound b-Hp

originates from CCA.

In summary, our data uncovered that the a1-3/4 fucosylation of

b-Hp in cancer-derived EV can be used as biomarkers for early

diagnosis of CCA as well as for the prediction of recurrence after

surgery. We also elucidated the molecular mechanisms of how

CCA-specific glycosylation is regulated. Future research should

further investigate how altered glycosylation involves EV

biogenesis and the physiological relevance of EV fucosylation in

cancer progression.
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