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No silver bullet: interpretable ML
models must be explained

Joao Marques-Silva1* and Alexey Ignatiev2

1IRIT, CNRS, Toulouse, France, 2Department of Data Science and Artificial Intelligence, Faculty of

Information Technology, Monash University, Melbourne, VIC, Australia

Recent years witnessed a number of proposals for the use of the so-called

interpretable models in specific application domains. These include high-risk, but

also safety-critical domains. In contrast, other works reported some pitfalls of

machine learning model interpretability, in part justified by the lack of a rigorous

definition of what an interpretable model should represent. This study proposes

to relate interpretability with the ability of a model to o�er explanations of why

a prediction is made given some point in feature space. Under this general goal

of o�ering explanations to predictions, this study reveals additional limitations of

interpretable models. Concretely, this study considers application domains where

the purpose is to help human decisionmakers to understand why some prediction

was made or why was not some other prediction made, and where irreducible

(and so minimal) information is sought. In such domains, this study argues that

answers to such why (or why not) questions can exhibit arbitrary redundancy, i.e.,

the answers can be simplified, as long as these answers are obtained by human

inspection of the interpretable ML model representation.

KEYWORDS

explainable AI (XAI), model interpretability, logic-based explainability, decision trees,

decision lists, decision sets

1. Introduction

Recent years witnessed many successes of machine learning (ML) (LeCun et al.,

2015; Goodfellow et al., 2016, 2020; Krizhevsky et al., 2017; Bengio et al., 2021). Despite

these successes, there are shortcomings to the deployment of ML models (Szegedy et al.,

2014; Goodfellow et al., 2015, 2016). Indeed, complex ML models can exhibit lack of

robustness, can display bias, and their operation is invariably inscrutable for human decision

makers (Gunning and Aha, 2019). As a result, there have been efforts to devising logically

rigorous (and so formal) approaches to reasoning about ML models (Marques-Silva and

Ignatiev, 2022).

In some application domains, e.g., in high-risk and safety-critical settings, a number

of researchers have proposed the use of so-called interpretable models (Rudin, 2019;

Molnar, 2020), which include, for example, decision trees, decision lists, and decision

sets, among others (Molnar, 2020). Despite the term “interpretable model” being extremely

popular (Rudin, 2019; Molnar, 2020), it is also the case that there is no rigorous definition for

what an interpretable model should be. The subjectivity of what interpretability should mean

indicates that a rigorous widely accepted definition is at least fairly unlikely. Accordingly,

some other researchers have raised important concerns about what interpretability of ML

models might represent (Lipton, 2018).

In the case of decision trees, we have recently shown (Izza et al., 2020, 2022a; Huang

et al., 2021b) that, when compared with logically rigorous explanations, decision trees can

yield explanations which are arbitrarily redundant on the number of features.1

1 Extraction of rules from decision trees has been studied before (Quinlan, 1987), but not for addressing

explaination redundancy.
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Concretely, given some point in feature space and a predicted

class, the question “why does the ML model predict the class?”

is referred to as a WHY question. For decision trees, it has been

shown (Izza et al., 2020, 2022a; Huang et al., 2021b) that the

answer to this WHY question can be arbitrarily redundant when

the explanation corresponds to the path in the decision tree that

is consistent with the values assigned to the features. A corollary

of these results is that, if succinct explanations can be viewed as a

measure of model interpretability, then decision trees can hardly be

deemed interpretable. Furthermore, a human decision maker will

in most cases be unable to propose explanations less redundant

than the tree path consistent with the input, and so automated

computation of explanations is required.

This study extends further these earlier results on the

redundancy of decision trees.We consider additional families of so-

called interpretable ML models, and investigate what would be the

answer to WHY questions. Since the internal details of the model

are in general of no interest to a human decision maker, the answer

to such a WHY question is to be expressed as an irreducible subset

of the features, such that such set is sufficient for the prediction. A

set of features is sufficient for the prediction if those features are

fixed to their given values, then the value of the prediction must be

the given one. Such definition enables interpreting the answers to

WHY questions as logically correct universally valid rules, which

can be conveyed to a human decision maker.

As with other related work, we seek answers to WHY questions

which can be trusted. As a result, we need first to formalize what

the answers toWHY questionsmean. Afterwards, we argue that it is

not intuitive (quite the contrary) to obtain such rigorous answers to

WHY questions from (manual) inspection of the model. Thus, this

further supports the argument against declaring ML model to be

interpretable, even when these are claimed to be interpretable. The

experimental results included in the study support extensively our

conclusion. Concretely, the results show that explanations obtained

by inspection of an ML model often include a significant degree of

redundancy, and this represents information that is unnecessary to

understand the reasons for why a prediction is being made.

Despite their shortcomings, there are still important reasons

to advocate the use of these so-called interpretable models. One

of these reasons is that such models can be efficiently explained

in practice by using the rigorous definitions of explanations

proposed in recent years. Given such definitions, we have provided

empirical evidence that logically correct rules can be efficiently

computed for several families of ML classifiers widely regarded

as interpretable (Izza et al., 2020, 2022a; Huang et al., 2021b;

Ignatiev and Marques-Silva, 2021). The assessment of the so-called

interpretable models included in this study hinges on the fact that

rigorous explanations are efficient to compute, even when in theory

computing some of these explanations is computationally hard.

This article is organized as follows: Section 2 introduces the

notations and definitions used throughout the article. Section 3

introduces logic-based explanations, and briefly overviews recent

work on this topic. Section 4 proposes a measure of understanding

ML models, namely model comprehensibility, and discusses

examples that suggest that even interpretable models are not

simple to comprehend. Section 5 summarizes a number of results

which offer additional evidence to the difficulty in comprehending

interpretable models. Section 6 analyzes experimental results on

comprehending interpretable models, concretely decision trees

and decision lists. The results of the article are briefly put into

perspective in Section 7. Finally, the article concludes in Section 8.

2. Preliminaries

2.1. Classification problems

Classification problems in ML are defined on a set of features

(or attributes) F = {1, . . . ,m} and a set of classes K =

{c1, c2, . . . , cK}. Each feature i ∈ F takes values from a domain Di.

In general, domains can be categorical or ordinal, with values that

can be boolean, integer, or real-valued. Feature space is defined as

F = D1 × D2 × . . .× Dm. For boolean domains, Di = {0, 1} = B,

i = 1, . . . ,m, and F = Bm. The notation x = (x1, . . . , xm) denotes

an arbitrary point in feature space, where each xi is a variable

taking values from Di. The set of variables associated with features

is X = {x1, . . . , xm}. Moreover, the notation v = (v1, . . . , vm)

represents a specific point in feature space, where each vi is a

constant representing one concrete value from Di. When referring

to the domains of one of more features, we use D = 〈D1, . . . ,Dm〉,

which serves solely to aggregate all the features’ domains in a single

dedicated structure.

With respect to the set of classes K, the size of K is assumed

to be finite; no additional restrictions are imposed on K. An

ML classifier M is characterized by a (non-constant) classification

function κ that maps feature space F into the set of classes K, i.e.,

κ :F → K. An instance (or observation) denotes a pair (v, c), where

v ∈ F and c ∈ K, with c = κ(v). In should be plain to conclude that

the formalization of ML classifiers imposes few (if any) restrictions

on the families of classifiers that can be studied by using logic-based

representations of those classifiers.

Given the definitions above, a classification problem is a tuple

M = (F ,D,F,K, κ), and M denotes the set of all classification

problems.

2.2. ML models regarded as interpretable

Although a wide range of ML models are often deemed

interpretable (Molnar, 2020), we will consider tree and rule

models (Flach, 2012), namely decision trees, decision lists, and

decision sets, in their simplest forms. These are widely regarded

as interpretable (Lakkaraju et al., 2016; Rudin, 2019, 2022; Molnar,

2020).

2.2.1. Decision trees
A decision tree is a directed acyclic graph, with one root node

that has no incoming edges, and the remaining nodes having

exactly one incoming edge. Terminal nodes have no outgoing

edges, and non-terminal nodes have two or more outgoing edges.

Each terminal node is associated with a class, i.e., the predicted class

for the node. Each non-terminal node is associated with exactly one

feature (i.e., unless otherwise stated, we consider univariate DTs).
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Each outgoing edge is associated with a literal defined using the

values of the feature, and such that any value of the feature domain

is consistent with exactly one of the literals of the outgoing edges.

In general, we allow literals to use the ∈ relational operator, as in

earlier work (Izza et al., 2022a). Thus, a literal xi ∈ {Si} is consistent

if xi takes one of the values in Si. For simplicity, when Si = {vi},

then we will also allow for a literal to be of the form xi = vi.

Common (implicit) assumptions of DTs are that: i) all paths in a DT

are consistent; and ii) the branches at each node capture all values

in the domain of the tested feature. An example of a DT is shown

in Figure 1. (This example will be analyzed in greater detail below).

2.2.2. Decision lists and sets
Both decision lists and sets represent sets of rules. A rule is

of the form: IF cond THEN class, i.e., if the condition cond is

true given the values assigned to features, then class is predicted.

When cond is true, we say that the rule fires; cond can for example

represent a conjunction of literals, where a literal is defined as in the

case of DTs. Moreover, the difference between decision rules and

sets is that for decision lists, the rules are ordered, and for decision

sets, the rules are unordered. Thus, a decision list is organized as

follows:

R1 : IF (τ1) THEN d1
R2 : ELSE IF (τ2) THEN d2
· · ·

Rr : ELSE IF (τr) THEN dr
[RDEF : ELSE dr+1

]

(1)

In contrast, a decision set is organized as follows:

R1 : IF (τ1) THEN d1
R2 : IF (τ2) THEN d2
· · ·

Rr : IF (τr) THEN dr
[RDEF : dr+1

]

(2)

Where the last rule is optional.

A difficulty with decision sets is rule overlap, i.e., the existence

of situations when two or more rules predicting different classes

fire (Observe that if overlapping rules predict different classes, then

the decision set does not implement a classification function). Rule

overlap was investigated in recent work (Lakkaraju et al., 2016), but

with a definition of overlap that is restricted to the instances in the

dataset. As a result, as first observed in Ignatiev et al. (2018), the

solution proposed in Lakkaraju et al. (2016) is susceptible to overlap

for points in feature space that are not in the dataset.

Another issue with decision sets (when a default rule is not

used) is the fact that, for some points in feature space, it may

be the case that no rule will fire. Approaches that guarantee no

overlap were proposed in Ignatiev et al. (2018). To the best of

our knowledge, no rigorous approach exists that guarantees that a

decision sets implements a total function, i.e., guarantee of i) no

overlap and ii) a prediction for every point in feature space. If these

conditions are not met, interpretability is even more of a challenge

(Furthermore, Ignatiev et al. (2018) conjectures that learning a DS

that respects the two conditions above is6
p
2 -hard).

The learning of decision sets that implement a total function

without overlap is believed to be a computationally challenging

task (Ignatiev et al., 2018). Moreover, no solution exists that

guarantees that a decision set implements a total function without

overlap. Thus, in the remainder of this article, we will focus on

decision trees and decision lists.

2.3. Logic foundations

Throughout this article, we will use notations and definitions

that are standard when reasoning about the decision problem

for propositional logic, i.e., the Boolean Satisfiability (SAT)

problem (Biere et al., 2021). SAT is well-known to be an

NP-complete (Cook, 1971) decision problem. A propositional

formula ϕ is defined over a finite set of propositional atoms

X = {x1, x2, . . . , xn} (The elements of X are also referred to

as boolean variables). Well-formed propositional formulas are

defined inductively given a set of logic operators, ∧,∨, and ¬

(resp. AND, OR, andNOT). Additionally often used logic operators

include→ and↔ (resp. implication and equivalence). In practice,

propositional formula are most often represented in conjunctive

normal form (CNF). A CNF formula is a conjunction of clauses,

a clause is a disjunction of literals, and a literal is a variable (xi) or

its negation (¬xi). A term is a conjunction of literals. Whenever

convenient, a formula is viewed as a set of sets of literals. A boolean

interpretation (or valuation) ν of a formula ϕ is a total mapping

of X to {0, 1} (0 corresponds to false and 1 corresponds to true).

Interpretations can be extended to literals, clauses, and formulas

with the usual semantics of propositional logic; hence, we can refer

to lν , ων , τ ν , and ϕν , to denote, respectively, the value assigned to

a literal, clause, term, and formula, given an interpretation. Given

a formula ϕ, ν is a model of ϕ if it makes ϕ true, i.e., ϕν = 1. A

formula ϕ is satisfiable (ϕ 2 ⊥) if it admits a model; otherwise, it is

unsatisfiable (ϕ � ⊥). Given two formulas ϕ and ψ , we say that ϕ

entails ψ (denoted ϕ �ψ) if all models of ϕ are also models of ψ . ϕ

and ψ are equivalent (denoted ϕ ≡ ψ) if ϕ �ψ and ψ �ϕ.

For an unsatisfiable CNF formula ϕ, let T denote the set of

clauses in ϕ. In this case, a minimal unsatisfiable subset (MUS) U

is an irreducible subset of the clauses in T that is also unsatisfiable.

A minimal correction subset (MCS) is an irreducible subset C of

T , such that T \ C is satisfiable. In general, these definitions

can assume some background knowledge B, which is known to

be consistent, and some other knowledge S , such that B ∪ S is

unsatisfiable. A fundamental result in the analysis of inconsistent

formulas is the minimal hitting set (MHS) duality between MUSes

and MHSes (Reiter, 1987) (Recall that a set H is a hitting set of a

set of sets S = {S1, . . . , Sk} if H ∩ Si 6= ∅ for i = 1, . . . , k. H is a

minimal hitting set of S , if H is a hitting set of S , and there is no

proper subset of H that is also a hitting set of S). There exist in-

depth overviews of algorithms for reasoning about inconsistent (or

unsatisfiable) formulas, e.g., Marques-Silva and Mencía (2020).

3. Logic-based explainable AI

Logic-based (or formal) explanation approaches have been

studied in a growing body of research in recent years (Shih et al.,

2018, 2019; Ignatiev et al., 2019a,b,c, 2020a, 2022; Narodytska et al.,

2019; Wolf et al., 2019; Audemard et al., 2020, 2021, 2022a,b;
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A B

FIGURE 1

Decision tree, adapted from (Hu et al., 2019, Figure 5b), for the tic-tac-toe dataset. This DT is also studied more recently in Izza et al. (2022a)

and Marques-Silva (2022). Each feature tests a possible play for the X player. The (boxed) terminal nodes display the predicted class. The (circled)

non-terminal nodes display the tested feature. The edges label depicts the feature’s tested literal, for the edge to be consistent. The number below

each node denotes a unique number given to each node, which enables representing paths in the DT. (A) Decision tree. (B) Mapping of features.

Boumazouza et al., 2020, 2021; Darwiche, 2020; Darwiche and

Hirth, 2020, 2022; Izza et al., 2020, 2021, 2022a,b; Marques-Silva

et al., 2020, 2021; Rago et al., 2020, 2021; Shi et al., 2020; Amgoud,

2021; Arenas et al., 2021; Asher et al., 2021; Blanc et al., 2021,

2022a,b; Cooper and Marques-Silva, 2021; Darwiche and Marquis,

2021; Huang et al., 2021a,b, 2022; Ignatiev andMarques-Silva, 2021;

Izza and Marques-Silva, 2021, 2022; Liu and Lorini, 2021, 2022a;

Malfa et al., 2021; Wäldchen et al., 2021; Amgoud and Ben-Naim,

2022; Ferreira et al., 2022; Gorji and Rubin, 2022; Huang and

Marques-Silva, 2022; Marques-Silva and Ignatiev, 2022; Wäldchen,

2022; Yu et al., 2022), and are characterized by formally provable

guarantees of rigor, given the underlying ML models. Given such

guarantees of rigor, logic-based explainability should be contrasted

with well-known model-agnostic approaches to XAI (Ribeiro et al.,

2016, 2018; Lundberg and Lee, 2017; Guidotti et al., 2019), which

offer no guarantees of rigor. The rest of this section offers a brief

overview of logic-based explainability. More detailed overviews

can be found elsewhere (Marques-Silva, 2022; Marques-Silva and

Ignatiev, 2022).

3.1. Abductive explanations (AXp’s)

Prime implicant (PI) explanations (Shih et al., 2018) denote a

minimal set of literals (relating a feature value xi and a constant

vi ∈ Di) that are sufficient for the prediction. PI explanations are

related with abduction, and so are also referred to as abductive

explanations (AXp’s) (Ignatiev et al., 2019a)1. Formally, given v =

1 PI explanations were first proposed in the context of boolean classifiers

based on restricted bayesian networks (Shih et al., 2018). Independent

work (Ignatiev et al., 2019a) studied PI explanations in the case of for more

general classification functions, i.e., not necessarily boolean, and related

(v1, . . . , vm) ∈ F with κ(v) = c, a set of features X ⊆ F is a weak

abductive explanation (or weak AXp) if the following predicate

holds true2:

WeakAXp(X ;F, κ , v, c) := ∀(x ∈ F).
[
∧

i∈X (xi = vi)
]

→(κ(x) = c)
(3)

Moreover, a set of features X ⊆ F is an abductive explanation

(or (plain) AXp) if the following predicate holds true:

AXp(X ;F, κ , v, c) := WeakAXp(X ;F, κ , v, c)∧

∀(X ′ ( X ).¬WeakAXp(X ′;F, κ , v, c)
(4)

Clearly, an AXp is any weak AXp that is subset-minimal (or

irreducible). It is straightforward to observe that the definition of

predicate WeakAXp is monotone, and so an AXp can instead be

defined as follows:

AXp(X ;F, κ , v, c) := WeakAXp(X ;F, κ , v, c)∧

∀(j ∈ X ).¬WeakAXp(X \ {j};F, κ , v, c)
(5)

This alternative equivalent definition of abductive explanation

is at the core of most algorithms for computing one AXp

(Throughout the article, we will drop the parameterization

instead explanations with abduction. This article follows the formalizations

used in more recent work (Marques-Silva et al., 2020, 2021; Cooper and

Marques-Silva, 2021; Huang et al., 2021b, 2022; Ignatiev and Marques-Silva,

2021; Izza and Marques-Silva, 2021; Ignatiev et al., 2022; Marques-Silva and

Ignatiev, 2022).

2 Each predicate associated with a given concept will be noted in sans-

serif letterform. When referring to the same concept in the text, the same

acronym will be used, but in standard letterform. For example, the predicate

name AXp will be used in logic statements, and the acronym AXp will be used

throughout the text.
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associated with each predicate, and so we will write AXp(X )

instead of AXp(X ;F, κ , v, c), when the parameters are clear from

the context).

Example 1. We consider the example decision tree from Figure 1,

and the instance (v, c) = ((0, 0, 1, 0, 1), 1). By inspection (or by

following the discussion in Izza et al., 2022a), we can conclude that

{3, 5} is the only AXp, given the instance.

It is apparent that (3), (4), and (5) can be viewed as representing

a (logic) rule of the form:

IF

∧

i∈X

(xi = vi) THEN κ(x) = c (6)

This interpretation of abductive explanations will be assumed

throughout the article.

Similar to non-formal approaches to explainability (Ribeiro

et al., 2018), abductive explanations can be interpreted as answering

a “WHY” question, i.e., why is some prediction made given some

point in feature space. The answer to this question is a (minimal or

irreducible) set of the features, which is sufficient for (or entails) the

prediction.

3.2. Contrastive explanations (CXp’s)

Similarly to the case of AXp’s, one can define (weak) contrastive

explanations (CXp’s) (Miller, 2019; Ignatiev et al., 2020a).3 Y ⊆ F

is a weak CXp for the instance (v, c) if,

WeakCXp(Y;F, κ , v, c) := ∃(x ∈ F).
[

∧

i6∈Y (xi = vi)
]

∧(κ(x) 6= c)
(7)

(As before, for simplicity, we will often keep the

parameterization of WeakCXp on κ , v, and c implicit). Thus, given

an instance (v, c), a (weak) CXp is a set of features which if allowed

to take any value from their domain, then there is an assignment

to the features that changes the prediction to a class other than c,

while the features not in the explanation are kept to their values

(ceteris paribus). Furthermore, a set Y ⊆ F is a CXp if, besides

being a weak CXp, it is also subset-minimal, i.e.,

CXp(Y;F, κ , v, c) := WeakCXp(Y;F, κ , v, c)∧

∀(Y ′ ( Y).¬WeakCXp(Y ′;F, κ , v, c)

(8)

Similar to the case of AXp’s, it is straightforward to observe that

the definition of predicate WeakCXp is monotone, and so an CXp

can instead be defined as follows:

CXp(Y;F, κ , v, c) := WeakCXp(Y;F, κ , v, c)∧

∀(t ∈ Y).¬WeakCXp(Y \ {t};F, κ , v, c)

(9)

Moreover, and again similar to the case of AXp’s, this simplified

definition of CXp is at the core of algorithms for their computation.

3 In this article, contrastive explanations mimic counterfactual

explanations. However, in more complex explanation scenarios, they

may di�er (Liu and Lorini, 2022b).

A key observation is that any solution of (7), (8), or (9) (be

it minimal or not) identifies not only a set non-fixed of features

but also assignments to those non-fixed features that guarantee

a change of the prediction. Hence, all the information required

to change the prediction is readily available. Furthermore, the

definition of CXp (similar to the definition of AXp) targets a

subset-minimal set of features. However, other definitions could

be considered, e.g., cardinality-minimal contrastive explanations,

among others.

Example 2. We consider the example decision tree from Figure 1,

and the instance (v, c) = ((0, 0, 1, 0, 1), 1). By inspection (or by

following the discussion in Izza et al., 2022a), we can conclude that

{3} and {5} are the only CXp’s, given the instance.

A CXp can be viewed as a possible answer to a “WHYNOT”

question, i.e., “why is not the classifier’s prediction a class other

than c?” (Clearly, the definition can be adapted to the case when

we seek a concrete change of class.) A different perspective for a

contrastive explanation is the answer to a “How?” question, i.e.,

how to change the features so as to change the prediction. In recent

literature, this alternative view has been investigated under the

name “actionable recourse” (Ustun et al., 2019; Karimi et al., 2020,

2021; Venkatasubramanian and Alfano, 2020).

3.3. Duality between AXp’s and CXp’s

Given the definitions of AXp and CXp, and building on Reiter’s

seminal work (Reiter, 1987) (see Section 2.3), recent work (Ignatiev

et al., 2020a,b) proved the following duality between minimal

hitting sets:

Proposition 1. (Minimal hitting-set duality between AXp’s and

CXp’s Ignatiev et al., 2020a,b) AXp’s are minimal hitting sets

(MHSes) of CXp’s and vice versa.

We refer to Proposition 1 asMHS duality between AXp’s and CXp’s.

Example 3. We consider the DT running example from Figure 1,

and the instance, (v, c) = ((0, 0, 1, 0, 0), 0). Oncemore by inspection

(or by following the discussion in Izza et al., 2022a), we can

conclude that the sets of AXp’s is: {{1, 4, 5}} and that the set of CXp’s

is {{1}, {4}, {5}}.

Proposition 1 has been used in more recent work for enabling

the enumeration of explanations (Huang et al., 2021b; Ignatiev and

Marques-Silva, 2021; Marques-Silva et al., 2021).

3.4. Current status of logic-based
explainability

There has been steady progress in the efficient computation

of explanations (Marques-Silva, 2022; Marques-Silva and

Ignatiev, 2022) (and references therein). Moreover, a number

of related research topics have been investigated, including

enumeration of explanations (Ignatiev et al., 2020a), explainability

queries (Audemard et al., 2020, 2021; Huang et al., 2021b),
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probabilistic explanations (Wäldchen et al., 2021; Arenas et al.,

2022; Izza et al., 2022b), or taking into account constraints in

feature space (Gorji and Rubin, 2022; Yu et al., 2022). For the

purposes of this article, the more important results are4:

1. For decision trees, there are polynomial-time algorithms

for computing one AXp, all CXp’s can be computed

in polynomial time, and there are practically efficient

algorithms for the enumeration of AXp’s (Izza et al., 2020,

2022a; Huang et al., 2021b).

2. For decision lists, it is computationally hard to compute

one AXp/CXp, but existing logic encodings enable the

practically efficient computation of one explanation and of

the enumeration of explanations (Ignatiev and Marques-

Silva, 2021).

3. The approach used for decision lists can also be used in the

case of decision sets (Ignatiev andMarques-Silva, 2021), but

here the main limitation is requiring that the decision set

computes a total function, as discussed earlier in this article.

4. How to understand interpretable ML
models?

Since there is no formal definition of what interpretability

means, and since such a definition is unlikely (Lipton, 2018), we

ask a different question. Concretely, this section investigates how

explanations can be obtained from an interpretable model. Since

the model is interpretable, we require that a human decision maker

be able to find such an explanation by manual inspection, i.e., not

automated analysis is to be used. Evidently, for an interpretable

model, one would expect that this should be feasible to do.

4.1. How to comprehend predictions?

A natural first question is how can a human decision maker

understand predictions. Following earlier work (Miller, 2019;

Molnar, 2020), we investigate how explanations can be manually

identified given an interpretable model. Concretely, given some

interpretable model, e.g., decision trees, lists, or sets, we pose the

following question:

“Given an instance (v, c), why is the prediction c?”

We refer to this question as the WHY question.

Similar to recent work on non-formal interpretability and

explainability (Lakkaraju et al., 2016; Ribeiro et al., 2018), we seek

to answer the WHY question by finding a set of features X , with

which we associate the following rule:

Xp : IF
∧

i∈X (xi = vi) THEN κ(x) = c (10)

4 Following notation that is standard in theoretical computer science,

computational problems that are NP-hard are deemed theoretically

intractable; however, there might exist practical algorithms that are e�cient

in practice, albeit not in the worst case. In contrast, polynomial-time

algorithms are always assumed to be e�cient in practice.

Clearly, this rule is required to be logically correct. Moreover,

Occam’s razor is expected of X , i.e., we require X to be irreducible

(i.e., subset-minimal) (Even if one ensures irreducibility, a possible

criticism is that if the size of X is too large, then the answer

to the WHY question may be beyond the cognitive grasp of a

human decision maker (Miller, 1956). Methods to address this

possible limitation have been studied elsewhere (Wäldchen et al.,

2021; Arenas et al., 2022; Izza et al., 2022b)). Furthermore, to keep

the notation as simple as possible, and similarly to the definition

of AXp’s and CXp’s, we will talk about the answers to the WHY

questions solely using only sets of features. Concretely, X ⊆ F is a

set of features, that presupposes a literal (xi = vi) for each i ∈ X . As

a result, the relationship of a set of featuresX with the rule above is

immediate.

Another extensively studied type of explanation is contrastive

(often referred to as counterfactual) explanations. Similarly to the

case of WHY questions, given some interpretable model, e.g.,

decision trees, lists, or sets, we pose the following question:

“Given an instance (v, c) why is the prediction not a class other

than c?”

Put another way, what should be changed to change the

prediction? We refer to this question as the WHYNOT question.

4.2. Defining model comprehensibility

As a measure of the actual interpretability of an ML model,

we propose instead the concept of model comprehensibility.

Concretely, we say that an (interpretable) ML model is

comprehensible if:

The ML model enables a human decision maker, via non-

automated analysis (i.e., by manual inspection of the model),

to rigorously answer a WHY question, thereby finding a set of

features that is both sufficient for the prediction and irreducible.

Clearly, for interpretable ML models [i.e., those where the

explanation is the model itself (Rudin, 2019; Molnar, 2020)], one

would expect the model to be comprehensible, thus enabling a

human decision maker to grasp answers to the WHY question,

and express such answers as general rules, as proposed above.

As shown in the rest of this section, although one can devise

solutions for finding correct answers to the WHY question, those

answers are hardly irreducible. More importantly, as shown in

later sections, arbitrary redundancy is inherent to models that are

generally deemed interpretable.

It should be observed that an answer to the WHY question

corresponds ideally to an AXp5. Hence, if we can find AXp’s, then

we can provide answers to theWHY questions. Similarly, an answer

to theWHYNOT questions corresponds ideally to a CXp. Given the

above, we can thus conclude that what we are interested, essentially,

to assess whether manual analysis of an interpretable model by

a human decision maker will serve to find AXp’s and/or CXp’s.

5 As clear from the outset, we are interested in rigorous explanations

to predictions, i.e., explanations that are both correct, given some agreed

definition of correct, and irreducible.
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TABLE 1 Considering all possible values of x1, x2, x4 when x3 = x5 = 1.

x3 = x5 x1 x2 x4 κ(x)

1 0 0 0 1

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

As will be clarified later in the article (see Section 5.4), manually

identifying answers to WHYNOT questions can be substantially

more difficult that identifying answers to WHY questions.

4.3. Are interpretable models indeed
comprehensible?

Before delving into theoretical results on ML model

comprehensibility, let us motivate such results with a number of

examples. We will analyze decision trees and decision lists, seeking

to propose correct approaches for computing answers to the WHY

question. Furthermore, we will also inquire how realistic it is to

find answers that are both correct and irreducible.

4.3.1. Decision trees
For a decision tree, an intuitive manual approach to propose an

answer to the WHY question is as follows (Izza et al., 2022a):

1. Pick the features with literals in the path that is consistent

with the prediction.

Clearly, such picked set of features implies a rule that is correct.

However, it is unclear whether the set of features is irreducible.

Example 4. For the example in Figure 1, let the instance be v =

(0, 0, 1, 0, 1). Thus, an answer to the WHY question would be X =

{1, 2, 3, 4, 5}, thus capturing the rule,

Xp : IF [(¬x1) ∧ (¬x2) ∧ (x3) ∧ (¬x4) ∧ (x5)] THEN κ(x) = 1

It is not too difficult to understand what X is not irreducible.

For example, if we allow x1 to change value, then the prediction

will remain unchanged; hence X ′ = {2, 3, 4, 5} is also an answer

to the WHY question. However, one can provide a much shorter

answer. Let us allow features 1, 2, and 4 to take any value, with

x3 = x5 = 1, and let us check the predicted values. The result

of this exercise is shown in Table 1. As can be observed, since the

prediction remains unchanged for any value assigned to features 1,

2, and 4, we can conclude that an answer to the WHY question in

this case is X ′′ = {3, 5}. It is also fairly simple to conclude that X ′′

is indeed irreducible. However, it seems apparent that most human

decisionmakers would be unable to fathomX ′′ by inspection of the

decision tree.

One might also wonder whether one should be interested in

irreducible answers to the WHY question. As illustrated by this

example, one would expect that the average human decision maker

will be able to relate far better with the following (irreducible) rule,

Xp : IF [(x3) ∧ (x5)] THEN κ(x) = 1

than with the rule that includes all five features (shown above).

4.3.2. Decision lists
For decision lists, we can raise similar questions. As argued

below, answering WHY questions may not be immediate.

Example 5. Consider a DL classifier, with κ(x1, x2, x3, x4, x5)

defined by,

R1 : IF (¬x1 ∧ ¬x2) THEN κ(x) = 0

R2 : ELSE IF (x1 ∧ x2 ∧ ¬x3) THEN κ(x) = 1

R3 : ELSE IF (x1 ∧ x2 ∧ x3 ∧ x4 ∧ x5) THEN κ(x) = 1

R4 : ELSE IF (x1 ∧ x2 ∧ ¬x4) THEN κ(x) = 1

R5 : ELSE IF (x1 ∧ x2 ∧ ¬x5) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

(11)

Let v = (1, 1, 1, 1, 1). Clearly, κ(v) = 1.

Suppose we are interested in answering the question: “Why

is the prediction 1 for v = (1, 1, 1, 1, 1)?”. Since the model is

interpretable, we seek an answer by inspection of the DL. A possible

answer is X = {1, 2, 3, 4, 5}, i.e., as long as all the features take

the value in v, then it is certainly the case that the prediction is 1.

However, if the user seeks shorter (logically) correct explanations,

e.g., that contain no redundant information, then it may be possible

to offer the user far more insightful information (Nevertheless, it

should be noted that obtaining such information requires some

degree of logical reasoning, which may not be immediate for the

average human decision maker). For the example above, it can be

shown thatX = {1, 2} is a logically correct explanation, i.e., as long

as x1 = x2 = 1, then the prediction will be 1, independently of the

values taken by the other features.

Example 6. Even if some human decision maker can understand

why the answer to the WHY question is X = {1, 2} for the DL

above, more subtle scenarios can be be envisioned. Let us consider

the following DL:

R1 : IF (x1 ∧ x3) THEN κ(x) = 1

R2 : ELSE IF (x2 ∧ x4 ∧ x6) THEN κ(x) = 0

R3 : ELSE IF (¬x1 ∧ x3) THEN κ(x) = 1

R4 : ELSE IF (x4 ∧ x6) THEN κ(x) = 0

R5 : ELSE IF (¬x1 ∧ ¬x3) THEN κ(x) = 1

R6 : ELSE IF (x6) THEN κ(x) = 0

RDEF : ELSE κ(x) = 1

(12)

Let the point in feature space be v = (0, 1, 0, 1, 0, 1), with κ(v) =

0, i.e., rule R2 fires. If a human decision maker is interested

in answering the question: “Why is the prediction 0 for v =

(0, 1, 0, 1, 0, 1)?”, what are possible explanations from inspecting the
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model? One might be tempted to state that if x2 = x4 = x6 = 1,

then the prediction is 0, i.e., the explanation is the condition of R2.

However, such answer is incorrect. For example, if both x1 and

x3 are flipped to 1, then the prediction would become 1, due to

R1 firing; this means that x2 = x4 = x6 = 1 is not a correct

explanation. A possible solution is to weaken the explanation, by

including additional literals. For example, if either x1 or x3 are 0

then, if x2 = x4 = x6 = 1, it is the case that the prediction is 0. So,

a possible explanation is x3 = 0 and x2 = x4 = x6 = 1. Does this

explanation represent an irreducible set of literals? Unsurprisingly,

the answer is no, and a more careful analysis allows concluding that

the answer to the WHY question is: x3 = 0 and x4 = x6 = 1.

It should be apparent from the previous example, that even for

simple DLs, finding an answer to a WHY question, which is both

correct and irreducible, is not a trivial task. With the purpose

of highlighting the challenges of finding correct and irreducible

answers to WHY questions, let us consider again the decision list

in (12), and let the point in feature space be v = (0, 0, 0, 0, 0, 0),

with κ(v) = 0. In this case, since the default rule fires, there is no

condition of the rule to start from. Building on the examples above,

one might propose x3 = x5 = x6 as an explanation. However, more

careful analysis confirms that x6 = 0 suffices as an (irreducible)

answer to a WHY question, i.e., if x6 = 0, then the prediction will

be 1 independently of the values of all the other features. Somewhat

less intuitive might be that x1 = x4 = 0 which is also an irreducible

answer to a WHY question, i.e., if x1 = x4 = 0, then the prediction

will be 1 independently of the values of all the other features.

The previous example highlighted some of the requirements for

manually answering a WHY question in the case of a decision list.

Consider the definition of decision list in (1). Pick some instance

(v, c). Let Rj denote the rule that fires, and let the prediction be c.

Hence, we propose to find a correct answer A ⊆ F to the WHY

question as follows:

1. All the features associated with literals in τj are added toA;

2. For each rule Rk preceding Rj, that predicts a class other

than c, let i be the feature of the first literal inconsistent with

v. Then add feature i toA.

We could conceivably propose optimizations to the procedure

above, but these would make it far more difficult for a human

decision maker to find on his/her own answers to the WHY

questions. However, as illustrated by the next example, that would

still not guarantee that the computed answer would be irreducible.

Example 7. Finally, let us consider the following DL:

R1 : IF (x1 ∧ x3) THEN κ(x) = 0

R2 : ELSE IF (x1 ∧ x5) THEN κ(x) = 0

R3 : ELSE IF (x2 ∧ x4) THEN κ(x) = 1

R4 : ELSE IF (x1 ∧ x7) THEN κ(x) = 0

R5 : ELSE IF (¬x4 ∨ x6) THEN κ(x) = 1

R6 : ELSE IF (¬x4 ∨ ¬x6) THEN κ(x) = 1

R7 : ELSE IF (¬x2 ∨ x6) THEN κ(x) = 1

RDEF : ELSE κ(x) = 0

(13)

with v = (0, 1, 0, 1, 0, 1, 0). Clearly, the prediction is 1, due to R3.

What should be the answer to a WHY question in this case? Given

what we discussed until now, we might be tempted to propose

X = {1, 2, 4}, since fixing feature 1 will prevent rules R1 and R2

from firing, and fixing features 2 and 4 will ensure that rule R3

fires. However, since fixing feature 1 also prevents rule R4 from

firing, then the value of feature 4 is actually irrelevant, since x4 = 0

would cause rule R5 to fire, with x1 = 0 and x2 = 1. Thus, an

irreducible answer to theWHY question should beX = {1, 2}. The

point here is that to find a subset minimal explanation we must

not only consider the rules that precede the rule that fired, but

also the rules that follow the rule that fired. As before, it appears

unrealistic that the average human decision maker would grasp

the answer {1, 2} by inspection of the DL. More importantly, and

similarly to earlier examples, this is a rather simple example: one

should expect far more complex examples in practice. Observe

that {1} does not suffice as the justification for why the prediction

is 1. Indeed, by allowing u = (0, 0, 0, 1, 0, 0, 0) would cause the

prediction to change to 0 due to the default rule. Hence, feature

2 is necessary for preventing the prediction from changing.

As proved elsewhere (Ignatiev and Marques-Silva, 2021), it is

hard to compute one AXp (resp. CXp) in the case of DLs/DSs.

Hence, it would be unrealistic to expect human decision makers

to be able to compute answers to the WHY (resp. WHY NOT)

question by inspection, as each such answer can be mapped to an

AXp (resp. CXp).

5. Non-comprehensibility of
interpretable models

Given the understanding of comprehensibility proposed in the

previous section, we now argue that even the simplest ML models,

which are ubiquitously deemed interpretable, do not respect such

understanding. The ensuing conclusion is that, for finding answers

to the WHY question, even so-called interpretable models should

be explained, by using a rigorous definition of explanation as

proposed in Section 3.

5.1. Non-comprehensibility of decision
trees

This section summarizes recent results on the non-

comprehensibility of DTs. The underlying assumption is that

the answer for a WHY question is the path consistent with the

values of the features.

Proposition 2. (Corollary 2 of Izza et al., 2022a) There exist DTs,

defined onm features, for which there exist instances exhibiting an

AXp of size 1, and the path consistent with the instances has sizem.

Proposition 3. (Proposition 11 of Izza et al., 2022a) A DT does

not exhibit explanation redundancy if it can be represented with

a disjunctive normal form (DNF) generalized decision function

(GDF).

AGDF is a very restricted class of classifier, and so Proposition 3

indicates that the class of functions that can be represented

with DTs without exhibiting path explanation redundancy is

very restricted.
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5.2. Non-comprehensibility of decision lists

The examples analyzed in Section 4 suggest that a

straightforward approach for answering WHY questions in

DLs is bound to yield explanations that contain redundant literals.

As experimentally validated by the results in Section 6, this is

indeed the case.

Clearly, one might argue that a different approach for finding

explanations would yield less or no redundancy.We conjecture that

for any manual approach, producing explanations will necessarily

introduce redundancy. Concretely, for any pre-specified approach

for computing explanations by hand, one can construct a DL for

which explanations will exhibit redundancy.

5.3. Non-comprehensibility of decision sets

Previous sections highlighted the many issues with DSs in

practical settings. If a DS does not compute a function, then the core

assumptions of logic-based explainability are not respected. If the

DS computes a partial function, then again the core assumptions

of logic-based explainability are not respected. One additional

hurdle is that the learning of DSs that compute total functions

(and so ensure that no overlap exists) is conjectured to be 6
p
2 -

hard (Ignatiev et al., 2018). Finally, explanation of DSs when these

compute total functions appears to raise at least the same difficulties

as DLs.

5.4. Answering WHYNOT questions can be
hard

In stark contrast with finding correct answers to WHY

questions in DLs, this section proves that the apparently trivial

problem of answering a WHYNOT question for a DL is NP-

complete, i.e., it is computationally hard to decide whether the

prediction can be changed to some other class. The implication of

this result is that it would be rather unrealistic to expect human

decision makers to decide NP-complete problems when proposing

answers to WHYNOT questions. The implication of this result

is that interpretability is unattainable when the goal is to answer

WHYNOT questions for DLs.

Throughout this section, we consider a CNF formula ϕ, defined

on a set of propositional atoms {x1, . . . , xm}, composed of clauses

{ς1, . . . , ςn}, such that each clause ςi contains three literals and it

is non-tautologous. Assignments map each atom to {0, 1}. Given

an assignment, the valuation of a CNF formula ϕ maps ϕ to

{0, 1} (Biere et al., 2021). The decision problem for CNF formulas

(i.e., the Boolean Satisfiability (SAT) problem) is to decide whether

there exists an assignment such that the formula’s valuation is 1. It

is well-known that SAT is NP-complete (Cook, 1971) (Technically,

for CNF formulas, the decision problem is CNFSAT, and since we

consider each clause to contain three literals, the decision problem

is referred to as 3CNFSAT. However, we just use SAT to refer

to these as well as the original decision problem on arbitrary

propositional formulas).

Definition 1 (TOGGLESOME). Given a CNF formula ϕ, and given

an assignment to the atoms of ϕ that falsifies at least one clause of

ϕ, decide the satisfiability of ϕ.

Proposition 4. TOGGLESOME is NP-complete.

Proof. (Sketch) TOGGLESOME is in NP. We ignore the starting

assignment, guess an assignment to the variables of ϕ, and then

check in polynomial time whether ϕ takes value 1 given the

assignment.

To prove NP-hardness, we reduce SAT to TOGGLESOME. Pick a

clause ς in ϕ, and falsify it. For the remaining atoms, pick a random

assignment. Thus, ϕ with its falsified clause ς (and with other

clauses also possibly falsified) and the picked assignment represent

an instance of TOGGLESOME. Clearly, ϕ is satisfiable if and only

if the answer to TOGGLESOME is positive, and the reduction runs

in polynomial time.

In the case of a DL, we are interested in the following generic

problem. Given an instance (v, c), can v be modified so that

the prediction is c′ ∈ K \ {c}? As shown next, just deciding

whether a prediction can be changed is in fact a computationally

hard problem.

Proposition 5. Deciding whether a prediction in a DL can be

changed is NP-complete.

Proof. We consider a DL, such that rule j with prediction c fired on

some input. We want to decide which features to change such that

the prediction changes value to a class other than c.

The problem is clearly in NP. We non-deterministacilly guess a

certificate, i.e., an assignment of values to the features, and then

check whether the resulting prediction is different than the starting

one.

To prove NP-hardness, we reduce TOGGLESOME to the problem

of deciding the existence of a set of features which, if changed, will

allow changing the prediction.

Let ϕ be a CNF formula (as described above). Without loss of

generality, we consider a renumbering of the clauses of ϕ, such

that the picked assignment falsifies the first clause; let it be ς1,

with the three literals of ς1 referenced by l1(ς1), l2(ς1), and l3(ς1).

Moreover, since the clauses are non-tautologous, then¬ςi is a non-

inconsistent conjunction of propositional literals for any clause ςi
of ϕ. Now, we construct the following decision list:

R1 : IF z ∧ ¬ς1 THEN 0

R2 : ELSE IF z ∧ ¬ς2 THEN 0

· · ·

Rn : ELSE IF z ∧ ¬ςn THEN 0

Rn+1 : ELSE IF z THEN 1

Rn+2 : ELSE IF ¬z ∧ ¬ς1 THEN 0

Rn+3 : ELSE IF l1(ς1) THEN 0

Rn+4 : ELSE IF l2(ς1) THEN 0

Rn+5 : ELSE IF l3(ς1) THEN 0

RDEF : ELSE THEN 1

where z is a fresh propositional variable.

Furthermore, we consider some input that causes Rn+2 to fire,

resulting in prediction 0. Then, it must be the case that z = 0
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and that ς1 is falsified. Now, for the prediction to change, rules

R1, . . . , Rn must not fire, and rule Rn+1 must fire. Since we must

have z = 1 for Rn+1 to fire, then each ¬ςi must be falsified (and so

each ςi must be satisfied). As a result, the prediction changes to 1 if

and only if ϕ is satisfied, i.e., that the answer to TOGGLESOME

is positive. Observe that the alternative to change the prediction

would be for RDEF to fire. That would require both z = 0 and each

literal of ς1 to be falsified; but then rule Rn+2 would still fire before

the default rule, and that would mean no change in the prediction.

Hence, it is impossible for RDEF to fire, and so a change of prediction

requires Rn+1 to fire.

(It should be observed that the construction used in rules Rn+3,

Rn+4, and Rn+5, which render RDEF unreachable, is by no means

restrictive. First, the reduction is still from some CNF formula (as

an instance of TOGGLESOME) to a DL. Second, a more involved

reduction could have been proposed instead. A solution would be to

reduce ϕ1 ∨ ϕ2, where ϕ1 would be encoded into rules R1, . . . , Rn1 ,

and ϕ2 would be encoded into rules Rn1+3, . . . , Rn1+n2+1. In

addition, Rn+2 would consist of z ∧¬ς11 ∧¬ς21, requiring at least

one clause of ϕ1 to be falsified and at least one clause of ϕ2 to be

falsified. It should be plain that the geralization of TOGGLESOME

to the case of ϕ1 ∨ ϕ2 is straightforward).

Observe that answering a WHYNOT question amounts to

deciding whether the prediction can be changed, and that is NP-

complete as proved above. Intuitively, the complexity of finding one

CXp results from the need tomake consistent the condition of some

rule Rk, that predicts some class other than c, and such that all the

rules that precede Rk must be inconsistent.

It should be noted that the result above could also be established

by relating with earlier results on the complexity of computing

explanations for DLs (Ignatiev and Marques-Silva, 2021, Prop. 3)

and the relationship between the complexity of computing AXp’s

and CXp’s (Cooper and Marques-Silva, 2021, Th. 15) (for a more

restricted family of classifiers). The proposed proof offers a more

direct argument. Practical efficient algorithms for computing both

AXp’s and CXp’s of DLs are described elsewhere (Ignatiev and

Marques-Silva, 2021).

One final comment regarding DTs. There are polynomial time

algorithms for computing CXp’s (Huang et al., 2021b; Izza et al.,

2022a), but also for enumerating all CXp’s (Huang et al., 2021b;

Izza et al., 2022a). Hence, for DTs, one can argue that there are

efficient solutions to answeringWHYNOT questions. However, the

bookkeeping involved to prevent redundancy in reported CXp’s

(and so in answering WHYNOT questions) is arguably beyond

the reach of the average human decision maker. The proposed

algorithm (Huang et al., 2021b; Izza et al., 2022a) lists all possible

ways to change a prediction (in polynomial time), and then

removes the ways that exhibit redundancies (also in polynomial

time). However, such algorithms would require a non-negligible

amount of work if the solution were to be computed manually.

6. Experimental evidence

This section overviews the experimental results aiming to

practically confirm the claims made earlier in the article. Namely,

this section will assess the redundancy (as explained below) of the

explanations offered “by default” by decision tree and decision list

models trained with well-known and publicly available tools.

The experiments were built on the earlier results and data

are published by Ignatiev and Marques-Silva (2021) and Izza

et al. (2022a). The datasets and the induced DTs/DLs are adapted

from these earlier works. In particular, for DTs, we use the SAT-

based implementation of the explanation redundancy checker

proposed in Izza et al. (2022a). For DLs, we use the SAT-based

implementation of the formal explainer proposed in Ignatiev and

Marques-Silva (2021) publicly available online6. The latter tool was

augmented with the capability to measure redundancy of a given

explanation as defined below.

The experiments were performed on a MacBook Pro laptop

running macOS Ventura 13.0.1. Each individual process was run

on a 6-Core Intel Core i7 2.60 GHz processor with 16 GB of

memory. Despite the use of the 4 GB memory limit and 1800 s

time limit, none of these limits has been reached for any of the

problem instances used. In fact, the redundancy checkers were

effective enough to stop and output a redundancy report long before

the time limit.

As mentioned above, we considered the data from the earlier

work. Therefore, all the datasets considered here are taken from

the publicly available sources (Friedler et al., 2015; FairML, 2016;

PennML, 2020; UCI, 2020) and are taken directly from Ignatiev

and Marques-Silva (2021); Izza et al. (2022a). Following prior

work (Izza et al., 2022a), we assessed the redundancy of

explanations offered by decision trees trained by two prominent

DT inference tools: ITI (Incremental Tree Induction) (Utgoff et al.,

1997; ITI, 2020) and IAI (Interpretable AI) (Bertsimas and Dunn,

2017; IAI, 2020). When training IAI models, the tool was run

being instructed to train high-accuracy DTs of depth either 6 and

8 (Deeper trees are harder to learn, and do not yield significant

gains in accuracy). In the following, these two configurations

of IAI are referred to as IAI-6 and IAI-8, respectively. As for

decision list models, those were trained by the well-known CN2

algorithm (Clark and Niblett, 1989; Clark and Boswell, 1991).

6.1. Measuring explanation redundancy

Given a data instance, an explanation offered by a decision

tree model “by default” is assumed to be a set of feature literals

appearing in the path that fires the prediction for the instance.

In the case of decision list models, a “default” explanation is

constructed as the set of feature literals comprising the rule that

fires the given prediction plus the first literal in each preceding rule

that is determined to be inconsistent with the instance. Note that

one does not have to always consider the first such literal. However,

this strategy is simple enough be used by a human decision maker.

When a default explanation X is computed as detailed above,

a redundancy checker is run to compute how many literals can be

dropped fromX resulting in an abductive explanationX ′ ⊆ X , i.e.,

the AXp condition (4) holds for X ′. Afterwards, the redundancy

of X is said to be equal to the portion of features in X that

the redundancy check was able to remove, i.e., it is computed as

the value of 100% ·
|X |−|X ′|

|X |
. Note that our experiment targets

6 https://github.com/alexeyignatiev/xdl-tool.
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computing subset-minimal AXps X ′ rather than cardinality-

minimal. In the latter case, the redundancy statistics of the default

DT and DL explanations would clearly be even higher than the one

reported below.

6.2. Redundancy of default explanations

Figure 2 shows four cactus plots depicting the minimum,

average, and maximum redundancy of default explanations

computed for the considered DT and DL models. Here is how the

plots should be interpreted. Given a dataset and the corresponding

ML model, each instance of the dataset is provided with a default

explanation by the model, as described above, which is followed

by an explanation redundancy check. Given the redundancy

information for all the instances of the dataset, the minimum,

average, and maximum explanation redundancy for this dataset is

calculated. As a result and considering all the datasets studied, the

full minimum/average/maximum redundancy statistics is plotted

as a line sorted in ascending order. This way, a point with

coordinates (X,Y) signifies that there are X datasets/models whose

default explanations have the (minimum, average, and maximum)

literal redundancy upper-bounded by Y%.

As can be observed, with slight variation, all the models exhibit

significant explanation redundancy. Although there are a large

number of datasets whose instances are provided with irredundant

default explanations (e.g., see zero minimum redundancy), some

instances may receive explanations with 80%–100% redundant

literals (see maximum redundancy) (Note that an explanation is

100% redundant if all the features can be removed from it; this

occurs when the classifier computes a constant function). The most

interesting information is associated with the average redundancy,

calculated for each dataset across all of its instances. While the

worst average redundancy is demonstrated by ITI’s decision trees,

it still reaches ≈ 60% for IAI’s decision trees and ≈ 50% for CN2’s

decision lists. This means that for the corresponding datasets, on

average 60% (50%, respectively) of literals can be dropped from a

default explanation offered by an IAI decision tree (CN2 decision

list, respectively).

These experimental results serve as evidence confirming the

lack of practical interpretability of what is believed to be the most

interpretable ML models. Consequently, they also demonstrate

the need for computing irredundant and provably correct formal

abductive (but also contrastive) explanations if interpretability and

transparency of the decisions made by these models is of concern.

It should also be noted that despite the use of the SAT technology

dealing with NP-hard problems, the runtime of the redundancy

checks applied in the experiment does not exceed a small fraction

of a second per instance and can be neglected, which demonstrates

that the proposed formal explainability approach is ready for

widespread practical deployment.

6.3. Additional classifiers

Although the experiments reported in this article consider fairly

shallow DTs (i.e., with depths not exceeding six or eight), which

suffice in terms of target accuracy, the methods proposed in this

article can be shown to apply for much larger (and deeper) DTs.

For example, recent work (Ghiasi et al., 2020) proposes the use of

DTs for diagnosis of coronary artery disease. For one of the DTs

proposed in Ghiasi et al. (2020) (see Ghiasi et al., 2020, Figure 2),

the longest paths have 19 non-terminal nodes. Among these, for the

path with prediction cad, manual inspection7 reveals that at least 10

literals out of 19 (i.e., more than 50%) are redundant. Evidently, for

a human decision maker, an explanation with nine literals (or less)

is far easier to understand than an explanation with 19 literals.

7. Discussion

This article looks at so-called interpretable models from the

perspective of explaining the predictions made. Explanations can

serve to answer a WHY question, or alternatively a WHYNOT

question. Recent work refers to the latter as abductive explanations

and the latter as contrastive explanations (Ignatiev et al., 2019a,

2020a; Miller, 2019).

Because interpretable models are expected to serve themselves

as the explanations (Rudin, 2019; Molnar, 2020), we focus on

(manually) extracting answers to WHY questions from the models.

In contrast, (manually) finding answers to WHYNOT questions

is in general far less intuitive. In fact, Section 5.4 proves that

it is computationally hard to answer WHYNOT questions for

DLs. Clearly, all this but precludes human decision makers from

attempting to answer WHYNOT questions for DLs.

Recent results (Izza et al., 2020, 2022a; Huang et al., 2021b)

showed that, both in theory and in practice, decision trees exhibit

explanation redundancy, i.e., if a path is used as the explanation

for a WHY question, then that explanation exhibits redundancy

when compared with a rigorous (logically-defined) explanation.

More problematic, redundancy can grow arbitrarily large with

path length.

The previous sections show that the same limitations occur

with decision lists, and that decision sets exhibit other drawbacks

that also serve to challenge its interpretability.

As shown by the experiments, the amount of redundancy

in manually produced explanations, for DTs and DLs, can be

significant. For many of the examples considered, the fraction of

redundant literals exceeds 50%, i.e., more than one out of two

literals in the explanation could be discarded, and that would not

affect the correctness of the explanation.

Given the above, and as long as model comprehensibility is

premised on succinctness, then neither decision trees, decision lists,

or decision sets can be appropriate for (manually) answering WHY

questions.

For WHYNOT questions, the situation is even more

problematic. For DTs, CXp’s (and so the answer to WHYNOT

questions) can be computed in polynomial time, but such

algorithms are beyond the reach of (the average) human decision

makers. For DLs, it seems unrealistic to even ask a human

decision maker to change a decision, since this problem is by itself

computationally hard.

7 Unfortunately, we have been unable to obtain from the authors this

concrete DT in a format suitable for automated analysis.
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Given the results in this article, we conclude that answers to

WHY and WHYNOT questions (or alternatively the computation

of (rigorous) AXp’s and CXp’s) should be obtained with dedicated

algorithms, as proposed in recent work (see Marques-Silva and

Ignatiev, 2022 and references therein).

8. Conclusion and research directions

For high-risk application domains, there has been recent

interest in so-called interpretable ML models (Lakkaraju et al.,

2016; Rudin, 2019, 2022; Molnar, 2020). This article proposes

model comprehensibility as a measure of the understanding

of ML model predictions by human decision makers. Model

comprehensibility aims at finding explanations, i.e., answers to

WHY and WHYNOT questions, which are both correct and

irreducible. The motivation is that, for interpretable models, one

would expect predictions to be comprehensible by human decision

makers. As argued in this article, it is hardly the case that

existing interpretable models can be deemed to enable model

comprehensibility. Hence, even though there are a number of valid

reasons to deploy interpretable models in high-risk domains, the

A B

C D

FIGURE 2

Minimum, average, and maximum redundancy of default DT and DL explanations. (A) Redundancy of DT/IAI6 explanations. (B) Redundancy of

DT/IAI8 explanations. (C) Redundancy of DT/ITI explanations. (D) Redundancy of DL/CN2 explanations.
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ability to find correct and irreducible explanations, by manual

inspection, is not among them.Despite the fact that one can identify

general rules that allow for a human decision maker to find correct

explanations by inspection, it is also the case that such explanations

can in general be arbitrarily redundant on the number of features.

The solution for this limitation of interpretable models is, as it is

also the case with non-interpretable models, to compute rigorous

explanations. Moreover, it is the case that rigorous explanations

can be (very) efficiently computed for both decision trees and

decision lists.

Furthermore, and although decision sets can also be easily

explained in practice (Ignatiev and Marques-Silva, 2021), it is also

the case that most publicly available solutions for the creation of

decision sets exhibit a number of crucial drawbacks. One example is

prediction overlap; another is the need to use a default rule for when

no other rule fires. Both drawbacks represent critical limitations to

model comprehensibility.

Data availability statement

Publicly available datasets were analyzed in this study. This

data can be found at: https://blog.fastforwardlabs.com/2017/03/09/

fairml-auditing-black-box-predictive-models.html; https://github.

com/EpistasisLab/pmlb; https://archive.ics.uci.edu/ml.

Author contributions

All authors listed have made a substantial, direct, and

intellectual contribution to the work and approved it

for publication.

Funding

This work was supported by the AI Interdisciplinary Institute

ANITI, funded by the French program Investing for the Future–

PIA3 under Grant agreement no. ANR-19-PI3A-0004, and by

the H2020-ICT38 project COALA COgnitive Assisted agile

manufacturing for a LAbor force supported by trustworthy

Artificial intelligence.

Acknowledgments

The work summarized in this document results in part from

collaborations and discussions with several colleagues, including

N. Asher, M. Cooper, X. Huang, and Y. Izza, among others.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Amgoud, L. (2021). “Non-monotonic explanation functions,” in ECSQARU
(Prague), 19–31.

Amgoud, L., and Ben-Naim, J. (2022). “Axiomatic foundations of explainability,” in
IJCAI (Vienna), 636–642.

Arenas, M., Baez, D., Barceló, P., Pérez, J., and Subercaseaux, B. (2021).
“Foundations of symbolic languages for model interpretability,” in NeurIPS,
11690–11701.

Arenas, M., Barceló, P., Romero, M., and Subercaseaux, B. (2022). On
computing probabilistic explanations for decision trees. CoRR, abs/2207.12213.
doi: 10.48550/arXiv.2207.12213

Asher, N., Paul, S., and Russell, C. (2021). “Fair and adequate explanations,” in
CD-MAKE, 79–97.

Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J., andMarquis, P. (2021).
“On the computational intelligibility of boolean classifiers,” in KR, 74–86.

Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J., and Marquis, P.
(2022a). “On preferred abductive explanations for decision trees and random forests,”
in IJCAI (Vienna), 643–650.

Audemard, G., Bellart, S., Bounia, L., Koriche, F., Lagniez, J., and Marquis, P.
(2022b). “Trading complexity for sparsity in random forest explanations,” in AAAI,
5461–5469.

Audemard, G., Koriche, F., andMarquis, P. (2020). “On tractable XAI queries based
on compiled representations,” in KR (Rhodes), 838–849.

Bengio, Y., LeCun, Y., and Hinton, G. E. (2021). Deep learning for AI. Commun.
ACM 64, 58–65. doi: 10.1145/3448250

Bertsimas, D., and Dunn, J. (2017). Optimal classification trees. Mach. Learn. 106,
1039–1082. doi: 10.1007/s10994-017-5633-9

Biere, A., Heule, M., van Maaren, H., and Walsh, T. (Eds.). (2021). Handbook of
Satisfiability. New York, NY: IOS Press.

Blanc, G., Koch, C., Lange, J., and Tan, L. (2022a). “The query complexity of
certification,” in STOC (Rome), 623–636.

Blanc, G., Koch, C., Lange, J., and Tan, L. (2022b). “A query-optimal algorithm for
finding counterfactuals,” in ICML (Baltimore, MD), 2075–2090.

Blanc, G., Lange, J., and Tan, L. (2021). “Provably efficient, succinct, and precise
explanations,” in NeurIPS.

Boumazouza, R., Alili, F. C., Mazure, B., and Tabia, K. (2020). “A symbolic approach
for counterfactual explanations,” in SUM (Bozen-Bolzano), 270–277.

Boumazouza, R., Alili, F. C., Mazure, B., and Tabia, K. (2021). “ASTERYX: a model-
agnostic sat-based approach for symbolic and score-based explanations,” in CIKM,
120–129.

Clark, P., and Boswell, R. (1991). “Rule induction with CN2: some recent
improvements,” in EWSL (Porto), 151–163.

Clark, P., and Niblett, T. (1989). The CN2 induction algorithm. Mach. Learn. 3,
261–283. doi: 10.1007/BF00116835

Cook, S. A. (1971). “The complexity of theorem-proving procedures,” in STOC, eds
M. A. Harrison, R. B. Banerji, and J. D. Ullman (Shaker Heights, OH), 151–158.

Cooper, M. C., and Marques-Silva, J. (2021). “On the tractability of explaining
decisions of classifiers,” in CP, ed L. D. Michel (Montpellier), 1–21.

Darwiche, A. (2020). “Three modern roles for logic in AI,” in PODS (Portland, OR),
229–243.

Darwiche, A., and Hirth, A. (2020). “On the reasons behind decisions,” in ECAI
(Santiago de Compostela), 712–720.

Frontiers in Artificial Intelligence 13 frontiersin.org

https://doi.org/10.3389/frai.2023.1128212
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://github.com/EpistasisLab/pmlb
https://github.com/EpistasisLab/pmlb
https://archive.ics.uci.edu/ml
https://doi.org/10.48550/arXiv.2207.12213
https://doi.org/10.1145/3448250
https://doi.org/10.1007/s10994-017-5633-9
https://doi.org/10.1007/BF00116835
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Marques-Silva and Ignatiev 10.3389/frai.2023.1128212

Darwiche, A., and Hirth, A. (2022). On the (complete) reasons behind decisions. J.
Logic Lang. Inf. 2022, 1–26. doi: 10.1007/s10849-022-09377-8

Darwiche, A., andMarquis, P. (2021). On quantifying literals in boolean logic and its
applications to explainable AI. J. Artif. Intell. Res. 2021, 12756. doi: 10.1613/jair.1.12756

Fair,ML. (2016). Auditing Black-Box Predictive Models. Available online at: https://
blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.
html

Ferreira, J., de Sousa Ribeiro, M., Gonçalves, R., and Leite, J. (2022). “Looking inside
the black-box: logic-based explanations for neural networks,” in KR (Haifa), 432–442.

Flach, P. A. (2012).Machine Learning - The Art and Science of Algorithms that Make
Sense of Data. CUP.

Friedler, S., Scheidegger, C., and Venkatasubramanian, S. (2015). On Algorithmic
Fairness, Discrimination and Disparate Impact. Available online at: http://fairness.
haverford.edu/

Ghiasi,M.M., Zendehboudi, S., andMohsenipour, A. A. (2020). Decision tree-based
diagnosis of coronary artery disease: CARTmodel.Comput.Methods Programs Biomed.
192, 105400. doi: 10.1016/j.cmpb.2020.105400

Goodfellow, I. J., Bengio, Y., and Courville, A. C. (2016). Deep Learning. Adaptive
Computation and Machine Learning. Cambridge, MA: MIT Press.

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., et al. (2020). Generative adversarial networks. Commun. ACM 63, 139–144.
doi: 10.1145/3422622

Goodfellow, I. J., Shlens, J., and Szegedy, C. (2015). “Explaining and harnessing
adversarial examples,” in ICLR (San Diego, CA).

Gorji, N., and Rubin, S. (2022). “Sufficient reasons for classifier decisions in the
presence of domain constraints,” in AAAI.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D.
(2019). A survey of methods for explaining black box models. ACM Comput. Surv. 93,
1–93. doi: 10.1145/3236009

Gunning, D., and Aha, D. W. (2019). DARPA’s explainable artificial intelligence
(XAI) program. AI Mag. 40, 44–58. doi: 10.1145/3301275.3308446

Hu, X., Rudin, C., and Seltzer, M. I. (2019). “Optimal sparse decision trees,” in
NeurIPS (Vancouver, BC), 7265–7273.

Huang, X., Izza, Y., Ignatiev, A., Cooper, M. C., Asher, N., and Marques-
Silva, J. (2021a). Efficient explanations for knowledge compilation languages. CoRR,
abs/2107.01654. doi: 10.48550/arXiv.2107.01654

Huang, X., Izza, Y., Ignatiev, A., Cooper, M. C., Asher, N., and Marques-Silva, J.
(2022). “Tractable explanations for d-DNNF classifiers,” in AAAI, 5719–5728.

Huang, X., Izza, Y., Ignatiev, A., and Marques-Silva, J. (2021b). “On efficiently
explaining graph-based classifiers,” in KR, 356–367.

Huang, X., and Marques-Silva, J. (2022). On deciding feature membership
in explanations of SDD and related classifiers. CoRR, abs/2202.07553.
doi: 10.48550/arXiv.2202.07553

IAI (2020). Interpretable AI. Availabel online at: https://www.interpretable.ai/

Ignatiev, A., Izza, Y., Stuckey, P. J., and Marques-Silva, J. (2022). “Using MaxSAT
for efficient explanations of tree ensembles,” in AAAI, 3776–3785.

Ignatiev, A., and Marques-Silva, J. (2021). “SAT-based rigorous explanations for
decision lists,” in SAT (Barcelona), 251–269.

Ignatiev, A., Narodytska, N., Asher, N., and Marques-Silva, J. (2020a). “From
contrastive to abductive explanations and back again,” in AIxIA, 335–355.

Ignatiev, A., Narodytska, N., Asher, N., and Marques-Silva, J. (2020b).
On relating ‘why?’ and ‘why not?’ explanations. CoRR, abs/2012.11067.
doi: 10.48550/arXiv.2012.11067

Ignatiev, A., Narodytska, N., and Marques-Silva, J. (2019a). “Abduction-based
explanations for machine learning models,” in AAAI (Honolulu, HI), 1511–1519.

Ignatiev, A., Narodytska, N., and Marques-Silva, J. (2019b). “On relating
explanations and adversarial examples,” in NeurIPS (Vancouver, BC), 15857–15867.

Ignatiev, A., Narodytska, N., and Marques-Silva, J. (2019c). On validating,
repairing and refining heuristic ML explanations. CoRR, abs/1907.02509.
doi: 10.48550/arXiv.1907.02509

Ignatiev, A., Pereira, F., Narodytska, N., andMarques-Silva, J. (2018). “A SAT-based
approach to learn explainable decision sets,” in IJCAR (Oxford, UK), 627–645.

ITI (2020). Incremental Decision Tree Induction. Available online at: https://www-
lrn.cs.umass.edu/iti/

Izza, Y., Ignatiev, A., and Marques-Silva, J. (2020). On explaining decision trees.
CoRR, abs/2010.11034. doi: 10.48550/arXiv.2010.1103

Izza, Y., Ignatiev, A., and Marques-Silva, J. (2022a). On tackling explanation
redundancy in decision trees. J. Artif. Intell. Res. 75, 261–321. doi: 10.1613/jair.1.13575

Izza, Y., Ignatiev, A., Narodytska, N., Cooper, M. C., and Marques-Silva,
J. (2021). Efficient explanations with relevant sets. CoRR, abs/2106.00546.
doi: 10.48550/arXiv.2106.00546

Izza, Y., Ignatiev, A., Narodytska, N., Cooper, M. C., and Marques-Silva, J.
(2022b). Provably precise, succinct and efficient explanations for decision trees. CoRR,
abs/2205.09569. doi: 10.48550/arXiv.2205.09569

Izza, Y., and Marques-Silva, J. (2021). “On explaining random forests with SAT,” in
IJCAI (Montreal, QC), 2584–2591.

Izza, Y., andMarques-Silva, J. (2022). On computing relevant features for explaining
NBCs. CoRR, abs/2207.04748. doi: 10.48550/arXiv.2207.04748

Karimi, A., Barthe, G., Schölkopf, B., and Valera, I. (2020). A survey of algorithmic
recourse: definitions, formulations, solutions, and prospects. CoRR, abs/2010.04050.
doi: 10.48550/arXiv.2010.04050

Karimi, A., Schölkopf, B., and Valera, I. (2021). “Algorithmic recourse: from
counterfactual explanations to interventions,” in FAccT (Toronto, ON), 353–362.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Imagenet classification with
deep convolutional neural networks. Commun. ACM 60, 84–90. doi: 10.1145/3065386

Lakkaraju, H., Bach, S. H., and Leskovec, J. (2016). “Interpretable decision sets:
a joint framework for description and prediction,” in KDD (San Francisco, CA),
1675–1684.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature 521, 436–444.
doi: 10.1038/nature14539

Lipton, Z. C. (2018). The mythos of model interpretability. Commun. ACM 61,
36–43. doi: 10.1145/3233231

Liu, X., and Lorini, E. (2021). “A logic for binary classifiers and their explanation,”
in CLAR (Hangzhou).

Liu, X., and Lorini, E. (2022a). “A logic of "black box" classifier systems,” inWoLLIC
(Iasi), 158–174.

Liu, X., and Lorini, E. (2022b). A logic of "black box" classifier systems. CoRR,
abs/2210.07161. doi: 10.1007/978-3-031-15298-6_10

Lundberg, S. M., and Lee, S. (2017). “A unified approach to interpreting model
predictions,” in NeurIPS (Long Beach, CA), 4765–4774.

Malfa, E. L., Michelmore, R., Zbrzezny, A. M., Paoletti, N., and Kwiatkowska,
M. (2021). “On guaranteed optimal robust explanations for NLP models,” in IJCAI
(Montreal, QC), 2658–2665.

Marques-Silva, J. (2022). Logic-based explainability in machine learning. CoRR,
abs/2211.00541. doi: 10.48550/arXiv.2211.00541

Marques-Silva, J., Gerspacher, T., Cooper, M. C., Ignatiev, A., and Narodytska, N.
(2020). “Explaining naive bayes and other linear classifiers with polynomial time and
delay,” in NeurIPS (Vancouver, BC).

Marques-Silva, J., Gerspacher, T., Cooper, M. C., Ignatiev, A., and Narodytska, N.
(2021). “Explanations for monotonic classifiers,” in ICML, 7469–7479.

Marques-Silva, J., and Ignatiev, A. (2022). “Delivering trustworthy AI through
formal XAI,” in AAAI, 12342–12350.

Marques-Silva, J., and Mencía, C. (2020). “Reasoning about inconsistent formulas,”
in IJCAI, 4899–4906.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on
our capacity for processing information. Psychol. Rev. 63, 81–97. doi: 10.1037/h0043158

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social
sciences. Artif. Intell. 267, 1–38. doi: 10.1016/j.artint.2018.07.007

Molnar, C. (2020). Interpretable Machine Learning. Leanpub. Available online at:
http://tiny.cc/6c76tz

Narodytska, N., Shrotri, A. A., Meel, K. S., Ignatiev, A., and Marques-Silva, J.
(2019). “Assessing heuristic machine learning explanations with model counting,” in
SAT (Lisbon), 267–278.

Penn,M. L. (2020). PennMachine Learning Benchmarks. Available online at: https://
github.com/EpistasisLab/pmlb

Quinlan, J. R. (1987). “Generating production rules from decision trees,” in IJCAI
(Milan), 304–307.

Rago, A., Cocarascu, O., Bechlivanidis, C., Lagnado, D. A., and Toni, F. (2021).
Argumentative explanations for interactive recommendations. Artif. Intell. 296,
103506. doi: 10.1016/j.artint.2021.103506

Rago, A., Cocarascu, O., Bechlivanidis, C., and Toni, F. (2020). “Argumentation
as a framework for interactive explanations for recommendations,” in KR (Rhodes),
805–815.

Reiter, R. (1987). A theory of diagnosis from first principles. Artif. Intell. 32, 57–95.
doi: 10.1016/0004-3702(87)90062-2

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ““why should I trust you?”:
explaining the predictions of any classifier,” in KDD (San Francisco, CA), 1135–1144.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). “Anchors: high-precision model-
agnostic explanations,” in AAAI (New Orleans, LA), 1527–1535.

Rudin, C. (2019). Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215.
doi: 10.1038/s42256-019-0048-x

Frontiers in Artificial Intelligence 14 frontiersin.org

https://doi.org/10.3389/frai.2023.1128212
https://doi.org/10.1007/s10849-022-09377-8
https://doi.org/10.1613/jair.1.12756
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
https://blog.fastforwardlabs.com/2017/03/09/fairml-auditing-black-box-predictive-models.html
http://fairness.haverford.edu/
http://fairness.haverford.edu/
https://doi.org/10.1016/j.cmpb.2020.105400
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3236009
https://doi.org/10.1145/3301275.3308446
https://doi.org/10.48550/arXiv.2107.01654
https://doi.org/10.48550/arXiv.2202.07553
https://www.interpretable.ai/
https://doi.org/10.48550/arXiv.2012.11067
https://doi.org/10.48550/arXiv.1907.02509
https://www-lrn.cs.umass.edu/iti/
https://www-lrn.cs.umass.edu/iti/
https://doi.org/10.48550/arXiv.2010.1103
https://doi.org/10.1613/jair.1.13575
https://doi.org/10.48550/arXiv.2106.00546
https://doi.org/10.48550/arXiv.2205.09569
https://doi.org/10.48550/arXiv.2207.04748
https://doi.org/10.48550/arXiv.2010.04050
https://doi.org/10.1145/3065386
https://doi.org/10.1038/nature14539
https://doi.org/10.1145/3233231
https://doi.org/10.1007/978-3-031-15298-6_10
https://doi.org/10.48550/arXiv.2211.00541
https://doi.org/10.1037/h0043158
https://doi.org/10.1016/j.artint.2018.07.007
http://tiny.cc/6c76tz
https://github.com/EpistasisLab/pmlb
https://github.com/EpistasisLab/pmlb
https://doi.org/10.1016/j.artint.2021.103506
https://doi.org/10.1016/0004-3702(87)90062-2
https://doi.org/10.1038/s42256-019-0048-x
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Marques-Silva and Ignatiev 10.3389/frai.2023.1128212

Rudin, C. (2022). Why black box machine learning should be avoided
for high-stakes decisions, in brief. Nat. Rev. Methods Primers 2, 1–2.
doi: 10.1038/s43586-022-00172-0

Shi, W., Shih, A., Darwiche, A., and Choi, A. (2020). “On tractable representations
of binary neural networks,” in KR (Rhodes), 882–892.

Shih, A., Choi, A., and Darwiche, A. (2018). “A symbolic approach to explaining
bayesian network classifiers,” in IJCAI (Stockholm), 5103–5111.

Shih, A., Choi, A., and Darwiche, A. (2019). “Compiling bayesian network classifiers
into decision graphs,” in AAAI (Honolulu, HI), 7966–7974.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. J., et al.
(2014). “Intriguing properties of neural networks,” in ICLR (Banff, AB).

UCI (2020). UCI Machine Learning Repository. Available online at: https://archive.
ics.uci.edu/ml

Ustun, B., Spangher, A., and Liu, Y. (2019). “Actionable recourse in linear
classification,” in FAT (Atlanta, GA), 10–19.

Utgoff, P. E., Berkman, N. C., and Clouse, J. A. (1997). Decision tree induction based
on efficient tree restructuring.Mach. Learn. 29, 5–44. doi: 10.1023/A:1007413323501

Venkatasubramanian, S., and Alfano, M. (2020). “The philosophical basis of
algorithmic recourse,” in FAT (Barcelona), 284–293.

Wäldchen, S. (2022). Towards Explainable Artificial Intelligence-Interpreting Neural
Network Classifiers with Probabilistic Prime Implicants (Ph.D. thesis). Technischen
Universität Berlin.

Wäldchen, S., MacDonald, J., Hauch, S., and Kutyniok, G. (2021). The
computational complexity of understanding binary classifier decisions. J. Artif. Intell.
Res. 70, 351–387. doi: 10.1613/jair.1.12359

Wolf, L., Galanti, T., and Hazan, T. (2019). “A formal approach to explainability,” in
AIES (Honolulu, HI), 255–261.

Yu, J., Ignatiev, A., Stuckey, P. J., Narodytska, N., and Marques-Silva, J.
(2022). Eliminating the impossible, whatever remains must be true. CoRR,
abs/2206.09551.

Frontiers in Artificial Intelligence 15 frontiersin.org

https://doi.org/10.3389/frai.2023.1128212
https://doi.org/10.1038/s43586-022-00172-0
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://doi.org/10.1023/A:1007413323501
https://doi.org/10.1613/jair.1.12359
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	No silver bullet: interpretable ML models must be explained
	1. Introduction
	2. Preliminaries
	2.1. Classification problems
	2.2. ML models regarded as interpretable
	2.2.1. Decision trees
	2.2.2. Decision lists and sets

	2.3. Logic foundations

	3. Logic-based explainable AI
	3.1. Abductive explanations (AXp's)
	3.2. Contrastive explanations (CXp's)
	3.3. Duality between AXp's and CXp's
	3.4. Current status of logic-based explainability

	4. How to understand interpretable ML models?
	4.1. How to comprehend predictions?
	4.2. Defining model comprehensibility
	4.3. Are interpretable models indeed comprehensible?
	4.3.1. Decision trees
	4.3.2. Decision lists


	5. Non-comprehensibility of interpretable models
	5.1. Non-comprehensibility of decision trees
	5.2. Non-comprehensibility of decision lists
	5.3. Non-comprehensibility of decision sets
	5.4. Answering WHYNOT questions can be hard

	6. Experimental evidence
	6.1. Measuring explanation redundancy
	6.2. Redundancy of default explanations
	6.3. Additional classifiers

	7. Discussion
	8. Conclusion and research directions
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher's note
	References


