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Background: People age at different rates. Biological age is a risk factor for many
chronic diseases independent of chronological age. A good lifestyle is known to
improve overall health, but its association with biological age is unclear.
Methods: This study included participants from the UK Biobank who had
undergone 12-lead resting electrocardiography (ECG). Biological age was
estimated by a deep learning model (defined as ECG-age), and the difference
between ECG-age and chronological age was defined as Δage. Participants
were further categorized into an ideal (score 4), intermediate (scores 2 and 3) or
unfavorable lifestyle (score 0 or 1). Four lifestyle factors were investigated,
including diet, alcohol consumption, physical activity, and smoking. Linear
regression models were used to examine the association between lifestyle
factors and Δage, and the models were adjusted for sex and chronological age.
Results: This study included 44,094 individuals (mean age 64 ± 8, 51.4% females).
A significant correlation was observed between predicted biological age and
chronological age (correlation coefficient = 0.54, P < 0.001) and the mean Δage
(absolute error of biological age and chronological age) was 9.8 ± 7.4 years.
Δage was significantly associated with all of the four lifestyle factors, with the
effect size ranging from 0.41 ± 0.11 for the healthy diet to 2.37 ± 0.30 for
non-smoking. Compared with an ideal lifestyle, an unfavorable lifestyle was
associated with an average of 2.50 ± 0.29 years of older predicted ECG-age.
Conclusion: In this large contemporary population, a strong association was
observed between all four studied healthy lifestyle factors and deaccelerated
aging. Our study underscores the importance of a healthy lifestyle to reduce the
burden of aging-related diseases.
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Introduction

The worldwide population is becoming older. It is estimated that 1.5 billion people will

be 65 years or over in 2050 (1). Aging is inevitable but people could age at different rates (2).

Chronic inflammation and some underlying health conditions could contribute to

accelerated aging (3). Chronological age is the age people usually refer to, which

represents the amount of time from birth to a given time. In contrast, biological age
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represents the measurement of age based on different biomarkers

and it is known to associate with different chronic diseases and

all-cause mortality in later life independent of other risk factors

(4, 5). Many different measures of biological aging have been

proposed, such as epigenetic biomarkers (6, 7), clinical factors,

sleep-based brain age (8), inflammatory biomarkers (9), and

cardiovascular magnetic resonance imaging biomarkers (10).

The electrocardiogram (ECG) has been used in clinics to diagnose

many different cardiovascular diseases for more than a century. For

example, a long QT interval in ECG is known to associate with

multiple heart diseases. Recently, deep learning models are being

developed to diagnose diseases directly from ECG waveforms (11).

Multiple studies have demonstrated the potential of ECG to

diagnose atrial fibrillation and other types of heart diseases (12–15).

Methods are also being developed to predict biological age from

these ECG waveforms (referred as ECG-age) (16–18). The

discrepancies between chronological age and ECG-age might serve

as a biomarker for underlying diseases and all-cause mortality (17, 18).

A good lifestyle is known to benefit health. It includes avoiding

smoking, being physically active, no or moderate alcohol

consumption, and having a healthy diet. The combination of

multiple good lifestyle behaviors and genetic factors are also

associated with reduced risk of cardiovascular disease (19),

diabetes (20), and all-cause mortality (21).

This study aims to predict ECG-age and assess its association with

lifestyle factors in the UK Biobank, a large prospective population-

based cohort based in UK. We also examined the association of

ECG-age with prevalent cardiovascular diseases and risk factors.
Methods

Study samples

The UK Biobank is a nationwide, population-based prospective

study (22). More than 500,000 participants aged 40–69 years were

recruited during 2006–2010 at 22 assessment centers throughout the

UK (23). The objective of the UK Biobank is to understand both

genetic and environmental determinants of common life-threatening

and disabling diseases (24). A variety of data have been collected

from participants, including questionnaires, physical measurements,

as well as different biological samples like blood, urine, and saliva

(25). The study is embedded within the UK’s National Health

Service, so that routine medical records are extractable for different

disease outcomes. The UK Biobank study has been approved by the

North West Multi-center Research Ethics Committee (MREC). All

participants provided written informed consent to participate. The

current analysis was approved by the Research Ethics Committee

(REC) under the application number 76,269.
ECG collection

A standardized resting 12-lead ECG was conducted at a UK

Biobank Imaging Assessment Centre. The ECG was obtained

before and during a submaximal exercise test on a stationary
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bicycle. Participants were asked to lie on the same couch used to

perform the carotid ultrasound measurement. ECG GE Cardiosoft

program is loaded into the workstation and used to record ECG.

We retrieved the ECG data in extended markup language (XML)

files (Data-Field 20205). More information could be found at

https://biobank.ctsu.ox.ac.uk/crystal/field.cgi?id=12323.

The ECG leads were recorded with a 500 Hz sampling

frequency for 10 s. The recordings were then re-sampled to

400 Hz and zero-padded to generate signals of fixed length (12 ×

4,096), used as input to the deep learning model.
Deep learning modeling

We used a previously developed deep learning model to predict

ECG-age (18). The model was based on 1,558,415 patients from the

CODE study (26), which is part of the Telehealth Network of

Minas Gerais, Brazil. The study collected ECGs in Brazilian

primary care settings from 2010 to 2017 (27), and it represents

one of the largest ECG databases in the world for AI-ECG

applications (26). The ECG-age model uses a convolutional

neural network with unidimensional signals. The network

includes five residual blocks, each with two convolutional layers.

More details could be found in the previous publication (18).

The prediction model and the codes are available at GitHub

(https://github.com/antonior92/ecg-age-prediction).
Definitions of lifestyle factors

We considered four lifestyle factors, including cigarette

smoking, alcohol consumption, physical activity, and diet, similar

to a prior study (28). Smoking status was categorized into

current smoker, or never/previous smokers. For physical activity,

we used the American Heart Association recommendations of at

least 150 min moderate intensity physical activity or 75 min of

vigorous activity per week (or an equivalent combination) (29).

Moderate alcohol consumption was defined as less than 14 grams

per day women and less than 28 grams per day for men. Healthy

diet was defined as the proper consumption of at least four out

of seven commonly eaten food groups (30).

We assigned 1 point for a healthy level and 0 points for an

unhealthy lifestyle. The sum of the healthy score ranged from 0

to 4, where a higher score indicates a higher adherence to

healthy lifestyle components (28, 31). We also divided

participants into three groups, with a score of 4 as an ideal

lifestyle, scores 2 and 3 as an intermediate lifestyle, and 0 or 1 as

an unfavorable lifestyle.
Definitions of prevalent cardiovascular
diseases and risk factors

The prevalent cases of atrial fibrillation, type 2 diabetes, heart

failure, hypercholesterolemia, hypertension, myocardial infarction

and stroke were defined by either self-report, ICD-9 or ICD-10
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TABLE 1 Clinical characteristics of study participants (N = 44,094).

Characteristics* Decelerated
aging

Normal
aging

Accelerated
aging
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codes at the time or before the ECG examination. Body mass index

(BMI) was calculated as weight in kilograms divided by height in

meters squared, which were measured at the examination centers.
(N = 14,698) (N = 14,698) (N = 14,698)
Age, years 64 ± 8 65 ± 8 64 ± 8

Women, n (%) 8,633 (58.7) 7,472 (50.8) 6,451 (44.5)

SBP, mmHg 133 ± 18 137 ± 19 140 ± 19

DBP, mmHg 79 ± 10 82 ± 10 83 ± 11

BMI, kg/m2 25.8 ± 4.2 26.7 ± 4.4 26.8 ± 4.4

Atrial fibrillation, n (%) 170 (1.2) 259 (2.8) 437 (3.0)

Type 2 diabetes mellitus,
n (%)

243 (1.7) 367 (2.5) 386 (3.3)

Heart failure, n (%) 38 (0.3) 50 (0.3) 93 (0.6)

Hypercholesterolemia,
n (%)

1,872 (12.7) 2,361 (16.1) 2,568 (17.5)

Hypertension, n (%) 2,621 (17.8) 3,816 (26.0) 4,530 (30.7)

Myocardial infarction,
n (%)

119 (0.8) 173 (1.2) 189 (1.3)

Stroke, n (%) 37 (0.3) 54 (0.4) 69 (0.5)

Healthy lifestyle scores 3.0 ± 0.8 3.0 ± 0.8 2.9 ± 0.8

Healthy diet, n (%) 7,029 (47.8) 6,677 (45.4) 6,492 (44.2)

No or moderate alcohol
consumption, n (%)

10,086 (68.6) 9,987 (67.9) 9,625 (65.5)

Physically active, n (%) 12,949 (88.1) 12,804 (87.1) 12,648 (86.1)

Non-smoking, n (%) 14,298 (97.3) 14,249 (96.9) 14,083 (95.8)

Values are n (%) for dichotomous variables, mean ± standard deviation for

continuous variables. Differences between tertiles were assessed by one-way

ANOVA test for continuous variables or Pearson’s chi-squared test for

dichotomous variables. All of them were significant (P < 0.05).

*BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure.
Statistical analyses

Clinical variables were reported as mean ± standard deviation

for continuous variables, and n (%) for dichotomous variables.

The difference between ECG-age and chronological age was

defined as Δage and corrected for chronological age (32).

Participants were classified into three tertiles based on their Δage.

Each tertile represents one aging group: first tertile for decelerated

aging, second tertile for normal aging, and third tertile for

accelerated aging. We used multivariable linear regression model

to evaluate the associations of lifestyle factors and Δage adjusted

for sex and age at the time when ECG was conducted. We also

performed sex stratified analysis to assess the association of Δage

with each lifestyle factor in men and women separately. In order

to know potential mediating effects of ECG-age and sex, we

added an additional analysis by including ECG-age*sex as the

interaction terms. We further assessed the association of Δage

with prevalent cardiovascular diseases and risk factors by logistic

regression models adjusted for sex and age. In the sensitivity

analysis, we defined extremely decelerated aging as those whose

predicted ECG-age were more than 20 years younger than their

chronological age, and extremely accelerated aging as those with

predicted ECG-age were more than 20 years older than their

chronological age. Statistical significance was claimed with two-

sided P values less than 0.05. All the analyses were performed

using R software package version 4.0.3 (https://www.r-project.org/).
Results

This study included 44,094 participants (mean age 64 ± 8,

51.4% women). The baseline clinical characteristics of

participants are shown in Table 1. The detailed age distribution

is depicted in Supplementary Figure S1. We observed a

significant correlation between chronological age and ECG-age

with a correlation coefficient of 0.54 (P < 0.001). The correlation

between chronological age and ECG-age is shown in Figure 1.

The median absolute error between ECG-age and chronological

age after age adjustment was 9.1 ± 6.6 years (defined as Δage).

We further classified participants into three tertiles based on

their Δage (Figure 2), including accelerated aging, normal aging,

and decelerated aging. As shown in Table 2, in comparison with

normal aging, participants with accelerated aging are more likely

to have atrial fibrillation [OR = 1.74, 95 confidence interval (CI)

1.48–2.03], type 2 diabetes (OR = 1.30, 95% CI 1.13–1.49), heart

failure (OR = 1.84, 95% CI 1.30–2.60), hypercholesterolemia (OR

= 1.11, 95% CI 1.04–1.18), and hypertension (OR = 1.28, 95% CI

1.22–1.35), but not myocardial infarction (P = 0.64) or stroke (P

= 0.17). In contrast, participants with decelerated aging are less

likely to have atrial fibrillation (OR = 0.76, 95% CI 0.63–0.93),

type 2 diabetes (OR = 0.74, 95% CI 0.62–0.87),
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hypercholesterolemia (OR = 0.86, 95% CI 0.81–0.93), and

hypertension (OR = 0.67, 95% CI 0.63–0.71).

In the sensitivity analysis, we examined participants whose

predicted ECG-age were more than 20 years different from their

chronological age. They were defined as extremely decelerated

aging (Δage < 20 years, n = 1,952) and extremely accelerated aging

(Δage > 20 years, n = 1,261). As shown in Supplementary Table S1,

participants with extremely accelerated aging are more likely to have

atrial fibrillation, type 2 diabetes, heart failure, hypercholesterolemia,

and hypertension. In contrast, participants with extremely

decelerated aging are less likely to have atrial fibrillation,

hypercholesterolemia, hypertension, and myocardial infarction.
Association of ECG-age with lifestyle
factors

Table 1 shows the proportion of participants engaged in each

healthy lifestyle factor, ranging from non-smoking (96.7%) to a

healthy diet (45.8%). Nearly three quarters of participants

(73.4%) engaged in 3 of 4 healthy lifestyle factors (Figure 3).

Among all participants, 27.7% had an ideal lifestyle (scores 4),

whereas 4.0% had an unfavorable lifestyle (scores 0 and 1).

We then tested the association of each lifestyle factor with

Δage. As shown in Table 3, all four healthy lifestyle factors were

significantly associated with decreased ECG-age. The most

significant association was observed for non-smoking, which was

associated with 2.37 years [standard error (SE) 0.30] younger
frontiersin.org
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FIGURE 1

Association of predicted ECG-age with chronological age.
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ECG-age. Each point of overall lifestyle score was also associated

with 0.75 years (SE 0.07) ECG-age.

We also performed sex stratified analysis. As shown in

Supplementary Table S2, Δage was significantly associated with

all lifestyle factors for both men and women. For all lifestyle

factors, the effect size was larger in men compared with women,

and the difference was significant for alcohol consumption

(interaction P = 0.004) and smoking (interaction P = 0.04).

We further examined the association of Δage with different

lifestyle categories. People with an ideal lifestyle tended to be

2.50 years (SE = 0.29) younger than those with an unfavorable

lifestyle. In addition, participants with unfavorable lifestyles are

more likely to have accelerated aging compared to those with a

favorable lifestyle (OR = 1.14, 95% CI 1.08–1.19).
Discussion

In this large middle-aged to old population in the UK, we

predicted biological age from the ECG and assessed its
Frontiers in Cardiovascular Medicine 04
association with lifestyle factors. The predicted ECG-age is

significantly correlated with chronological age. We also found

that the difference between ECG-age and chronological age was

associated with all of four studied lifestyle factors as well as

prevalent cardiovascular diseases and risk factors.

Biological age can be affected by genetic factors and many

comorbid conditions, such as heart failure, hypertension and

coronary artery disease (17). As healthy lifestyles are associated with

lower mortality and CVD risk across different socioeconomic

subgroups (31), it would be important to know the effects of lifestyle

factors on biological age. A wide range of mechanisms might be

involved modifying the aging process, such as increased cerebral

blood flow and reduced oxidative damage (33–36). Some lifestyle

factors are also interrelated (37, 38), so it is possible to combine

multiple lifestyle factors to investigate their integrative effects on

aging. This study underscores the importance of healthy lifestyle on

biological aging, which might facilitate future implementation of

preventive interventions to promote healthy behaviors.

Our study supports broadly the notion that deep learning

models using 12-lead ECG provide important predictive
frontiersin.org
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TABLE 2 Association of accelerated aging and decelerated aging with prevalent cardiovascular disease and risk factors.

Clinical diagnosis Accelerated aging Decelerated aging

OR 95% CI P OR 95% CI P
Atrial fibrillation 1.74 1.48–2.03 <0.001 0.76 0.63–0.93 0.01

Type 2 diabetes 1.30 1.13–1.49 <0.001 0.74 0.62–0.87 <0.001

Heart failure 1.84 1.30–2.60 <0.001 0.89 0.58–1.36 0.58

Hypercholesterolemia 1.11 1.04–1.18 0.001 0.86 0.81–0.93 <0.001

Hypertension 1.28 1.22–1.35 <0.001 0.67 0.63–0.71 <0.001

Myocardial infarction 1.05 0.85–1.29 0.64 0.84 0.66–1.06 0.14

Stroke 1.29 0.90–1.84 0.17 0.79 0.52–1.21 0.28

Decelerated aging: Participants with the first tertile Δage; normal aging: participants with the second tertile Δage; accelerated aging: participants with the third tertile of

Δage (ECG-age minus chronological age).

OR, odds ratio comparing to normal aging; CI, confidence interval.

FIGURE 2

Distribution of the difference between chronological and ECG-age (Δage) among study participants. The figure is colored green for decelerated aging
(first tertile), blue for normal aging (second tertile), and red for accelerated aging (third tertile).
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usefulness for biological age. The model was trained in the Brazil

cohort but still showed strong correlation with chronological age

in the current cohort with most European participants. The deep

learning algorithms are purely data-driven without manually

extracted features. On the other hand, the exact morphological

characteristics contributing to the prediction remain to be

investigated. Some studies using saliency mapping and median

waveform analysis would help identify regions of ECGs critically

contributing to the prediction (15). Future advances in

interpretable machine learning might enable a better illustration

of the decision process.

It is worth to note that the deep learning model used in the

current study was developed based on ECG records from 1,558,415

participants in the state of Minas Gerais (Brazil) (18). On the other

hand, the majority of UK Biobank participants are of European
Frontiers in Cardiovascular Medicine 05
ancestry. Interestingly, a similar Δage was observed between two

studies despite differences in age ranges and ancestries. Our results

suggest that prevalent cardiovascular diseases and risk factors

might play a more important role in ECG-age compared with

ancestries. Therefore it would be important to share ECGs across

different health conditions even with different ancestries, which

would enable future development of more sophisticated deep

learning models to predict biological age. A broader and more

detailed plan for data sharing was also underscored in the recently

released policy from the National Institutes of Health (https://

grants.nih.gov/grants/guide/notice-files/NOT-OD-21-013.html).

With the aging population and increasing burden of age-

related diseases, it would be useful to implement a convenient

and low-cost approach to assess aging in clinical settings. Given

the wide availability of ECG, deep learning predicted ECG-age
frontiersin.org
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FIGURE 3

Distribution of healthy lifestyle scores among participants. Each point represents the adherence of one healthy lifestyle factor.

TABLE 3 Association of Δage with overall lifestyle score and each
individual lifestyle factor.

Lifestyle factor β SE P
Healthy Diet −0.41 0.11 <0.001

No or moderate alcohol consumption −0.95 0.11 <0.001

Physically active −1.04 0.16 <0.001

Non-smoking −2.37 0.30 <0.001

Overall lifestyle score −0.75 0.07 <0.001

β, years of decrease of predicted ECG-age; SE, standard error.
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could provide a promising solution for the estimation of biological

age. Such a tool might be incorporated into standard ECG

management platforms as an additional feature to reflect an

individual’s overall health. New wearable devices are also being

developed to perform ECG even easier and more cost-effective

(39, 40). A future extension of our work is to assess aging using

single-lead ECG collected from wearable devices, which could be

used to further investigate the effects of short and long-term

lifestyle changes on ECG-age in real time. All these efforts would

help guide better preventive efforts and clinical screening of

people with high risk of age-related diseases.
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We acknowledge several limitations of our study. The majority of

participants in UK Biobank are of European ancestry, therefore our

findings may not be generalizable to other race/ethnic groups.

There is also potential selection bias as many participants are

relatively healthy with high socioeconomic status. In addition, it is

unclear if there is any different pattern for people at a younger age

or older age outside the range of our study population. We

included four self-reported lifestyle factors in the current study,

which might not capture all relevant lifestyle information. For

example, sleep is probably an important factor. These lifestyle

factors were also not cross-validated by medical records. We did

not perform an exhaustive search of comorbidities so there could

be unmeasured confounding factors that were not taken into

account. Moreover, we observed participants with prevalent

cardiovascular diseases or risk factors tended to have accelerated

aging. However, this does not necessarily mean that accelerated

aging would increase their future risk. Future studies combining

classical machine learning and deep learning models might reach a

better performance (11). Additional important questions that

cannot be answered by our analysis is the stability of the ECG-age

over the short-term, change over time (long-term), and reversibility.
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In conclusion, we estimated biological age by ECG and assessed

its association with lifestyle factors in a large population cohort. A

strong correlation was observed between the presence of all four

healthy lifestyle factors and deaccelerated aging, which underscores

the importance of a healthy lifestyle to reduce the burden of

aging-related diseases. Future work is needed to better understand

the molecular mechanism underlying lifestyle on healthy aging.
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