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Dynamic models of structural and mechanical systems can be updated to match
the measured data through a Bayesian inference process. However, the
performance of classical (non-adaptive) Bayesian model updating approaches
decreases significantly when the pre-assumed statistical characteristics of the
model prediction error are violated. To overcome this issue, this paper presents an
adaptive recursive variational Bayesian approach to estimate the statistical
characteristics of the prediction error jointly with the unknown model
parameters. This approach improves the accuracy and robustness of model
updating by including the estimation of model prediction error. The
performance of this approach is demonstrated using numerically simulated
data obtained from a structural frame with material non-linearity under
earthquake excitation. Results show that in the presence of non-stationary
noise/error, the non-adaptive approach fails to estimate unknown model
parameters, whereas the proposed approach can accurately estimate them.
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1 Introduction

Bayesian model updating aims to estimate uncertain model parameters by minimizing
the discrepancies between measured and predicted responses (Friswell and Mottershead,
2013). This technique has been extensively used for structural system identification
(Behmanesh et al., 2015), parameter estimation (Ching et al., 2006; Astroza et al., 2014),
damage identification (Doebling et al., 1996; Yang et al., 2006), and virtual sensing (Wenzel
et al., 2007; Nabiyan et al., 2020). However, the performance of Bayesian model updating
depends on the quality of prior knowledge about the prediction error, which includes the
effects of modeling error and measurement noise (Beck and Yuen, 2004). In classical (non-
adaptive) Bayesian model updating methods, the prediction error is assumed as a stationary,
zero-mean Gaussian white noise process. However, this is not always the case in practice, and
the prediction error can generally be a non-stationary, non-white, and non-Gaussian process
due to the effect of modeling error (Sanayei et al., 2001; Law and Stuart, 2012; Nabiyan et al.,
2022). The estimation accuracy of non-adaptive Bayesian methods can be adversely affected
in practice when the prediction error deviates from stationary Gaussian assumption (Mehra,
1972; Xu et al., 2019).
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To mitigate the need for prior knowledge about prediction error
in model updating, several methods referred to as adaptive Bayesian
model updating methods have been proposed (Akhlaghi et al., 2017;
Amini Tehrani et al., 2020; Song et al., 2020b). Most of the adaptive
Bayesian model updating methods in the literature consider a zero-
mean Gaussian white noise with an unknown covariance matrix for
modeling prediction error and estimate the error covariance matrix
together with other model parameters or states. Zheng et al. (2018)
developed a robust adaptive unscented Kalman filter (UKF) to
improve the accuracy and robustness of state estimation of a
non-linear system with uncertain noise covariance. In this
method, first the states of the non-linear system are estimated
using a standard UKF (Wu and Smyth, 2007), and then a
covariance-matching method (Mehra, 1972) is utilized to
estimate the covariance matrix of process noise and measurement
noise. Astroza et al. (2019) used a similar approach to jointly
estimate the unknown model parameters along with the diagonal
entries of the covariance matrix of the prediction error. Huang et al.
(2020) developed a hierarchical Bayesian model by combining
sparse Bayesian learning (Tipping, 2001) with dual Kalman
filters. Their hierarchical model employs two inference levels,
state and parameter estimation and noise–parameter learning.
They considered a zero-mean Gaussian distribution for the
measurement noise in which the diagonal entries of its
covariance matrix were learned solely from the measurement
data up to the current time step. Yuen and Kuok (2016)
proposed a Bayesian probabilistic algorithm to estimate the noise
covariance matrix for the extended Kalman filter using the
maximum a posteriori approach. Their method is also applicable
for non-stationary noise with a time-variant covariance matrix. Song
et al. (2020b) proposed two adaptive Kalman filters formulated
based on covariance-matching techniques (Mehra, 1972) to jointly
estimate the unknown model parameters along with the full
covariance matrix of the prediction error. The validation studies
show the superior performance of the presented adaptive filtering
methods compared to standard UKF, in which the prediction errors
have predefined distributions. The mentioned studies assumed a
zero-mean Gaussian white noise for the prediction error. However,
the modeling error may cause the prediction error to have non-zero
mean (Sanayei et al., 2001). To address this issue, Kontoroupi and
Smyth (2016) proposed a Bayesian method to estimate a biased
(non-zero mean) prediction error. They assumed that the mean
vector and covariance matrix of the prediction error are time-
invariant and have Gaussian and inverse-Wishart distributions,
respectively. In a previous work, Nabiyan et al., (2022) developed
a two-step marginal maximum a posteriori (MAP) estimation
approach to find a point estimation of the unknown model
parameters and the prediction error statistics, where the mean
vector and covariance matrix of the prediction error are
considered to be time-variant.

In this paper, we introduce a completely different mathematical
approach with better performance, in comparison to our previous
work, (Nabiyan et al., 2022) for estimating both the unknown model
parameters and statistical characteristics (mean vector and
covariance matrix) of the prediction error, as well as
approximating their joint posterior distribution. Exact calculation
of this high-dimensional joint posterior distribution is intractable, so
the process requires approximation (Šmídl and Quinn, 2006). Two

approximation schemes can be used: stochastic or sampling
methods such as Markov chain Monte Carlo (MCMC) (Bishop
and Nasrabadi, 2006) and deterministic or variational frameworks
such as variational Bayesian (VB) (Opper and Saad, 2001; Beal,
2003). In comparison to the sampling methods, the VB method is
analytically tractable and is computationally less demanding (Beal,
2003). The VB method is used in this work as a tool to segregate the
posterior distribution into separate components, which can help in
solving the problem analytically. The VB method has been
successfully applied for joint state and noise estimation in
navigation, target tracking, and control-related applications
(Huang et al., 2017; Zhang et al., 2018). In these applications, the
adaptive VB Kalman filter method was used to jointly estimate the
covariance matrix of a zero-mean prediction error and the state of
linear (Sarkka and Nummenmaa, 2009; Sun et al., 2012; Huang et al.,
2016; Huang et al., 2017) or non-linear (Sarkka and Hartikainen,
2013; Shi et al., 2018; Sun et al., 2018) state-space models. The VB
method assumes that the approximate joint distribution is the
product of some single- or multi-variable factors and uses the
Kullback–Leibler (KL) divergence to minimize the difference
between the approximation and the true posterior. In this paper,
we introduce a new adaptive method for non-linear model updating
based on the VB method to approximate the joint posterior
distribution of the unknown model parameters and statistical
characteristics of the prediction error at each time step.

The paper is structured as follows: Section 2 provides the model
updating problem statement. Section 3 presents a detailed derivation
of the proposed VB method for estimating the joint posterior
distribution of unknown model parameters and statistical
characteristics of the prediction error. The formulation of the VB
method is then compared with that of the two-step marginal MAP
estimation method (Nabiyan et al., 2022) in Section 4. In Section 5
and Section 6, the proposed method is verified by two model
updating case studies: one with time-variant measurement noise
and the other with modeling error. The results are compared to
those from the two-step marginal MAP estimation method
published in Nabiyan et al., (2022) and a non-adaptive Bayesian
model updating method. Finally, the conclusions are presented in
Section 7.

2 Model updating problem statement

We consider the measured response of a non-linear (or linear)
dynamic system y and its corresponding model [e.g., finite element
(FE)] prediction (θ), where θ is the vector of unknown model
parameters. The parameter estimation problem at time k �
1, 2,/, N can be formulated as (Haykin, 2004; Ebrahimian et al.,
2015)

θk � θk−1 + γk−1, (1)
yk � h θk( ) + ωk, (2)

where γk−1 is the process noise and ωk is the prediction error. In this
study, the input forces are assumed to be known, so for notation
brevity, the dependency of the model prediction response to the
input forces is not shown explicitly in Eq. 2. The process noise is
assumed to follow a zero-mean Gaussian white noise process with
covariance matrix Q, i.e., γk−1 ~ N(0,Q). In non-adaptive Bayesian
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model updating methods, the prediction error is assumed to be a
zero-mean Gaussian white noise process with a constant or time-
invariant covariance matrix R, i.e., ωk ~ N(0,R). For the parameter
estimation problem defined in Eqs. 1, 2, the non-adaptive Bayesian
methods can be used to find an estimate for the first two statistical
moments of unknown model parameters (Astroza et al., 2015;
Nabiyan et al., 2020). However, in the adaptive Bayesian model
updating methods, the prediction error can be modeled as a non-
stationary Gaussian random process with an unknown and time-
variant mean vector μk and covariance matrix Rk,
i.e., ωk ~ N(μk,Rk), to be estimated recursively and jointly with
the unknown vector of model parameters θk.

In this paper, we developed a new adaptive recursive Bayesian
model updating method. Like other recursive Bayesian model
updating algorithms, the proposed method has two steps at each
time k: “prediction” and “correction” (Astroza et al., 2017). In the
“prediction” step, the new measurement yk at time k is not given to
the estimation process yet. Therefore, the prior estimates of θk, μk,
and Rk, denoted by minus superscript, are predicted through a
dynamic model using their posterior estimates at the previous time
step k-1. Eq. 1 can be used as the dynamic model for unknown
model parameters of θk (Astroza et al., 2014; Nabiyan et al., 2022).
For predicting the prior estimates of μk and Rk, the dynamic models
defined in Nabiyan et al., (2022) can be used, considering the
forgetting factor parameters of ρ ∈ (0, 1] and ρ′ ∈ (0, 1]. These
dynamic models result in μ̂−k � μ̂+k−1 and R̂

−
k � R̂

+
k−1. In the

“correction” step, the prior estimates are updated by the new
measurement yk to obtain the posterior estimates, denoted by θ̂

+
k ,

μ̂+k , and R̂
+
k . The updating process is further described as follows:

In our previous work (Nabiyan et al., 2022), we developed a two-
step maximum a posteriori (MAP) estimation method to estimate
θk, μk, and Rk by maximizing the joint posterior distribution
p(θk, μk,Rk | y1: k), i.e.,

θ̂
+
k , μ̂

+
k , R̂

+
k{ } � argmax

θk,μk,Rk

p θk, μk,Rk y1: k
∣∣∣∣( ). (3)

To solve this MAP problem, we broke the problem into two
iterative MAP estimation problems as θ̂

+
k{ } �

argmax
θk

p(θk | μk,Rk, y1: k) and μ̂+k , R̂
+
k{ } � argmax

μk,Rk

p(μk,Rk | y1: k).
In this paper, we aim to find the whole joint posterior distribution of
unknown model parameters and noise, i.e., p(θk, μk,Rk | y1: k).
Nevertheless, analytical working with this joint posterior
distribution is not tractable because the number of variables is
high, and the joint distribution is highly complex. To overcome
this issue, we used the VB method to approximate this joint
posterior distribution. The VB method and the derivation details
are explained in the next section.

3 Variational Bayesian (VB) method

VB is a method to approximate a joint distribution p by a joint
distribution Q which can be factorized into single-variable or
grouped-variable factors. The Kullback–Leibler (KL) divergence
criterion is then used to make Q as close as possible to p
(Bishop and Nasrabadi, 2006). Using the VB method, we
approximate the joint posterior distribution of the unknown

model parameters and prediction error mean vector and
covariance matrix by separating this joint posterior distribution
into two factors as follows:

p θk, μk,Rk y1: k
∣∣∣∣( ) ≈ Qθ θk( )Qμ,R μk,Rk( ), (4)

where Qθ(θk) and Qμ,R(μk,Rk) are unknown distributions that can
be obtained byminimizing the KL divergence between the right- and
left-hand side of Eq. 4. The KL divergence is defined as

KL Qθ θk( )Qμ,R μk,Rk( ) p θk, μk,Rk y1: k
∣∣∣∣( )					( )

� ∫Qθ θk( )Qμ,R μk,Rk( ) ln Qθ θk( )Qμ,R μk,Rk( )
p θk, μk,Rk

∣∣∣∣y1: k( )⎛⎝ ⎞⎠dθkdμkdRk.

(5)
Using variational calculus to minimize the aforementioned

KL divergence with respect to each of Qθ(θk) and Qμ,R(μk,Rk)
while keeping the other one fixed will result in Eqs. 6, 7. The
details of this derivation can be found in Weinstock, (1974);
Tzikas et al., (2008).

Qθ θk( ) � cθ exp Eμk,Rk
ln p y1: k, θk, μk,Rk( )( )[ ]( ), (6)

Qμ,R μk,Rk( ) � cμ,R exp Eθk ln p y1: k, θk, μk,Rk( )( )[ ]( ), (7)
where Ex[f(x)] denotes the expected value of f(x) with respect to x
with the probability density function of p(x),
i.e., Ex[f(x)] � ∫f(x)p(x)dx. The terms cθ and cμ,R denote the
constants with respect to variables θk and μk,Rk{ }, respectively.
Since Eqs. 6, 7 are coupled through the term p(y1: k, θk, μk,Rk),
analytical solutions are not available. Therefore, the fixed-point
iteration algorithm can be employed to find approximate
solutions for Eqs. 6, 7. To this end, we try to expand the right-
hand sides of Eqs. 6, 7 from their innermost parentheses to the outer
ones through the following steps.

The joint distribution p(y1: k, θk, μk,Rk) in Eqs. 6, 7 can be
factored as

p y1: k, θk, μk,Rk( ) � p yk θk| , μk,Rk, y1: k−1( )p θk μk
∣∣∣∣ ,Rk, y1: k−1( )

× p μk,Rk y1: k−1
∣∣∣∣( )p y1: k−1( ), (8)

where p(yk | θk, μk,Rk, y1: k−1) is the likelihood function,
p(θk | μk,Rk, y1: k−1) is the prior distribution of θk,
p(μk,Rk | y1: k−1) is the prior joint distribution of μk and Rk, and
p(y1: k−1) is known because this is a recursive algorithm, meaning
that at each time step, only the new measurement yk is used for
updating parameters, so p(y1: k−1) depends on the past
measurements.

Here, we further expanded the terms on the right-hand side of
Eq. 8. Based on Eq. 2, the likelihood function
p(yk | θk, μk,Rk, y1: k−1) has a Gaussian distribution as

p yk θk| , μk,Rk, y1: k−1( ) � p ωk( )
� N ωk μk

∣∣∣∣ ,Rk( ). (9)

For the second and third terms on the right-hand side of Eq. 8, it
is assumed, similar to (Nabiyan et al., 2022), that θk and μk,Rk{ }
have prior distributions of Gaussian and normal-inverse-Wishart
(NIW), respectively. The NIW distribution is the product of a
Gaussian (or normal) distribution and an inverse-Wishart (IW).
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The NIW is selected for the prior distribution p(μk,Rk | y1: k−1)
because it is a conjugate prior for a Gaussian likelihood with an
unknown mean vector and covariance matrix. The conjugacy
guarantees the same functional form for the posterior and prior
distributions (O’Hagan and Forster, 2004). Therefore, the second
and third terms on the right-hand side of Eq. 8 can be written as
follows:

p θk μk
∣∣∣∣ ,Rk, y1: k−1( ) � N θk θ̂

−
k

∣∣∣∣∣ ,P−
θ,k( ), (10)

p μk,Rk y1: k−1
∣∣∣∣( ) � NIW μk,Rk μ̂−k

∣∣∣∣ , λ−k , v
−
k ,V

−
k( )

� N μk μ̂−k
∣∣∣∣ ,

Rk

λ−k
( ) × IW Rk v−k

∣∣∣∣ ,V−
k( ), (11)

where θ̂
−
k and P−

θ,k are the mean vector and covariance matrix,
respectively, of the unknown model parameters θk given
measurements y1: k−1 but not yk. The minus superscripts
represent the prior estimates. μ̂−k , λ

−
k , v

−
k , and V−

k are the prior
estimates of statistical parameters used in the NIW distribution.
μ̂−k is the prior estimate for μk, and V−

k is the symmetric positive
definite scale matrix. λ−k and v

−
k are the confidence parameter and the

degree of freedom parameter, respectively. They are scalar
parameters and satisfy λ−k > 0 and v−k > ny − 1, where ny is the
number of measurement sensors.

By substituting Eqs. 9, 10, and 11 into Eq. 8, we obtain

p y1: k, θk, μk,Rk( ) � N ωk μk
∣∣∣∣ ,Rk( )N θk θ̂

−
k

∣∣∣∣∣ ,P−
θ,k( )

× N μk μ̂−k
∣∣∣∣ ,

Rk

λ−k
( )IW Rk v−k

∣∣∣∣ ,V−
k( )p y1: k−1( ).

(12)
The Gaussian (or normal) distribution and the inverse-Wishart

(IW) distribution are proportional to the following expressions:

N x μ
∣∣∣∣ ,Σ( )∝ Σ| |− 1/2( ) exp −1

2
x − μ( )TΣ−1 x − μ( )( ), (13 − a)

IW Σ v| ,V( )∝ Σ| |− v+ny+1( )/2 exp −1
2
tr VΣ−1( )( ), (13 − b)

where | · | represents the determinant and tr(·) denotes trace of a
matrix. The sign “∝ ” representing “proportional to” is used in Eq.
13, as the normalizing terms are ignored.

Using Eq. 12 and the definitions of normal and IW distributions
in Eq. 13, the term ln(p(y1: k, θk, μk,Rk)), which is used in Eqs 6, 7,
can be expanded as follows:

ln p y1: k, θk, μk,Rk( )( )
� − 1

2
ln Rk| |( ) − 1

2
yk − hk θk( ) − μk( )TR−1

k yk − hk θk( ) − μk( )
− 1
2
ln P−

θ,k

∣∣∣∣ ∣∣∣∣( ) − 1
2

θk − θ̂
−
k( )T(P−

θ,k)−1 θk − θ̂
−
k( ) − 1

2
ln

Rk

λ−k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣( )

− 1
2
μk − μ̂−k( )T Rk

λ−k
( )−1

μk − μ̂−k( ) − v−k + ny + 1
2

ln Rk| |( )

− 1
2
tr V−

kR
−1
k( ) + cθ,μ,R,

(14)
where cθ,μ,R denotes a constant with respect to all variables θk, μk,
and Rk.

Now, having the expansion of ln(p(y1: k, θk, μk,Rk)) in Eq. 14,
we calculate the expectation terms in Eqs. 6, 7. By obtaining the
expectation from each term of Eq. 14, the expectation term in Eq. 6,
Eμk,Rk[ln(p(y1: k, θk, μk,Rk))], can be expressed as follows:

Eμk ,Rk
ln p y1: k, θk, μk,Rk( )( )[ ]

� − 1
2
Eμk,Rk

yk − hk θk( ) − μk( )TR−1
k yk − hk θk( ) − μk( )[ ]

− 1
2
θk − θ̂

−
k( )T P−

θ,k( )−1 θk − θ̂
−
k( ) + cθ, (15)

where cθ is the summation of expectations of all terms in the right-
hand side of Eq. 14, except the second and fourth terms, and is
constant with respect to θk. It should be noted that the expectation of
the fourth term of Eq. 14 is equal to itself because it does not depend
on μk, and Rk.

Using Supplementary Appendix Lemma S1 in the Appendix, the
expectation term in Eq. 15 can be evaluated as

Eμk ,Rk
yk − hk θk( ) − μk( )TR−1

k yk − hk θk( ) − μk( )[ ]
� ERk

Eμk yk − hk θk( ) − μk( )TR−1
k yk − hk θk( ) − μk( )[ ][ ]

� ERk[ yk − hk θk( ) − Eμk μk[ ]( )TR−1
k yk − hk θk( ) − Eμk μk[ ]( )

+tr R−1
k × covμk μk( )( )]. (16)

Now, we consider Qμ,R(μk,Rk) as a NIW distribution,
i.e., Qμ,R(μk,Rk) � N(μk|μ̂+k , (Rk/λ

+
k ))IW(Rk | v+k ,V+

k ), where the
plus superscripts represent the posterior estimates. Therefore, by
substituting the mean and covariance of μk, i.e., Eμk[μk] � μ̂+k and
covμk(μk) � (Rk/λ

+
k ) in Eq. 16, and taking the expectation with

respect to Rk, we will have

Eμk,Rk
yk − hk θk( ) − μk( )TR−1

k yk − hk θk( ) − μk( )[ ]
� yk − hk θk( ) − μ̂+k( )T R̂

+
k( )−1 yk − hk θk( ) − μ̂+k( ) + ny

λ+k
. (17)

It should be noted that in deriving Eq. 17, we use ERk[R−1
k ] �

(ERk[Rk])−1 (Granström and Orguner, 2011), in which ERk[Rk] is
the mean of IW distribution denoted as R̂

+
k , and can be calculated as

follows (O’Hagan and Forster, 2004).

R̂
+
k � V+

k

v+k − ny − 1
, (18)

where v+k > ny + 1 (O’Hagan and Forster, 2004).
In Eq. 6, Qθ(θk) is proportional to the exponential of

Eμk,Rk[ln(p(y1: k, θk, μk,Rk)). So, by substituting Eq. 17 into Eq.
15 and taking the exponential of Eq. 15, it can be seen that

Qθ θk( )∝ exp −1
2
θk − θ̂

−
k( )T P−

θ,k( )−1 θk − θ̂
−
k( )( )

× exp −1
2
yk − hk θk( ) − μ̂+k( )T R̂

+
k( )−1 yk − hk θk( ) − μ̂+

k( )( ). (19)

By linearizing hk(θk) in Eq. 19 by the first-order Taylor
expansion about θ̂

−
k , i.e., hk(θk) ≃ hk(θ̂−k ) + C−

k(θk − θ̂
−
k ), where

C−
k is the sensitivity matrix of the FE model with respect to θk at

θ̂
−
k , i.e., C

−
k � zhk(θk)

zθk
|θk�θ̂−k , Eq. 19 yields
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Qθ θk( )∝ exp −1
2
θk − θ̂

−
k( )T P−

θ,k( )−1 θk − θ̂
−
k( )( )

× exp( − 1
2
yk − hk θ̂

−
k( ) − C−

k θk − θ̂
−
k( ) − μ̂+k( )T R̂

+
k( )−1

× yk − hk θ̂
−
k( ) − C−

k θk − θ̂
−
k( ) − μ̂+k( )). (20)

The first exponential term in the right-hand side of Eq. 20 shows a
Gaussian distribution for θk ignoring the normalization term. By
using Supplementary Appendix Lemma S2 in the Appendix, the
second exponential term in the right-hand side of Eq. 20 also
represents a Gaussian distribution for θk. Therefore, the right-hand
side of Eq. 20 is the product of two Gaussian distributions which,
based on Supplementary Appendix Lemma S3 in the Appendix,
results in a Gaussian distribution, i.e., Qθ(θk) � N(θk|θ̂+k ,P+

θ,k). To
obtain the parameters of this Gaussian distribution, we match the
terms in the left-hand and the right-hand side of in Eq. 20, which
results in

θ̂
+
k � θ̂

−
k + Kk yk − hk θ̂

−
k( ) − μ̂+k( )) (21 − a)

P+
θ,k � P−

θ,k − KkPyy,kK
T
k (21 − b)

where Kk � Pθy,k(Pyy,k)−1, Pθy,k � P−
θ,k(C−

k )T, and
Pyy,k � C−

kP
−
θ,k(C−

k )T + R̂
+
k . It is worth noting that Eq. (21-a) and

Eq. (21-b) are similar to non-adaptive Bayesian model updating
formulations, except for the term μ̂+k , which is added in Eq. (21-a) to
consider non-zero mean prediction error.

In a similar way, we can evaluate the expectation term in Eq. 7 as
follows. Getting the mathematical expectation of Eq. 14 with respect
to θk leads to

Eθk ln p y1: k, θk, μk,Rk( )( )[ ]
� − 1

2
ln Rk| |( )

− 1
2
Eθk yk − hk θk( ) − μk( )TR−1

k yk − hk θk( ) − μk( )[ ]
− 1
2
ln

Rk

λ−k

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣( ) − 1

2
μk − μ̂−k( )T Rk

λ−k
( )−1

μk − μ̂−k( )
− v−k + ny + 1

2
ln Rk| |( ) − 1

2
tr V−

kR
−1
k( ) + cμ,R, (22)

where cμ,R is sum of the expectations of the third, fourth, and last
terms of the right-hand side of Eq. 14 and is constant with respect to
μk and Rk.

Now, considering Qθ(θk) � N(θk|θ̂+k ,P+
θ,k) and linearizing

hk(θk) by the first-order Taylor expansion about θ̂
+
k ,

i.e., hk(θk) ≃ hk(θ̂+k ) + C+
k(θk − θ̂

+
k ), where C+

k is the sensitivity
matrix of the model with respect to θk at θ̂

+
k , the expectation

term in the right-hand side of Eq. 22 can be obtained as follows
using Lemma 1 in the Appendix.

Eθk yk − hk θk( ) − μk( )TR−1
k yk − hk θk( ) − μk( )[ ]

� yk − hk θ̂
+
k( ) − μk( )TR−1

k yk − hk θ̂
+
k( ) − μk( )

+ tr C+
kP

+
θ,k C+

k( )TR−1
k( ). (23)

Based on Eq. 7, Qμ,R(μk,Rk) is proportional to the exponential
of Eθk[ln(p(y1: k, θk, μk,Rk)). Substituting Eq. 23 into Eq. 22 and
taking the exponential of Eq. 22, Qμ,R(μk,Rk) can be found as
follows:

Qμ,R μk,Rk( )∝ 1

Rk| |1/2 × exp( − 1
2

yk − hk θ̂
+
k( ) − μk( )T

× R−1
k yk − hk θ̂

+
k( ) − μk( )) ×

1

Rk
λ−k

∣∣∣∣∣∣ ∣∣∣∣∣∣1/2
× exp −1

2
μk − μ̂−

k( )T Rk

λ−k
( )−1

μk − μ̂−
k( )( ) × Rk| |− v−

k
+ny+1( )/2

× exp −1
2
tr V−

k + C+
kP

+
θ,k C+

k( )T( )R−1
k( )( ). (24)

The right-hand side of Eq. 24 includes the product of two
Gaussian distributions for μk and one IW distribution for Rk.
The product of these two Gaussian distributions leads to a scaled
Gaussian distribution based on Lemma 3 in the Appendix.
Therefore, the right-hand side of Eq. 24 results in a NIW
distribution, which is a product of a normal distribution for μk
and an IW distribution for Rk. By substituting Qμ,R(μk,Rk) �
N(μk|μ̂+k , Rk

λ+k
)IW(Rk|v+k ,V+

k ) in the left-hand side of Eq. 24, and
using Lemma 4 in the Appendix, the four parameters of the NIW
distribution can be derived as follows by matching the terms in the
left- and right-hand sides of Eq. 24.

μ̂+
k � λ−k

1 + λ−k
μ̂−k +

1
1 + λ−k

yk − hk θ̂
+
k( )( ), (25 − a)

λ+k � 1 + λ−k , (25 − b)
v+k � 1 + v−k , (25 − c)

V+
k � V−

k +
λ−k

1 + λ−k
yk − hk θ̂

+
k( ) − μ̂−k( ) yk − hk θ̂

+
k( ) − μ̂−

k( )T + C+
kP

+
θ,k C+

k( )T.
(25 − d)

Now having Qθ(θk)Qμ,R(μk,Rk) as an approximation for
p(θk, μk,Rk|y1: k), we can evaluate the expectation of
Qθ(θk)Qμ,R(μk,Rk) to represent point estimates of unknown
model parameters and noise. Therefore, θ̂

+
k , μ̂+k , and R̂

+
k

represented in Eq. (21-a), Eq. (25-a), and (Eq. 18),
respectively, can be considered the point estimates for θk, μk,
and Rk. Eq. (21-a), Eq. (25-a), and (Eq. 18) are coupled
equations that can be solved iteratively using a fixed-point
iteration algorithm. In each iteration, the model-predicted
responses and the sensitivity matrix need to be updated
based on the updated unknown model parameters θ̂

+
k ;

however, calculating the sensitivity matrix at each time step
can be computationally demanding. To reduce the execution
time, we can use the prior sensitivity matrix C−

k in Eq. (25-d).
Since the convergence criteria are not changed, using C−

k instead
of C+

k has no effect on the final estimation results. In this paper, a
finite difference method is used to calculate the sensitivity
matrix at each time step. The proposed algorithm of
recursive VB for joint model and noise identification is
presented in Figure 1. This framework can work with any FE
modeling and simulation platform such as OpenSees, which is
used in this study.

4 Comparison of the VB method with
two-step marginal MAP estimation
method

In this section, we compare the proposed variational Bayesian (VB)
method with the two-step marginal MAP estimation method that was
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recently developed by Nabiyan et al. (2022) for joint estimation of
unknown model parameters and the mean vector and covariance
matrix of the prediction error. The formulations of the two methods
are closely similar. There are two main differences between the two
methods, as explained as follows. First, in the two-step marginal MAP
estimation method, the mode of IW distribution is used as an R̂

+
k point

estimate, while in the VB method, the mean of IW distribution is
assigned as R̂

+
k (as shown in Table 1). The reason for this difference is

that the MAP approach is used in the former method, while the
expectation value is used in the latter. It is worth noting that the

mode and mean of the IW distribution are not coincident (O’Hagan
and Forster, 2004). Second, different equations are used to calculate the
term V+

k as shown in Table 1. The equation used to calculate V+
k in the

VB method has an additional term, i.e., C−
kP

+
θ,k(C−

k )T.
In most applications, these two differences have small effects on

the results because of the following reasons. First, the difference
between the mode and mean of the IW distribution decreases
through time as the value of v+k increases in time in the
denominator of the characterizing equations of R̂

+
k . Second, as

the covariance matrix of the unknown model parameters P+
θ,k

FIGURE 1
Algorithm for the recursive variational Bayesian (VB) method.
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decreases through the Bayesian estimation (Song et al., 2020a), the
effects of this additional term on the results also become negligible
over time. However, the additional term C−

kP
+
θ,k(C−

k )T in the VB
method improves the estimation of R̂

+
k at early iterations, which in

turn results in better estimation of unknown model parameters,
especially when the initial estimate of the prediction error
covariance matrix is poorly selected. In the next section, the
estimation results of these two methods are compared through
two numerical case studies.

5 Case study 1: 3-Story 1-bay steel
moment frame considering time-
variant measurement noise

In this section, the performance of the proposed method is
evaluated when applied to a numerical model of a 3-story 1-bay
steel moment frame structure under earthquake excitation. The
estimation results are compared with those of the two-step marginal
MAP estimation method (Nabiyan et al., 2022) and a non-adaptive
Bayesian model updating method (Ebrahimian et al., 2015). The story
height and the bay width are 3.5 m and 6.0 m, respectively, as shown in
Figure 2A. The frame’s geometric and material properties are similar to
those used in our previous work (Nabiyan et al., 2022), andmore details
about the considered case study can be found there.

The numerical model of the frame is developed in OpenSees
(McKenna, 2000). For this, force-based beam–column
elements with seven integration points are used for columns
and beams. A single fiber is used to represent each flange of
beam and column cross-sections, while 10 fibers are used to
discretize their webs. The uniaxial Giuffre–Menegotto–Pinto
(GMP) material model (Filippou et al., 1983) with primary
parameters

θtrue � Etrue
c , Ftrue

yc , btruec , Etrue
b , Ftrue

yb , btrueb[ ]T
� 200GPa, 350MPa, 0.08, 200GPa, 250MPa, 0.05[ ]T

is used to model the steel fibers and simulate the nominal/true
dynamic response of the structure, where E � Young’s
modulus, Fy � yield stress, and b � strain-hardening ratio.
The first three parameters denoted by subscript “c” are for
columns, and the last three ones denoted by subscript “b” are
used for beams. A nodal mass � 80, 000 kg , shown by the black
circle in Figure 2A, is considered for each story at the
beam–column nodes to represent dead and live mass. To
model damping energy dissipation, Rayleigh damping with
2% damping ratio is considered for the first two vibration
modes of the structure.

To simulate measurement data, the frame structure is excited by
the Loma Prieta earthquake (0° component at Los Gatos station), as

FIGURE 2
(A) 3-story 1-bay steel moment frame and (B) 0° component of ground acceleration time history of the Loma Prieta earthquake recorded at Los
Gatos station (Nabiyan et al., 2022).

TABLE 1 Differences between the proposed VB method and two-step marginal MAP estimation method.

Methods R̂
+
k V+

k

Variational Bayesian R̂
+
k � V+

k
v+
k
−ny−1 V+

k � V−
k + λ−k

1+λ−k (yk − hk(θ̂+k ) − μ̂−k )(yk − hk(θ̂+k ) − μ̂−k )T + C−
kP

+
θ,k(C−

k )T

Two-step marginal MAP estimation R̂
+
k � V+

k
v+
k
+ny+1 V+

k � V−
k + λ−k

1+λ−k (yk − hk(θ̂+k ) − μ̂−k )(yk − hk(θ̂+k ) − μ̂−k )T
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shown in Figure 2B. Then, the horizontal absolute acceleration
response time histories of each floor (shown by black boxes in
Figure 2A) are extracted and contaminated with artificial
measurement noise to result in simulated measurement data. The
measurement noise is considered a non-stationary Gaussian random

process with time-variant mean vector μtruek and covariance matrix
Rtrue
k as follows: It is worth noting that non-stationary noise with

time-variant mean and covariance is a common problem in realistic
monitoring, and the assumed sinusoidal form for the mean and
covariance is hypothetical and considered for the feasibility study.

FIGURE 3
Comparison of the estimated components of the mean vector of measurement noise by the three methods (VB, two-step marginal MAP, and the
non-adaptive) with the true ones. It should be noted that μ � [μ1 μ2 μ3 ]T.

FIGURE 4
Comparison of the estimated components of the covariance matrix of measurement noise by the three methods (VB, two-step marginal MAP, and

the non-adaptive) with the true ones. It should be noted that R �
R11 R12 R13

R12 R22 R23

R13 R23 R33

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦.
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μtruek � 1.97, 5.41, 7.50[ ]T × sin
4π
N

k( ) × 10−2g, (26)

Rtrue
k �

1.66 0 0
0 2.88 0
0 0 7.65

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ × sin
π

N
k( ) + 1( )2

× 10−4g2. (27)

Our goal is to estimate the unknown model parameters θ �
[Ec, Fyc, bc, Eb, Fyb, bb]T and compare them with their true values
θtrue. The initial estimate of the unknown model parameters and its
covariance matrix are selected as θ̂

+
0 �

[0.7Etrue
c , 0.7Ftrue

yc , 1.2btruec , 0.8Etrue
b , 1.3Ftrue

yb , 0.8btrueb ]T and
P+
θ,0 � diag(0.2θ̂+0 )2, respectively. The initial mean vector and

covariance matrix of the prediction error (measurement noise)
are, respectively, assumed as μ̂+0 � 0; R̂

+
0 � 10−5I3×3, where I3×3 is

the identity matrix. Other initial parameters of the NIW distribution

are selected as λ+0 � 1, v+0 � 4.1, and V+
0 � (v+0 − ny − 1)R̂+

0 , with
ny � 3. The process noise covariance matrix is selected as
Q � diag(10−4θ̂+0 )2, and the forgetting factor parameters used for
defining the dynamic model of the mean vector and covariance
matrix of the prediction error are assumed as ρ � 0.95 and ρ′ � 0.95,
respectively Based on our study, the parameter estimation results are
acceptable for 0.8≤ ρ< 1 and 0.7≤ ρ′< 1. However, choosing lower
values for ρ and ρ′ may deteriorate the performance of the model
updating process. The sensitivity of the estimation process to other
filter tuning parameters (e.g., initial model parameter values,Q,) has
been the subject of another study presented in Astroza et al., (2019b).

Now, the proposed VB method is applied to jointly estimate the
unknown model parameter vector θ and the mean vector and
covariance matrix of prediction error. In this verification study,

FIGURE 5
Time histories of the estimatedmodel parameters obtained by the threemethods: the proposed VBmethod, the two-step marginal MAP estimation
method, and the non-adaptive Bayesian method.

FIGURE 6
3-Story 3-bay steel moment frame.
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the results are compared with those of the two-step marginal MAP
estimation method (Nabiyan et al., 2022) and the non-adaptive
Bayesian model updating method (Ebrahimian et al., 2015) when
using the same initial values. As mentioned before, in the non-
adaptive Bayesian method, a zero-mean Gaussian white noise with a
time-invariant diagonal covariance matrix is assumed for the
prediction error ωk, i.e., ωk ~ N(0,Rk � R̂

+
0 ).

The estimated components of the mean vector and covariance
matrix of the prediction error (measurement noise in this example)
by the three methods (VB, two-step marginal MAP, and the non-
adaptive) are compared with their true values in Figure 3 and
Figure 4, respectively. The non-adaptive Bayesian model updating
method, as mentioned before, does not estimate the mean vector and
the covariance matrix of the prediction error, so they remain

constant during the estimation process. However, both the VB
and the two-step marginal MAP estimation methods can
accurately track the trend of the true/nominal mean and
covariance of error through time. As can be seen in Figure 4, in
comparison to the two-step marginal MAP method, the VB method
better estimates the covariance matrix of the prediction error at the
early time steps because of the additional term discussed in the
previous section.

Figure 5 shows the time histories of the unknown model
parameters estimated by all three methods: the proposed VB
method, the two-step marginal MAP estimation method, and the
non-adaptive Bayesian method. It can be observed that the non-
adaptive model updating method converges to incorrect
unknown model parameters, or even diverges. However,

FIGURE 7
Material model (A) GMP used for simulating responses and (B) bilinear used in the estimation process.

FIGURE 8
Time histories of the estimated model parameters obtained by the three methods: the proposed VB method, two-step marginal MAP estimation
method, and the non-adaptive Bayesian method for the second case study.
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adaptive methods can estimate unknown model parameters very
well. The weakness of the non-adaptive method shows that
estimation of the prediction error significantly affects the
model updating results when the prediction error has a time-
variant non-zero mean and, therefore, should not be ignored.

Comparing the VB method with the two-step marginal MAP
estimation method, the VB method better estimates the
parameter bc (columns strain-hardening ratio) because of the
better estimation of the covariance matrix of the prediction error
at the early time steps.

6 Case study 2: 3-Story 3-bay steel
moment frame considering modeling
error

In this second study, we examine the proposed VBmethod in the
presence of modeling error on a 3-story, 3-bay steel moment frame.
The frame is taken from Song et al., (2020a), and the geometry,
frame sections, and loads are shown in Figure 6. All beams and
columns have wide flange profiles and are modeled with
displacement-based beam–column elements. Rayleigh damping
with 2% damping of the first and second modes is considered for
structural damping. Distributed gravity loads are considered
concentrated masses at nodes. The measured data are simulated
using the steel constitutive model of Giuffre–Menegotto–Pinto
(GMP) for beams and columns, in which their true properties
are selected the same as in the previous example. The frame is
excited by the Loma Prieta earthquake shown in Figure 2B, and the
horizontal absolute acceleration responses at each floor (marked by
black boxes in Figure 6) are recorded. Then, 1% RMS NSR Gaussian
zero-mean white noise is added to these simulated acceleration
responses to be considered measurement data.

While we use the GMP constitutive model Figure 7A to simulate
the measurements, a bilinear model (Figure 7B) is used in the
estimation process to add explicit modeling error to the model
updating process.

FIGURE 9
Absolute acceleration responses at each floor obtained by the truemodel and the updated ones using the threemethods: the proposed VBmethod,
the two-step marginal MAP estimation method, and the non-adaptive Bayesian method.

FIGURE 10
Moment–curvature responses at the base of the inner column
obtained by the true model and the updated one using the three
methods: the proposed VB method, the two-step marginal MAP
estimation method, and the non-adaptive Bayesian method.
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For model updating in this example, the material properties of
columns and beams are considered unknown model parameters,
similar to the previous example. The initial estimate for the
unknown model parameters and its covariance matrix are selected
as θ̂

+
0 � [0.8Etrue

c , 1.2Ftrue
yc , 1.4btruec , 0.8Etrue

b , 1.2Ftrue
yb , 1.4btrueb ]T and

P+
θ,0 � diag(0.2θ̂+0 )2, respectively. The initial mean vector and

covariance matrix of the prediction error are assumed as μ̂+0 � 0 and
R̂
+
0 � 10−4I3×3, respectively. As mentioned before, the non-adaptive

method does not update these two parameters and considers them
constants during the estimation process. Other initial parameters of the
NIW distribution required for both adaptive methods are selected as
λ+0 � 1, v+0 � 4.1, and V+

0 � (v+0 − ny − 1)R̂+
0 , with ny � 3. The process

noise covariance matrix is selected as Q � diag(10−4θ̂+0 )2, and the
forgetting factor parameters used for defining the dynamicmodel of the
mean vector and covariance matrix of the prediction error are assumed
as ρ � 0.9 and ρ′ � 0.98.

Figure 8 shows themodel updating results for the three methods:
the proposed VB method, the two-step marginal MAP estimation
method, and the non-adaptive Bayesian method. As can be seen, the
non-adaptive method cannot estimate unknown model parameters
correctly for all parameters, except Eb and Ec. The measured
structural responses are less sensitive to parameters Fy and b,
rather than E, which results in estimation of Fy and b being
more effected by prediction error (measurement noise +
modeling error). The non-adaptive method limits the prediction
error to a zero-mean and has fixed covariance matrix. However,
adaptive methods release this assumption by updating the statistical
parameters of the prediction error recursively at each time step,
which results in far better estimations for unknown model
parameters. In comparison with the proposed adaptive VB
method with the two-step marginal MAP estimation method, the
VB method improved the estimation values of column and beam
stiffness hardening bc and bb because of better estimation of
prediction error.

To investigate the capability of the updated model with
material modeling error in predicting the responses, absolute
acceleration responses at each floor and moment–curvature
response at the base of the first story’s inner column are
predicted from the updated model using all three methods and
compared with their true counterparts in Figure 9 and Figure 10,
respectively. Although, as can be seen in Figure 9, the discrepancies
between measured and predicted acceleration responses are
minimized, and the estimated parameters are biased for the
case of non-adaptive, and to a lesser extent for the two-step
MAP method. As can be observed in Figure 10, the response
predictions are considerably improved by both adaptive methods,
and their predictions agree with the true moment–curvature
response. Comparing the proposed VB method with the two-
step MAP method, the VB method better predicts the response
because of better estimation of unknown model parameters.

7 Conclusion

In this paper, we exploited the variational Bayesian (VB)
approach and proposed an adaptive variational Bayesian model
updating method for joint model and noise identification. A

detailed mathematical derivation is provided in the paper. The
performance of the proposed method is demonstrated through
two numerical case studies. Two non-linear steel moment frames
subjected to earthquake excitation were used, in which six
parameters characterizing the constitutive models of the steel
beams and columns were considered unknown. In the first case
study, absolute acceleration responses at each floor contaminated
by Gaussian noise with a time-variant mean vector and
covariance matrix were considered measurement data. For
considering modeling error in the second case study, a steel
constitutive model of Giuffre–Menegotto–Pinto (GMP) is used
for data simulation, and a bilinear constitutive model is used in
the estimation process. The estimation results of both case studies
showed that the proposed VB-based method performs well in the
presence of time-variant prediction error (measurement noise
and modeling error). The proposed VB-based method was also
compared to a recently developed two-step marginal MAP
estimation method, and the non-adaptive Bayesian model
updating method. The results showed that both adaptive
methods have comparable performance, while the non-
adaptive method resulted in significantly biased estimations
due to the adverse effects of non-stationary prediction error.
The future scope of this work is to extend the algorithm to
estimate the dynamic inputs, which will result in a joint
input–parameter–noise estimation, and to validate the
algorithm in real-world applications where the modeling errors
can result in divergence or significant bias in regular model
updating algorithms.
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