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Combination of
machine learning-based
bulk and single-cell genomics
reveals necroptosis-related
molecular subtypes and
immunological features in
autism spectrum disorder

Lichun Liu1†*, Qingxian Fu2†, Huaili Ding3†, Hua Jiang1,
Zhidong Zhan4 and Yongxing Lai5*

1Department of Pharmacy, Fujian Children’s Hospital, Fuzhou, China, 2Department of Pediatric
Endocrinology, Fujian Children’s Hospital, Fuzhou, China, 3Department of Rehabilitation Medicine,
Fujian Children’s Hospital, Fuzhou, China, 4Department of Pediatric Intensive Care Unit, Fujian
Children’s Hospital, Fuzhou, China, 5Department of Geriatric Medicine, Shengli Clinical Medical
College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
Background: Necroptosis is a novel form of controlled cell death that

contributes to the progression of various illnesses. Nonetheless, the function

and significance of necroptosis in autism spectrum disorders (ASD) remain

unknown and require further investigation.

Methods: We utilized single-nucleus RNA sequencing (snRNA-seq) data to

assess the expression patterns of necroptosis in children with autism spectrum

disorder (ASD) based on 159 necroptosis-related genes. We identified

differentially expressed NRGs and used an unsupervised clustering approach to

divide ASD children into distinct molecular subgroups. We also evaluated

immunological infiltrations and immune checkpoints using the CIBERSORT

algorithm. Characteristic NRGs, identified by the LASSO, RF, and SVM-RFE

algorithms, were utilized to construct a risk model. Moreover, functional

enrichment, immune infiltration, and CMap analysis were further explored.

Additionally, external validation was performed using RT-PCR analysis.

Results: Both snRNA-seq and bulk transcriptome data demonstrated a greater

necroptosis score in ASD children. Among these cell subtypes, excitatory

neurons, inhibitory neurons, and endothelials displayed the highest activity of

necroptosis. Children with ASD were categorized into two subtypes of

necroptosis, and subtype2 exhibited higher immune activity. Four

characteristic NRGs (TICAM1, CASP1, CAPN1, and CHMP4A) identified using

three machine learning algorithms could predict the onset of ASD.

Nomograms, calibration curves, and decision curve analysis (DCA) based on 3-

NRG have been shown to have clinical benefit in children with ASD. Furthermore,

necroptosis-based riskScore was found to be positively associated with immune
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activation. Finally, RT-PCR demonstrated differentially expressed of these four

NRGs in human peripheral blood samples.

Conclusion: A comprehensive identification of necroptosis may shed light on the

underlying pathogenic process driving ASD onset. The classification of necroptosis

subtypes and construction of a necroptosis-related riskmodelmay yield significant

insights for the individualized treatment of children with ASD.
KEYWORDS

single-cell, autism spectrum disorder, necroptosis, molecular subtype, machine
learning, immune infiltration
Introduction

Autism spectrum disorders (ASD) is a highly heterogeneous

and complex neurodevelopmental disorder that manifest as deficits

in social interaction, persistent impairments in behavioral or

interest constrictions, stereotypy, and repetitive patterns (1). Over

the past decades, the worldwide prevalence of ASD has increased

significantly, recent studies have reported that ASD affects 1 in 54

children worldwide (2). Males are notably more likely to develop

ASD than females (3). Recent studies have proven that genetics,

inflammatory response, oxidative stress, and hypoxic insult exert

crucial roles in leading to ASD progression (4–7). The specific

pathological mechanisms underlying ASD remain largely

unexplored. Moreover, individual differences in ASD children are

the primary factor leading to the poor efficacy of drug therapy in

clinical practice. Therefore, it is urgent to explore novel molecular

mechanisms and therapeutic targets for the early diagnosis and

treatment of ASD.

Necroptosis is a novel non-caspase-mediated regulated cell death,

and is characterized by cell swelling, cytoplasmic vacuolization, and

stressful rupture of cell membranes (8, 9). Under pathological

conditions, necrotic cells activate the inflammatory response in

surrounding cells by releasing the contents of cytoplasm, thus

playing a crucial role in inflammatory diseases, including sepsis,

systemic lupus erythematosus, and rheumatoid arthritis (10–13). In

addition, a growing number of studies demonstrated that necroptosis

can also serve as a key regulator in promoting the onset of central

nervous system (CNS) diseases. For example, RIPK-mediated

necroptosis may induce the microglial activation and eventually

lead to retinal degeneration (14). Necroptosis-related markers, such

as RIPK1, RIPK3, andMLK, exhibited a region-specific enhancement

in the brain with age, suggesting their role in age-related cognitive

impairment (15). Moreover, necroptosis may act as a promising

target for the treatment of stroke, as the neuroprotective effects of

genetic or pharmacological inhibition of necroptosis against stroke

have been demonstrated in vitro and in vivo (16). However, the role

and molecular mechanism of necroptosis in ASD remain unknown

and need further elucidation.

In the current study, we comprehensively identified the patterns

of necroptosis in ASD children. Data from single-nucleus RNA
02
sequencing (snRNA-seq) were employed to visualize the

necroptosis landscape in ASD children and among various cell

types. ASD children were subsequently classified into

heterogeneous subtypes based on the differentially expressed

necroptosis-related genes (NRGs), and the biological functions,

necroptosis levels, and immunological features between subtypes

were further evaluated. Subtype-specific NRGs were identified using

weighted gene co-expression network analysis (WGCNA). Three

machine learning algorithms (least absolute shrinkage and selection

operator (LASSO), random forest (RF), and support vector

machine-recursive feature elimination (SVM-RFE)) were

employed to determine the characteristic NRGs. For ASD

children at distinct risk levels, a necroptosis-based scoring system

was constructed to explore their biological characteristics, immune

score, and predictive drugs. Finally, RT-PCR analysis was employed

to further validate the expression of distinctive NRGs. The current

study inventively elucidated the relationship between necroptosis

expression landscapes and ASD heterogeneity, providing innovative

insights for the individualized treatment of children with ASD.
Materials

Data acquisition and processing

Three bulk transcriptomic datasets related to ASD (GSE111176,

GSE18123, GSE42133) were obtained from the Gene Expression

Omnibus (GEO) online website utilizing the “GEOquery” R

package (17). The GPL10558 dataset GSE111176, which included

119 ASD and 126 control samples, was selected as the test set.

Another GPL10558 dataset GSE42133, which included 91 ASD and

56 control subjects, and the GEP570 dataset GSE18123, which

included 66 ASD and 33 normal subjects, were selected as the

validation sets. These three original datasets were pre-processed and

normalized using the normalizeBetweenArrays method based on

the limman R package. The threshold p-value was determined by

controlling for the false discovery rate (FDR).

The original single-cell transcriptomic data (41 cortical samples

from 16 controls and 15 ASD patients) were obtained from the GEO

database (accession number: PRJNA434002) (18). We constructed
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1139420
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1139420
Seurat objects for total and individual cell types in the single-

nucleus RNA sequencing (snRNA-seq) gene expression matrix

using the Seurat package in R with min.cells = 3 and min.feature

= 200. Cells with greater than 15% mitochondrial content, less than

200 genes, and more than 7000 genes were excluded. The expression

landscape was normalized using the NormalizeData function.

Then, the highly variable genes were identified using the

FindVariableFeatures function of the Seurat package. Principal

component analysis (PCA) was conducted based on the top 2000

variable genes using the RunPCA method. Clustering was

performed utilizing the FindClusters function. A uniform

manifold approximation and projection (UMAP) analysis was

employed to further summarize the top principal components by

reducing their dimensionality. Sample integration and batch

elimination were performed using the RunHarmony function of

the harmony package. With the use of the FindAllMarkers function,

we identified differentially expressed genes (DEGs) in distinct

clusters and annotated the corresponding cell types according to

known cell markers. New cluster names were updated using the

RenameIdents function, and the DimPlot function was employed to

depict the profile of all cell types or subtypes.
Cell-cell communication analysis

The CellChat objects were generated using the CellChat R

package(19) based on the normalized snRNA-seq data from the

control and ASD groups, and the CellchatDB.human ligand-

receptor interaction data was utilized to set the secreted signaling

pathways as the preference database. Using the default parameters,

an analysis of intercellular communication was performed. Then,

for comparison purposes, the CellChat objects from the control and

ASD groups were merged according to the mergeCellChat function.

The differential interaction strength and number between two

groups were visualized using the netVisual_diffInteraction

function of the CellChat package. In addition, the distribution of

differentially expressed signaling pathways were determined and

plotted using the rankNet function.
Enrichment analysis at the snRNA-seq level

The irGSEA package is an integrated framework for assessing

the necroptosis score of a snRNA-seq matrix. The AUCell, AUCell,

singscore, and ssgsea approaches were employed to calculate the

necroptosis score for each cell. The distribution of necroptosis levels

in each cell was visualized using the irGSEA.density.scatterplot

function of the irGSEA package.
Identification of differentially
expressed NRGs

A total of 159 NRGs were obtained from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) Pathway databases.
Frontiers in Immunology 03
The differentially expressed genes (DEGs) associated with

necroptosis were screened based on the following criteria:

adjusted p-value<0.001. The profiles of differentially expressed

NRGs were visualized using the heatmap, volcano plot, and

violin chart.
Functional enrichment analysis at the bulk
transcriptome level

The GO (Gene Ontology) and KEGG analysis were performed

to assess the biological functions and signaling pathways of the

differentially expressed NRGs using the “clusterProfiler” R package

(20). Significant enrichment functions and pathways were

determined based on the adjusted p-values < 0.05.

The “GSVA” R package was applied for evaluating the

differences in enriched functions and signaling pathways between

distinct necroptosis subtypes (21). Briefly, two gensets

(“c2.cp.kegg.v7.4.symbol” and “c5.go.bp. v7.5.1.symbols”)

obtained from the Molecular Signature Database (MSigDB)

database were considered as input files for the following GSVA

analysis. Relative functions and pathways were identified by

calculating the GSVA scores between distinct necroptosis

subtypes based on the “limma” R package. Functions and

pathways with a GSVA score (|t value|) greater than 2 were

considered to be significantly enriched.

GSEA is a computational algorithm based on pre-defined gene

sets that calculates the difference in gene distribution between two

groups. The “clusterProfiler” and “GSEABase” R packages were

utilized to identify signaling pathways that were significantly

enriched between different groups. The”c2.cp.kegg.v7.4.symbols”

file was selected as the reference gene list. A p-value less than 0.5

was considered to be statistically significant.
Immune cell infiltration analysis

The proportions of 22 immune cell subtypes were estimated

using the CIBERSORT algorithm based on R software (22). The

LM22.txt file with the gene expression matrix of 22 immune cell

subtypes and the gene expression profile of each sample was

selected as the input file for further analysis. Subsequently, the

estimated composition ratios of 22 immune cell subtypes in each

sample were visualized. In addition, we also applied the “estimate” R

package for calculating the overall immune score in the ASD and

control groups, respectively. A p-value less than 0.05 was

considered to be statistically significant.
Unsupervised clustering of ASD patients

The unsupervised clustering analysis was performed based on the

expression profiles of differentially expressed NRGs. Briefly, using the

“ConsensusClusterPlus” R package (23), 129 ASD patients were

divided into different clusters using a k-means algorithm with 1000
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iterations.We selected the maximum number of subtypes (k = 6), and

the optimal number of subtypes was comprehensively evaluated

based on the cumulative distribution function (CDF) curves,

consensus matrix, and consensus clustering scores of each subtype

(>0.9). In addition, t-Distributed Stochastic Neighbor Embedding

(tSNE) analysis was conducted to demonstrate and visualize the

distributional differences between necroptosis subtypes.
The weighted gene co-expression
network analysis

We utilized the “WGCNA” R package (24) to construct co-

expression modules and screen disease target candidates. The

expression profiles of the top 25% of genes with the largest

variance were selected as the input data. The soft threshold

power was evaluated and employed to derive an adjacency

matrix representing an approximate scale-free topology (R2 >

0.85). Linear correlations between gene pairs were calculated

using the Pearson correlation coefficient. The power function was

used to convert the expression matrix to a signed adjacency matrix,

build a scale-free network, and transform it into a topological

overlap matrix (TOM). We then conducted hierarchical clustering

of highly co-expressed genes. Branches were then removed from

the cluster tree using a dynamic tree pruning algorithm to generate

relative modules. The first major component is the Eigengene

Module (ME), which summarizes the overall levels of gene

expression in each module. MEs were employed to evaluate the

association between modules and clinical traits. Module

importance (MS) represents the correlation between various

genetic modules and disease characteristics. Genetic significance

(GS) was used to exhibit correlations between related modules and

module members.
Selection of characteristic genes

Three machine learning algorithms, least absolute shrinkage

and selection operator (LASSO), random forest (RF), and support

vector machine-recursive feature elimination (SVM-RFE), were

employed to screen characteristic NRGs. The LASSO algorithm

was employed to identify the valuable predictive genes (25, 26) and

their coefficients were determined by the best penalty parameter l
related to the smallest 5-fold cross validation via the “glmnet” R

package (27). SVM-RFE was also applied for selecting the key

feature genes. A linear support vector machine assigns an

appropriate weight to each feature variable, recursively filters

smaller and smaller feature subsets, and uses RFE to select the

optimal feature subset (28, 29). The SVM-RFE algorithm was

performed through 5-fold cross-validation based on the R

package of “e1071”. Boruta is a RF packed feature selection

algorithm for identifying all reliable variables in a classification

framework. We applied significance thresholds maximum iterations

= 300 and p-value ≤ 0.01 for identifying the important feature genes
Frontiers in Immunology 04
based on the “Boruta” R package (30). After 300 iterations are

completed, NRGs that were still not sure if they were classified as

significant variables, along with NRGs rejected by the algorithm

would not be included in the subsequent analysis. We then fitted the

important NRGs identified by the Boruta algorithm into a RF model

using the “caret” R package. Parameters were set to default, and the

top 10 NRGs with gene importance were identified as RF-related

feature genes. The final hub NRGs were determined by intersecting

the feature genes identified by the LASSO, RF, and SVM-RFE

machine learning algorithms.
External validation of diagnostic model
based on final hub NRGs

Other two datasets, GSE18123 and GSE42133, were employed

to verify the accuracy of the constructed LASSO model for the

diagnosis of ASD based on final hub NRGs. The “pROC” R package

was applied for plotting the ROC curves for each dataset, and the

AUC value was calculated to validate the classification efficiency.
Construction of a nomogram

On the basis of the “rms” R package, the final hub NRGs were

determined as the input data for establishing a nomogram gene

map. The efficiency and clinical significance of the nomogram were

evaluated using the calibration curves and decision curve analysis

(DCA), respectively.
Construction of the necroptosis score

The coefficients of the final hub NRGs generated from the

LASSO model were employed to calculate the necroptosis score as

follows: necroptosis score = Si Coefficientsi × Expression level of

genei. The cutoff value was determined based on the median value

of necroptosis score. Subsequently, 129 ASD patients were classified

into high- and low-risk groups.
Connectivity map and mechanism of
action analysis

The Connectivity Map database was utilized to predict the

potential small-molecule compounds targeting the riskScore.

Briefly, the top 100 most upregulated and downregulated genes

between high- and low-risk groups were chosen as input data. The

drug signature information obtained from the CMap database was

selected as the preferred drug information. The eXtreme Sum

(XSum) algorithm was utilized to compared the similarity of gene

expression and drug signatures, and the computed CMap scores

were employed to evaluate therapeutic potential in different

risk cases.
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Blood sample collection and processing

This study was approved by the Ethics Committee of Fujian

Children’s Hospital. Overall, a total of 10 children with ASD (3 girls

and 7 boys; mean ± standard deviation age, 3.9 ± 0.83 years) and 10

healthy volunteers (4 girls and 6 boys) matched for age (3.5 ± 1.1

years) from The Fujian Children’s Hospital were enrolled into the

study. All the patients/volunteers provided written informed

consent to participate in this study. The plasma samples were

collected from each individual and stored on ice, then

immediately transferred to the laboratory.
RT-PCR analysis

Total RNA was isolated from Trizol reagent (Invitrogen, CA,

USA). Following the manufacturer’s procedure, cDNA was

produced using the PrimeScriptTM RT Reagent Kit with gDNA

Eraser (No. RR047A, Takara, Shiga, Japan). SYBR Green and

CFX96TM Real-Time PCR Detector Devices were used for

running the real-time PCR analysis (Bio-Rad, CA, USA). After

normalization to b-actin, the mRNA levels of characteristic genes

were determined using the 2-DDCt method based on the

manufacturer’s procedure. The primers utilized for the RT-PCR

analysis were as follows: TICAM1: forward, 5′- ATACCACC

TCTCCAAATACCAAG -3′, reverse, 5′- CGTGGAGGATC

ACAAAGTTATAG-3’; CASP1: forward, 5′- GGGACTCTCAGC

AGCTCCTC-3′, reverse, 5′-TGCAGATAATGAGAGCAAGACG-
3’; CAPN1: forward, 5′-AGTTCATCAACCTGCGAGAGG -3′,
reverse, 5′-TTCTCGTCAATCTC CTCTTCTGAG-3’; CHMP4A:

forward, 5′- ATTCAACAGGAGCTACAAA CAGC′, reverse, 5′-
GAAACTCCAGGGTGGATAATGT-3′; b-actin: forward, 5′-
Frontiers in Immunology 05
GTCCACC GCAAATGCTTCTA′, reverse, 5′- TGCTGTCACCT

TCACCGTTC -3′.
Statistical analysis

All statistical analysis was conducted using R software (version

4.1.0). Wilcoxon sum-rank testing or student’s t-testing was

employed to compare the difference between two groups. The

correlation analysis among feature genes was presented via

Spearman’s correlation test. All statistical p-values calculated were

two-sided. Two-sided p < 0.05 was considered to be

statistically significant.
Results

Evaluation of necroptosis based on
snRNA-seq data

The detailed flow chart of the study process is presented in

Figure 1. We initially utilized the snRNA-seq expression matrix to

explore the extent of necroptosis in ASD patients. Following initial

quality control filtering, roughly 36501 distinct genes were extracted

from 101420 cells spread over the 41 cortical samples. We

performed a PCA and UMAP-based clustering on the informative

PCA space (n = 15) after normalizing gene expression, and finally

identified 16 distinct cell clusters based on their highly variable

genes. Then, these cell clusters were categorized into known cell

subtypes as follows: excitatory neurons (48107 cells),

oligodendrocytes (15099 cells), astrocytes (11914 cells), OPC

(10246 cells), inhibitory neurons (9261 cells), microglias (4055

cells), and endothelials (2738 cells). The tSNE depicted the
FIGURE 1

The flow chart of this study. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns no significance.
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distribution of cells related to clusters and cell subtypes (Figures 2A,

B). Cell type proportions of each group are shown in Figure 2C,

indicating that excitatory neurons, astrocytes, and OPC were

enriched in ASD samples. In contrast, oligodendrocytes and

endothelials were abundant in control samples. The expression of

top 10 signature genes in each cell type are depicted in Figure 2D,

suggesting that these markers can accurately discriminate distinct

cell subtypes. The CellChat analysis was then used to evaluate the

differences in intercellular interactions between the control and

ASD groups. The interaction strength strengthened from normal to

AD. In particular, excitatory neurons with OPC, inhibitory neurons,
Frontiers in Immunology 06
and astrocytes exhibited greater interaction strengths with other cell

types in the ASD group compared to the control group. While less

interaction numbers between inhibitory neurons and astrocytes

were detected in the ASD group (Figure 2E). Comparing the

interaction intensities of each pathway led to the generation of

specific pathways between the control and ASD groups. NRG,

CX3C, and SPP1 signaling pathways are notably active in AD

patients, whereas FGF and PDGF signaling pathways are more

active in the control group (Figure 2F).

Next, on the basis of the snRNA-seq expression matrix, we

implemented a variety of scoring algorithms to quantify the
D

A B

E

F

C

FIGURE 2

Identification of distinct cell clusters on the basis of snRNA-seq data. (A, B) The tSNE clustering of 101420 single cells from 41 cortical samples,
exhibited the generation of 16 main clusters (A), including 7 for excitatory neurons, 1 for oligodendrocytes, 1 for astrocytes, 2 for OPC, 3 for
inhibitory neurons, 1 for microglias, and 1 for endothelials (B). Each dot corresponds to one cell, and each color corresponds to one cell cluster.
(C) A stacked bar chart exhibiting the cell type proportions of each group. (D) A heatmap showing the top 5 distinctive signature genes in each
cluster of cellular annotations. (E) Circle plots exhibiting the differences in the number of interactions (left) and strength of interactions (right) in the
intercellular communication network between control and ASD groups. The thicker the lines, the stronger the interactions, and the red or blue
colors signify increased or decreased signaling pathways in ASD children compared to the control group, respectively. (F) A bar graph illustrating the
differences in intercellular pathways between the control and ASD groups.
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necroptosis score. As illustrated in Figures 3A–H, all algorithms,

including AUCell, UCell, singscore, and ssgsea, revealed that ASD

patients had a considerably greater necroptosis score than the

control group, Therefore, we further retrieved and examined

snRNA-seq data targeting ASD-infiltrating various cells.

Interestingly, we discovered that all four algorithms displayed the

prominent necroptosis score in excitatory neurons, inhibitory

neurons, and endothelials relative to other cell types (Figures 3I–L).

These findings indicated that elevated levels of necroptosis may

contribute to the progression of ASD.
Identification of dysregulated necroptosis
regulators associated with ASD

We then selected a bulk transcriptome dataset (GSE111176)

with 119 ASD and 126 control samples to further validate the

necroptosis level in ASD children. Consistently, a significantly

higher necroptosis score was also observed in the ASD group

(Figure 4A). A total of 2804 ASD-related DEGs (1439 up-

regulated, 1365 down-regulated) were determined using the DEG

approach. Subsequently, we crossed 159 NRGs with 2804 ASD-

related DEGs, and finally identified 15 of them as necroptosis-

associated DEGs (Figure 4B). Among them, the expression levels of

SPATA2, STAT4, HMGB1, TRPM7, PLA2G4A, FTH1, and VPS4B

genes were markedly higher, while the CHMP2A, CHMP4A,

SLC25A6, RNF31, RIPK3, TICAM1, CAPN1 and CHMP4B genes

expression levels were notably lower in ASD children than that in
Frontiers in Immunology 07
non-ASD normal subjects (Figures 4C, D). We then correlated these

15 differentially expressed NRGs to assess whether necroptosis

exerted toxic effects in ASD children. Interestingly, some NRGs,

such as HMGB1 and TRPM7, HMGB1 and PLA2G4A presented

highly synergistic actions (coefficient = 0.89 and 0.75). whereas

SLC25A6 exhibited significant antagonism effects with HMGB1,

TRPM7, PLA2G4A, and FTH1 (coefficient = -0.75, -0.73, -0.81, and

-0.75). In addition, the correlation patterns of other NRGs such as

RNF31 and CHMP2A, CHMP4A and CHMP4B, RNF31 and

CHMP4B, TRPM7 and CHMP4B were also meaningful

(Figures 4E, F). Furthermore, functional analysis displayed that

these NRGS were primarily enriched in cytokinetic processes,

regulation of adaptive immune response, regulation of autophagy,

and vacuolar transport. The results of KEGG pathway analysis

indicated that these NRGS were mainly associated with necroptosis,

cellular senescence, endocytosis, HIV-1, and NOD-like receptor

signaling pathways (Figures 4G, H).
Altered functions and immunological
features in ASD

To elucidate whether ASD children exhibited the altered

functions and immune patterns, we first performed GSEA and

found that oxidative phosphorylation, unfolded protein response,

interferon response, and some classic pathways such as p53 and

mTORC1 were negatively correlated with ASD (Figure 5A). The

results of immune infiltration analysis indicated the infiltration
D

A B E F

G

I

H

J K L

C

FIGURE 3

Evaluation of necroptosis activity based on snRNA-seq data. (A–D) The AUCell (A), UCell (B), singscore (C), and ssgsea (D) algorithms depicting the
distribution of necroptosis activity at each cell based on the tSNE plots. (E–H) Violin plots exhibiting the differences in necroptosis score between
control and ASD groups on the basis of the AUCell (E), UCell (F), singscore (G), and ssgsea (H) algorithms. ****p < 0.0001. (I–L) Violin plots
exhibiting the differences in necroptosis score among various cell subtypes on the basis of the AUCell (I), UCell (J), singscore (K), and ssgsea (L)
algorithms.
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levels of naïve B cells, naïve CD4+ T cells, and activated dendritic

cells were significantly higher in ASD children (Figures 5B, C),

suggesting the altered immunological features might be closely

related to the onset of ASD. Correlation analysis indicated that

most of these 15 NRGs were markedly associated with naïve B cell,

naïve CD4+ T cells, activated dendritic cells, and resting memory

CD4+ T cells (Figure 5D), revealing that the interaction of NRGs

with altered immune cells may be the critical pathophysiological

mechanism leading to AD progression.
Identification of necroptosis subtypes
in ASD

To further elucidate the expression patterns of necroptosis in

AD, we grouped the 129 ASD children based on the expression

profiles of 15 differentially expressed NRGs using a consensus

clustering algorithm. The consensus matrix plot showed that the

number of subtypes was more stable when k=2 (Figure 6A), and the

variability of the CDF plot was minimal when the concordance

index was 0.2-0.6 (Figure 6B). Furthermore, a significant difference

in D area under the CDF curve was presented when k=2-6

(Figure 6C). In addition, when k = 2, each subtype had the

highest consistency score (both above 0.9) (Figure 6D). Therefore,

these ASD samples were grouped into two subtypes, namely

subtype1 (n=91) and subtype2 (n=28). tSNE analysis
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demonstrated a direct and significant distribution difference

between these two subtypes (Figure 6E). As expected, there was

notable heterogeneity in the expression of 14 of 15 NRGs between

two subtypes (Figure 6F).
Identification of necroptosis subtypes-
associated biological functions and
pathways based on GSVA

The differences in enriched functions and signaling pathways

between distinct necroptosis expression patterns were assessed by

GSVA. The results indicated that mitochondrial-related biological

functions, inflammatory responses, and the regulation of immune

responses such as T cells extravasation, T cells receptor signaling

pathway, antigen processing and presentation, leukocyte mediated

immunity, B cells activation and proliferation, and neutrophil

migration were prominently upregulated in necroptosis subtype2

(Figure S1A). In addition, the results of pathway enrichment

analysis revealed that apoptosis, classical pathways, mitochondria,

and calcium homeostasis related pathways were elevated in

necroptosis suptype2. Otherwise, the significantly enriched

pathways also involved immune-related pathways such as the B

cells receptor, toll like receptor, natural killer cells, antigen

processing and presentation, and the intestinal immune network

(Figure S1B)
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FIGURE 4

Identification of differential NRGs in ASD children. (A) Representative Venn diagram revealing the intersection of DEGs and obtained NRGs. (B–D)
Representative volcano plot (B), heatmap (C), and split violin plots revealing the differentially expressed NRGs between healthy controls and ASD
children. (E, F) Representative correlation plot (E) and network (F) of 15 differentially expressed NRGs. *p < 0.05, ***p < 0.001. (G, H) Representative
results of GO : BP (G) and KEGG (H) enrichment analysis. **p < 0.01, and ****p < 0.0001.
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Identification of necroptosis subtypes-
associated immunological features

To further clarify the differences in molecular characteristics

between two necroptosis subtypes, we then performed immune

infiltrating analysis, and the results suggested that Subtype2

exhibited greater proportions of naïve B cells, naïve CD4+ T cells,

and neutrophils (Figures 7A, B). In addition, we also estimated the

difference in classic immune and immune checkpoint-associated

genes between two necroptosis subtypes. The results revealed that in

comparison to the necroptosis subtype1, most immunosuppression,

immune activation, and MHC-associated genes were remarkably

upregulated in the necroptosis subtype2 (Figures 7C–E).

Furthermore, the expression levels of immune checkpoints, such

as HAVCR2, TIGIT, ICO2, CTLA4, CD40, and CD27 were notably

elevated in the necroptosis subtype2, indicating that the necroptosis

subtype2 displayed greater immune responses than necroptosis

subtype1. We therefore determined necroptosis subtype2 as an

immune subtype and necroptosis subtype1 as a non-immune

subtype (Figure 7F).
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Co-expression module construction and
subtype-specific NGRS identification

The WGCNA algorithm was employed to construct a co-

expression network and identify the module that was most

correlated with the subtypes of necroptosis. A network with scale-

free topology and connectivity was more efficient when the optimal

soft threshold power was set to 15 according to the

PickSoftThreshold function (Figure 8A). The clustering tree was

divided into five different colored modules using a hierarchical

clustering approach (Figure 8B). Among these modules, the

turquoise module (4923 genes) had the highest correlation with

subtype1 (R = -0.96) and subtype2 (R = 0.96) (Figure 8C). We

graphically illustrated the interaction among the identified modules

and utilized a heatmap to visualize the TOM containing all genes in

the analysis (Figure 8D). Meanwhile, there was a notable correlation

between turquoise modules and module-related signatures

(cor=0.98) (Figure 8E). Finally, we identified 33 subtype-specific

NGGs by intersecting the turquoise module-related genes with the

159 NRGs obtained from KEGG pathway databases (Figure 8F).
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FIGURE 5

GSEA and immune infiltration analysis between healthy controls and ASD children. (A) GSEA showing up- or down-regulated KEGG pathways
between healthy individuals and ASD children. A p-value less than 0.05 was considered to be statistically significant. (B) Representative stack chart
revealing the relative abundances of 22 infiltrated immune cells between healthy individuals and ASD children. (C) Representative box plots revealing
the infiltration levels of immune cells between healthy individuals and ASD children. (D) Representative correlation plot between 15 differentially
expressed NRGs and infiltrated immune cells. *p < 0.05, **p < 0.01, ***p < 0.001.
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1139420
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2023.1139420
Identification of feature genes via LASSO,
SVM-RFE, and RF algorithms

Three proven machine learning algorithms (LASSO, SVM-RFE,

and RF) were applied for identifying key characteristic NRGs. The

LASSO algorithm has been cross-validated for five times. Due to the

high accuracy of the LASSO classifier base on the optimal lambda

(0.0105), we chose the above optimal lambda to construct the

LASSO model, and final identified 17 NRGs (CHMP2A,

TICAM1, SLC25A6, CASP1, RIPK3, CAPN1, IL1B, CHMP4A,

XIAP, IFNGR1, TNF, STAT6, TNFRSF10B, CYLD, FTH1,

TNFRSF1A, and SQSTM1) with non-zero coefficients (Figure 9A,

Figures S2A, B). ROC curve analysis suggested that the AUC of the

17-NRG-based LASSO algorithm was 0.8291 in the train set and

0.7326 in the test set (Figure 9B). When the optimal number of

feature genes for the SVM-RFE algorithm was 15 (SLC25A6,

CASP1, CHMP2A, IL1B, SQSTM1, TICAM1, TNFRSF1A,

CAPN1, PLA2G4A, CYLD, RIPK3, PLA2G4B, RBCK1,

CHMP4A, and TRADD), the classifier had the highest accuracy

(Figure S2C) and a satisfactory AUC value in both the train set

(0.8090) and the test (0.7191) (Figure 9C). Furthermore, the Boruta
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feature selection approach confirmed a total of 7 NRGs as

important variables (Figure S2D). Subsequently, these 7

significant NRGs were fitter into the RF model and achieving an

AUC value of 1 in the train set and 0.682 in the test set (Figure 9D).

A total of 6 NRGs (TRPM7, CHMP4A, TICAM1, CHMP4B,

CASP1, and CAPN1) were demonstrated to contribute to the RF

model (Figure S2E). Following intersection, 4 characteristic NRGs

(TICAM1, CASP1, CAPN1, and CHMP4A) shared by LASSO,

SVM-RFE, RF algorithms were eventually determined (Figure 9E).
Construction and evaluation of a
4-NRG-based riskScore

The identified 4 NRGs with corresponding coefficients were

utilized to construct a necroptosis-based riskScore as follows:

riskScore = (-1.405703 × TICAM1) + (-1.064523 × CASP1) +

(-0.919285 × CAPN1) + (-0.324459 × CHMP4A). Afterward, the

diagnostic performence of riskScore in predicting the onset of ASD

in GSE111176, GSE42133, and GSE18123 was estimated using ROC

analysis, and the AUC value of the ROC curve was 0.747, 0.700, and
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FIGURE 6

Identification of necroptosis subtypes in ASD. (A) Consensus clustering matrices in ASD children (k = 2) based on 15 differentially expressed NRGs.
(B) Cumulative distribution function (CDF) curves when k = 2–6. (C) Relative alterations in the area under CDF curve. (D) Consensus clustering score
of each subtype. (E) t-SNE demonstrating that ASD children are categorized into two distinct necroptosis subtypes. (F) Representative split violin
plots revealing the expression of 15 differentially expressed NRGs between two subtypes.
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0.646 in GSE111176, GSE18123, and GSE42133, respectively,

proving that the 4-NRG diagnostic model could accurately

diagnose ASD to some extent (Figures 10A–C). Due to the

diagnostic model’s better performance in GSE111176, we next

established a nomogram for predicting the risk of ASD in

GSE111176 based on the expression landscapes of these 4 NRGs.

In the nomogram, the representation of each signature corresponds

to a point, and the total points correspond to the different ASD

risks, which were obtained by summing the scores of all signatures

(Figure 10D). The calibration curve demonstrated the accuracy of

the nomogram in diagnosing ASD (Figure 10E). DCA showed that

the clinical application of a nomogram based on the 4-NRG

diagnostic model has certain clinical benefits for ASD

children (Figure 10F).
Evaluation of the molecular characteristics
between distinct risk groups

ASD children were classified into high- and low-risk groups

based on the median value of constructed riskScore. These 4 NRGs

presented distinct expression patterns between the high- and low-
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risk groups (Figure 11A). Next, GSEA was applied to identify the

enriched signaling pathways between these two groups. The

riskScore based on the 4 NRGs was positively associated with

chemokine signaling pathway, cytokine-cytokine receptor

interaction, nod like receptor signaling pathway, and immune-

related signaling pathways, including B cells receptor, toll like

receptor, natural killer cells (Figure 11B), whereas it was

negatively related to basal transcription factors and TGF-b
signaling pathway (Figure 11C). Consistently, the high-risk group

also presented a higher immune score than that in the low-risk

group (Figure 11D), suggesting that the high-risk group had more

powerful immune responses and might benefi t f rom

immune therapy.

To further elucidate the potential drug targets high-necroptosis

ASD children, we perform CMap analysis to predict the small-

molecule compounds, the result revealed that the top 5 small

molecule compounds with potential for individualized treatment

for the high-risk group were as follows: tacrolimus, STOCK1N-

35696, butein, fasudil, and TTNPB (Figure 11E).

External validation of characteristic NRGs by RT-PCR

Finally, RT-PCR was employed to verify the expression

landscapes of these four characteristic NRGs in the external
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FIGURE 7

Identification of immunological features between two necroptosis subtypes. (A) Representative stack chart revealing the relative abundances of 22
infiltrated immune cells between two necroptosis subtypes. (B) Representative box plots revealing the infiltration levels of immune cells between
two necroptosis subtypes. (C–F) Representative box plots revealing the expression of immunosuppression (C), immune activation (D), MHC-
associated genes (E), and immune checkpoints (F) between two necroptosis subtypes. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001, and ns
no significance.
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cohort. Similarly, the expression levels of CASP1 was notably higher

in ASD peripheral blood samples, while TICAM1, CAPN1, and

CHMP4A displayed significant downregulation in ASD

children (Figure 12).
Discussion

ASD is a neurodevelopmental disorder with a high prevalence

in children. Although the Autism Diagnostic Interview-Revised

(ADI-R) and the Autism Diagnostic Observation Schedule

(ADOS), are currently the most commonly used methods for

diagnosing ASD (31), they remain unsatisfactory in terms of

diagnostic specificity and accuracy. In addition, due to the lack of

specific neurological markers and the heterogeneity of pathogenesis
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and clinical symptoms in children with ASD, a large number of

patients could not achieve effective treatment (32, 33). Thus, further

exploration of more accurate diagnostic markers and more

representative molecular subtypes associated with ASD is

badly needed.

Necrosis is a critical form of programmed cell death

characterized by the activation of MLKL/pMLKL through a

RIPK1/RIPK3-mediated phosphorylation pathway (13, 34).

Recent studies have demonstrated that NRGs play a crucial role

in prompting the progression of cardiac and neurological diseases

and can serve as a biomarker for prognosis and treatment in

patients with multiple diseases (35–38). Furthermore,

bioinformatics analysis elucidated the key role of necrosis-based

prognostic models in the diagnosis and treatment of patients with

various cancers (39–41). However, whether necroptosis is
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FIGURE 8

Identification of necroptosis-related NRGs base on WGCNA algorithm. (A) Analysis of scale-free fitting index and average connectivity for multiple
soft-threshold parameters. (B) Representative hierarchical clustering of genes based on the different topological overlaps and module colors. (C)
Representative module-trait heatmap revealing the correlation of the module eigenvalues with distinct subtypes. (D) Representative heatmap of
gene networks. (E) Representative scatter plot revealing the correlation between turquoise modules and module membership. (F) Representative
Venn diagram revealing the intersection of turquoise module-related genes and obtained NRGs.
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implicated in ASD progression has not been reported so far.

Therefore, a large-scale, comprehensive analysis is urgently

needed to clarify the role of necroptosis in ASD children. In this

study, we first performed snRNA-seq analysis to display the

landscape of necroptosis in ASD children, and we found children

with ASD exhibited a higher necroptosis score relative to control

individuals. Among these distinct cell subtypes, excitatory neurons,

inhibitory neurons, and endothelials had the relative higher levels of

necroptosis activity. Consistently, bulk transcriptomic data also

demonstrated a greater necroptosis score in ASD children. In

addition, we determined 15 differentially expressed NRGs

between ASD and non-ASD children, most of which exhibited

apparent interaction, suggesting a vital role of necroptosis in

exacerbating the progression of ASD. Enrichment analysis

indicated that these differentially expressed NRGs were mainly

involved in immune-related biological functions and signaling

pathways. Meanwhile, the abundances of immune cells were

significantly different between healthy individuals and ASD

children, as evidenced by a higher proportion of naïve B cells,

naïve CD4+ T cells, and activated dendritic cells in patients with

ASD, which were consistent with the previous studies (42–44).

Furthermore, a significant correlation between NRGs and infiltrated

immune cells suggested that the potential pathogenic mechanism by

which NRGs promoted ASD progression may involve interactions

with immune cells. Consensus clustering analysis has been widely
Frontiers in Immunology 13
applied for identifying distinct subtypes of diseases, especially in

tumor patients (45–48). On the basis of 15 differentially expressed

NRGs, we classified ASD children into two distinct subtypes using

consensus clustering analysis. GSVA enrichment analysis suggested

that necroptosis subtype2 was primarily involved in biological

functions and pathways including mitochondrial functions,

inflammatory responses, and immune responses. Immune

infiltration analysis demonstrated a notable difference in

infiltrated immune cells between these two necroptosis subtypes.

Moreover, higher expression levels of immune checkpoints were

also observed in necroptosis subtype2. Combined with these results,

it would be reasonable to believe that necroptosis subtype2 may

inhibit ASD progression by exhibiting a stronger immune response,

and ASD patients with subtype2 may have a better prognosis

for immunotherapy.

Subsequently, we identified 33 subtype-specific NRGs based

on the WGCNA algorithm. Three machine learning algorithms,

including LASSO, SVM-RFE, and RF were performed to

determine four characteristic NRGs (TICAM1, CASP1, CAPN1,

and CHMP4A). Interestingly, the roles of these four genes in ASD

have not been previously reported. TIR domain-containing

adap to r mo lecu l e -1 (TICAM1) , a key regu l a to r o f

proinflammatory cytokine and interferon (IFN) responses, is a

key adapter protein involved in TLR3 and TLR4 signaling

pathways. Lack of TICAM1 expression prevents IFN production
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FIGURE 9

Identification of characteristic NRGs base on machine learning algorithms (A) Specific coefficient values for the 17 NRGs identified by the LASSO
algorithm. (B) ROC curve values for the 17 NRG-based LASSO algorithm in the train and test sets. (C) ROC curve values for the 15 NRG-based SVM-
RFE algorithm in the train and test sets. (D) ROC curve values for the 6 NRG-based RF algorithm in the train and test sets. (E) Representative Venn
diagram revealing the characteristic NRGs shared by LASSO, RF, and SVM-RFE algorithms.
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and is frequently closely associated with human rhinovirus (RV)

infection (49). CASP1 is a cell death marker encoding a variety of

genes (50). It is reported that the activation of NLRP3-CASP1 axis

is closely related to the microglia-mediated neuroinflammation

and autophagy dysfunction, eventually leading to the onset of

neurological diseases (51). As a member of calpain protein

superfamily, CAPN1 activation has been demonstrated to

degrade cytoskeleton proteins, vital enzymes, and mitochondrial

membrane-related proteins, which may play a primary role in

ischemia-induced neuronal injury (52–54). Some research based

on microarray analysis has demonstrated that CHMP4A could act

as prognostic biomarkers and druggable targets for various

diseases, including hepatocellular carcinoma, colorectal cancer,

and ovarian carcinoma (55–57). In our current study, we

established a risk model composed of 4 characteristics NGRs

based on the coefficients of the LASSO analysis. The internal

and external validation datasets were utilized to validated the

diagnostic performance of these 4 NRGs-based risk model, and

the results indicated that the ROC curves, nomograms, calibration

curves and DCA based on the four NRGs could predicted the

onset of ASD more accurately than individual feature NRG.
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Combined with the above findings, we considered that

necroptosis may be the crucial regulator leading to the poor

prognosis and individual heterogeneity in ASD.

To further clarify the correlation of necroptosis with ASD, we

grouped ASD children into distinct risk groups based on the

median value of riskScore. GSEA revealed that the immune

responses-related biological functions and pathways such as B

cells receptor, toll like receptor, natural killer cells responses in

the high-risk group were stronger than those in the low-risk group.

These results revealed that ASD children with a higher necroptosis

score might be more likely to benefit from immunotherapy.

However, several limitations cannot be ignored in this study.

First, we need to consider more detailed clinical information to

verify the clinical effectiveness of the necroptosis score in ASD

children. In addition, follow-up experiments in vivo or in vitro are

necessary to explore the underlying roles and mechanisms of these 4

characteristic NRGs in ASD. Furthermore, due to the small sample

size, the sensitivity and specificity of the 4-NRG diagnostic model

are not satisfactory, which can easily lead to missed diagnosis.

Therefore, a larger ASD cohort is urgent to train the diagnostic

model and improve the prediction accuracy.
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FIGURE 10

Construction and validation of the performance of 4-NRG diagnostic model. (A–C) ROC curves evaluating the diagnostic efficacy of 4-NRG diagnostic
model in GSE111176 (A), GSE42133 (B), and GSE18123 (C). (D) Representative nomogram based on 4 characteristic NRGs for predicting ASD progression.
Each variable corresponds to a score, and the scores of all variables are added together to calculate the total scores. (E) Representative calibration curve
evaluated the diagnostic accuracy of the nomogram. (F) Representative DCA displayed the clinical benefit of the nomogram.
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Conclusion

In summary, we were the first to comprehensively clarify the

expression patterns of necroptosis in ASD children and to disclose a

novel molecular classification associated with necroptosis. In
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addition, machine learning-based determination of four

characteristic NRGs (TICAM1, CASP1, CAPN1, and CHMP4A)

could accurately predict ASD onset. Moreover, we constructed a

riskScore model on the basis of characteristic NRGs and explored

potential small-molecule compounds targeting ASD children at
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FIGURE 11

Differences in the molecular characteristics of children at low and high risk of ASD. (A) Representative heatmap revealing the expression of model
genes in ASD children. (B, C) GSEA showing the upregulated (B) downregulated (C) signaling pathways between low- and high-risk groups.
(D) Representative violin plot revealing the immunoscore between the low- and high-risk groups. (E) CMap analysis revealing the top 5 small
molecular compounds targeting high-risk children.
FIGURE 12

External validation of characteristic NRGs. Representative violin plots revealing the expressional differences in TICAM1, CASP1, CAPN1, and CHMP4A
between control and ASD children. *p < 0.05, **p < 0.01.
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different risks. Our study would provide novel insights into the early

diagnosis and individualized treatment of children with ASD.
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