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Introduction: The objective of fine-grained image classification on marine

organisms is to distinguish the subtle variations in the organisms so as to

accurately classify them into subcategories. The key to accurate classification

is to locate the distinguishing feature regions, such as the fish’s eye, fins, or tail,

etc. Images of marine organisms are hard to work with as they are often taken

from multiple angles and contain different scenes, additionally they usually have

complex backgrounds and often contain human or other distractions, all of

which makes it difficult to focus on the marine organism itself and identify its

most distinctive features.

Related work:Most existing fine-grained image classification methods based on

Convolutional Neural Networks (CNN) cannot accurately enough locate the

distinguishing feature regions, and the identified regions also contain a large

amount of background data. Vision Transformer (ViT) has strong global

information capturing abilities and gives strong performances in traditional

classification tasks. The core of ViT, is a Multi-Head Self-Attention mechanism

(MSA) which first establishes a connection between different patch tokens in a

pair of images, then combines all the information of the tokens for classification.

Methods: However, not all tokens are conducive to fine-grained classification,

many of them contain extraneous data (noise). We hope to eliminate the

influence of interfering tokens such as background data on the identification

of marine organisms, and then gradually narrow down the local feature area to

accurately determine the distinctive features. To this end, this paper put forwards

a novel Transformer-based framework, namely Token-Selective Vision

Transformer (TSVT), in which the Token-Selective Self-Attention (TSSA) is

proposed to select the discriminating important tokens for attention

computation which helps limits the attention to more precise local regions.
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TSSA is applied to different layers, and the number of selected tokens in each

layer decreases on the basis of the previous layer, this method gradually locates

the distinguishing regions in a hierarchical manner.

Results: The effectiveness of TSVT is verified on three marine organism datasets

and it is demonstrated that TSVT can achieve the state-of-the-art performance.
KEYWORDS

token-selective, self-attention, vision transformer, fine-grained image classification,
marine organisms
1 Introduction

Fine-grained Image Classification (FIC) is a challenging task

which utilizes subtle variations of the same species to differentiate

the different subcategories, examples include birds (Van Horn et al.,

2015), dogs (Khosla et al., 2011), and cars (Krause et al., 2013).

Unlike general image classification, FIC requires sufficient attention

being paid to the distinguishing features between the subcategories.

There are a large number of highly similar fish and plankton in the

ocean, and the classification of these subcategories (Li et al., 2019; Li

et al., 2022) is conducive to the protection of marine ecology and

biodiversity. However, the images of marine organisms are often

taken in multi-angle and multi-scene situations, additionally, the

background of marine life images is complex, which also increases

the difficulty of recognition.

Recently, fine-grained image classification methods have made

great progress due to the development of Deep Neural Networks

(DNNs) (Simonyan and Zisserman, 2015; He et al., 2016; Liu et al.,

2022; Shi et al., 2022; Wang et al., 2022). Strongly supervised fine-

grained classification methods (Branson et al., 2014; Zhang et al.,

2014; Wei et al., 2018) require labor-intensive labeling of images, so

weakly supervised classification methods which rely only on category

labels are now commonly preferred. CNN-based weakly supervised

methods on fine-grained image classification can be mainly divided

into localization methods and feature-encoding methods.

Localization methods first locate the distinguishing regions and

then extract features from these regions for classification. For

example, some works (Ge et al., 2019; Liu et al., 2020) obtain the

discriminating bounding boxes through Region Proposal Networks

(RPNs) and then feed these regions into the backbone network for

classification. However, the bounding boxes contain a lot of

background areas with interfering information. Therefore, the

discriminating regions localized by these methods are not precise

enough. In addition, whilst the feature-encoding methods (Lin T.-Y.

et al., 2015; Yu et al., 2018) make the output of the network change

from semantic features to high-order features which can represent

fine-grained information by means of feature fusion, the high-order

features obtained by these methods have large dimensions, and the

fine-grained information is not distinguishable.

Recently, Vision Transformer (ViT) (Dosovitskiy et al., 2021)

has demonstrated potent performance on various visual tasks
02
(Carion et al., 2020; Zheng et al., 2021; Guo et al., 2022).

Specifically, in the task of image classification, a whole image is

split into several patches, and each patch is converted into a token

through linear projection. Then, the importance of each token is

obtained through the Multi-Head Self Attention (MSA), and finally

all of the tokens are combined according to the importance for

classification. MSA in Transformer provides long-range

dependency to enhance the interaction among image patches, so

Transformer is able to locate subtle features and explore their

relations from a large global scale perspective, whereas a

traditional CNN has limited receptive fields and weak long range

relationship abilities in very high layers with fixed-size

convolutional kernels. ViT is therefore better suited to fine-

grained classification tasks. In addition to the above advantages,

ViT also has certain shortcomings, such as insufficient local sensing

ability, tedious computation of MSA, and the need to consider the

correlation among all tokens, our research is dedicated to

improving these deficiencies.

Images of marine organisms are mostly taken from the bottom

of the sea, the background of the images often contains reefs, corals

and algae, which interferes with the recognition of the marine

organisms themselves. A few images of marine life are taken from

beaches, fishing boats and other scenes, the change of scenes also

affects the identification of marine life. At the same time, due to the

irresistible factors of camera angle and distance, images of the same

subcategory show diverse global features, so paying too much

attention to the global information is not conducive to correct

classification. Examples of the three different scenarios are shown

in Figure 1.

In this paper, to reduce the interference of intra-category

diverse global information and useless background information,

we propose a novel Token-Selective Vision Transformer (TSVT) for

fine-grained image classification of marine organisms, which selects

discriminative tokens layer by layer and gradually excludes

interfering tokens. We propose a localized attention mechanism

called Token-Selective Self-Attention (TSSA) to explore contextual

information in discriminating regions and enhance the interaction

amongst selected tokens. Influenced by the idea of clustering, for

each discriminative token, only the other discriminative tokens

related to it are selected for information interaction, then the class

token integrates the information of these discriminative tokens for
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classification. Finally, we verify the efficacy of TSVT for fine-

grained image classification of marine organisms on three marine

biological datasets.

In summary, our work has the following three contributions:
Fron
• We propose TSVT, a novel Vision Transformer framework

for fine-grained image classification of marine organisms

that excludes background interference and refines the range

of distinguishing regions layer by layer.

• We propose Token-Selective Self-Attention (TSSA), which

removes the interference of irrelevant tokens, and then

establish the association of selected tokens in local regions

and extract the most discriminative features.

• We conduct experiments on three different datasets to

verify the effectiveness of our method, and show that

TSVT achieves state-of-the-art performance. Additionally,

we perform comparative experiments on TSSA ’s

parameters to further explore the impact of applying

TSSA to different layers, using different methods to select

tokens and selecting different numbers of tokens on model

performance.
2 Related work

2.1 Fine-grained image classification

2.1.1 CNN for fine-grained image classification
The fine-grained image classification methods based on CNN

are mainly divided into two categories: localization methods and

feature-encoding methods.
tiers in Marine Science 03
The basic idea of localization methods is to locate discriminative

local regions first, and perform feature extraction on these regions,

then cascade the extracted features and then again feed them to the

sub-network for classification. Earlier localization methods (Zhang

et al., 2014; Lin D. et al., 2015) rely on additional manual annotation

information such as object bounding boxes and part annotation to

help the network find the region with the most representative

features. However, since such annotations are time-consuming

and labor-intensive, more weakly supervised methods which only

require image-level labels are preferred. Some methods (Ge et al.,

2019; Liu et al., 2020) use RPN to obtain discriminative bounding

boxes and input the selected feature regions into the network to

capture local features. In addition, there are also methods to locate

discriminative regions by utilizing an attention mechanism: RA-

CNN (Fu et al., 2017) proposed Recurrent Attention to select a

series of distinguishing regions for attention mapping in a coarse-

to-fine manner; MA-CNN (Zheng et al., 2017) adopted a Multi-

Attention CNN structure to obtain multiple distinguishing regions

in parallel; MAMC (Sun et al., 2018) directed the generated

attention features to categories to help better classification; NTS-

Net (Yang et al., 2018) used a collaborative learning method to

accurately identify the feature information regions.

Feature-encoding methods obtain richer fine-grained features

for classification in the form of high-level feature interactions and

the design of loss functions. As the most representative method for

high-level feature interaction, B-CNN (Lin T.-Y. et al., 2015) used

two deep convolutional networks to extract features from the same

image, and then performed outer product operations on the feature

vectors to obtain bilinear features for classification. However, the

large feature dimensions of this method leads to a very large

number of parameters, which is not easy to drive during training.

To solve this problem, C-BCNN (Gao et al., 2016) adopted tensor

sketches to reduce the dimensions of high-dimensional features.
FIGURE 1

Some examples of marine life images. Three rows sequentially represent images with complex backgrounds, images of multiple scenes, and images
of marine life taken from multiple angles.
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Other methods attempt to capture features at higher levels to obtain

a more distinguishable feature representation. HBP (Yu et al., 2018)

combined the features of different layers through bilinear pooling,

and finally concatenated them for classification. The loss function

plays the role of a conductor’s baton in Deep Learning and model

learning is driven by it. In fine-grained image classification tasks,

there are corresponding approaches to the design of loss functions:

MaxEnt (Dubey et al., 2018) provided a training routine that

maximizes the entropy of the output probability distribution;

MC-Loss (Chang et al., 2020) focused on different local areas of

each channel in the feature map, which is more conducive to

feature learning.

2.1.2 ViT for fine-grained image classification
Transformer (Vaswani et al., 2017) was first applied to solve the

sequence to sequence problem in Natural Language Processing

(NLP) and has achieved better results than both convolutional

neural networks (CNNs) and recurrent neural networks (RNNs).

Subsequently, Transformer has been widely used in the field of

computer vision. ViT (Dosovitskiy et al., 2021) was the first

transformer-based model for image classification, which splits

images into a number of patches and inputs them to the

transformer layer, and then establishes the association between

different patches with the help of MSA, the classification is finally

carried out by using the class token. TransFG (He et al., 2022) was

the first to verify the effectiveness of vision Transformer on fine-

grained visual classification. The input of its last layer is the class

token and some important tokens representing distinguishing

features rather than all of the tokens. In addition, RAMS-Trans

(Hu et al., 2021) locates and extracts discriminative areas based on

attention weights, and then re-inputs them into ViT for

classification using multi-scale features.

In this paper, we propose TSSA, which allows each token to

select its own relevant tokens according to the attention weights for

attention computation. We integrate the one-to-one selection of

each token into the attention computation. Furthermore, we apply

TSSA to different layers of ViT to narrow the selection range layer

by layer, so as to gradually refine the distinguishing features,

yielding the major difference between our work and

previous methods.
2.2 Underwater image classification

Due to the influence of the complex imaging environment in the

ocean, the underwater images appear blurred, low contrast and low

resolution, therefore various image preprocessing methods (Qi

et al., 2022; Zhou et al., 2022; Zhou et al., 2023a; Zhou et al.,

2023b) such as image enhancement and image restoration are used

first to improve classification results. Recently, significant progress

has been made in underwater classification, thanks to the influence

of deep learning and the creation of several methods for underwater

organism detection (Chen et al., 2021; Wang et al., 2023a; Wang

et al., 2023b). The research on underwater biological image

classification can be mainly divided into two aspects, one is the
Frontiers in Marine Science 04
learning of biological features, the other is the feature fusion of

different levels or types. For the feature acquisition methods, the

earlier artificial methods (Alsmadi et al., 2010; Alsmadi et al., 2011)

were only effective for specific datasets or scenarios, subsequently

universal methods based on deep learning were adopted to learn

various features. DeepFish (Qin et al., 2016) first extracted the fish

regions using matrix decomposition, and then refined and learned

these regional features by Principal Components Analysis (PCA)

(Jackson, 1993) and CNN respectively. MCNN (Prasenan and

Suriyakala, 2023) segmented fish images by the firefly algorithm

and extracted features from the segmented parts. However, these

methods require a large amount of computation, therefore, to

maintain the balance between classification effect and cost, a

number of efficient improved CNN networks were proposed:

FDCNet (Lu et al., 2018) used filtering deep convolutional neural

networks to classify deep-sea species; deconvolutional neural

network was applied to different squid classification (Hu et al.,

2020). In addition, in order to solve the noise background problem,

AdaFish (Zhang et al., 2022) adopted adversarial learning to reduce

the interference of background on classification.

Some methods (Kartika and Herumurti, 2016; Gomez Chavez

et al., 2019) have obtained some limited improvement in

classification accuracy by learning only a single feature such as

fish color or coral texture, therefore combining multi-level or multi-

part information to complete classification is another direction of

underwater image classification. One method (Cui et al., 2018)

integrated the texture and shape features of plankton to improve

CNN performance; another method (Mathur et al., 2020) combined

the characteristics of different parts of fish through cross

convolutional layer pooling for prediction; whilst yet another

method used a multi-level residual network (Prasetyo et al., 2022)

which fused high and low level information through depth

separable convolution was also proposed and achieved a good

classification effect.
3 Methodology

3.1 Preliminary: vision transformer

The inputs of ViT are a sequence of serialized tokens. First, an

image with resolution H �W is first split into fixed-size patches xp,

each of size P � P, so the number of patches N is equal to H
P � H

W .

Each patch is transformed into a token xpt by a patch embedding

layer consisting of linear projection. In addition to patch tokens,

there is a dedicated class token xcls for final classification in the

classification task. So all tokens include patch tokens and the class

token. The above tokens only contain pixel information, and

position encoding adds corresponding position information xpos
to each token to determine the position of each patch in the original

image. All tokens are then fed into the transformer encoder, and the

inputs of the transformer encoder x0 are represented in Eq. 1:

x0 = ½xcls; x1pt ; x2pt ;…; xNpt � + xpos : (1)
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Transformer encoder is the core of ViT and contains l

transformer layers of MSA and Multi-Layer Perceptron (MLP)

blocks, as well as residual connections after every block. The

output of the lth layer is represented as follows:

x*l = MSA(LN(xl−1)) + xl−1 (2)

xl = MLP(LN(x*l )) + x*l , (3)

where xl−1and xl denote the encoded image representation of

the l − 1th and lth transformer layers, x*l is the output of the MSA

block after residual connection, LN represents layer normalization,

and the class token of the last transformer layer is used for category

prediction through MLP.
3.2 Overall architecture

Marine life images of the same subcategories present different

global information such as posture and viewpoint, so an over-

reliance on global information and a lack of attention to local

information are not conducive to the correct classification. In

addition, due to the complexity of the seabed environment,

images of marine organisms often contain complex backgrounds

such as reefs and corals, which will also affect the identification of

marine organisms. In order to address the above issues, we first

consider eliminating the interference of irrelevant factors such as

the background, and locating the marine organisms themselves,

then further locating the distinguishing areas. In this manner we

propose TSVT, which selects tokens layer by layer for more accurate

classification. By doing so, the number of tokens selected by the
Frontiers in Marine Science 05
latter layer is further reduced on the basis of the preceding layer so

as to more accurately refine the distinguishing areas and reduce the

computational cost. To this end, we design a local attention module

named TSSA, in which distinguishing tokens only interact with the

other distinguishing tokens selected according to the attention

weights, and the interference of background tokens is eliminated

to obtain the purest distinguishing feature information for

classification with the class token.

The framework of our TSVT is shown in Figure 2, where, the

first eight transformers remain unchanged according to the settings

of ViT, while the last four layers are Token-Selective Transformer

Layer (TS Transformer Layer). It is different from the standard

transformer layer in that it replaces the original MSA with TSSA.

The number of tokens selected in each layer is different, and the

local scope of attention is also different. The class token of the last

layer aggregates the most discriminating features in the local

regions and completes category prediction through MLP.
3.3 Token-selective self-attention

Fine-grained image classification requires focusing on local

discriminating regions, but the complex background of marine

biological images interferes with accurate localization of these

regions. To solve the above issue, we propose to eliminate the

interference of background tokens to the greatest extent and apply

local attention to the selected important discriminating tokens.

All tokens can be divided into two categories: discriminating

region tokens that play a positive effect in classification and

background interfering tokens that play a negative effect in

classification. Discriminating region tokens and background
FIGURE 2

The framework of our proposed TSVT and the details of our designed TSSA. An image is first split into a number of patches, each of which is
mapped into a feature vector by Linear Projection and combined with learnable position embedding. Contextual links between tokens are then
established in the Transformer Layers, and the selection of tokens representing the discriminating regions is performed layer by layer in the latter
four TS Transformer Layers with the number of selected tokens in each layer decreasing from the previous layers. In the TS Transformer Layer, TSSA
is a sparse selective attention mechanism that generates a mask based on the similarity between tokens so as to limit the attention computation
between non-relevant tokens.
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tokens are clustered separately for information interaction in TSSA

to ensure that discriminating tokens are no longer mixed with the

interference information of background tokens, and then the class

token integrates the information of distinctive tokens for the

final classification.

The correlation between tokens can be reflected by attention

weights. Previous work (Wang et al., 2021; He et al., 2022) has

proved that attention weights can be a good indicator for token

selection. The attention weights of each head in each transformer

layer A ∈ R(N+1)�(N+1) can be written as follows:

A = softmax(
Q · KTffiffiffiffiffi

dk
p ) = ½a0, a1, a2 … aN �, (4)

ai = ½ai,0, ai,1, ai,2 ……ai,N �, i ∈ (0,N) : (5)

According to the attention weights, the information of the token

is weighted and summed to obtain the calculation result of the

attention symbolized as Attention. The following formula is the

calculation process of MSA:

Attention = softmax(
Q · KTffiffiffiffiffi

dk
p ) · V , (6)

where Q, K and V are all obtained by the linear transformations

of tokens, all of which represent information about the token itself;

dk represents the dimensionality of K ; softmax is a normalized

exponential function; aij represents the degree of correlation

between the ith token and the jth token, that is, token i as Q and

token j as K for the calculation in Eq. 4; ai represents the set of

correlation degrees between the ith token and all tokens; and ·

represents the general matrix product.

Only the largestm elements in each row of attention weights are

selected, the selected elements remain unchanged, and the

remaining unselected elements are all set to zero, thus generating

new selective attention weights, which represent the degree of

correlation between each token and its most relevant m tokens. In

the computation of attention, the distinguishing tokens interact

with each other and the distinguishing features are strengthened.

In the implementation, to ensure parallel computing, a mask

matrix M with the same shape as the attention weights is first

generated, we set themth largest element ai in each row of attention

weights as the threshold to determine whether the elements at

different positions of mask matrix are one or zero. The process of

mask matrix conversion is represented as:

M(i,j) =
1  A(i,j) ≥ ai,

0  otherwise,

(
(7)

where (i, j) represents the position of each element in the mask

matrix the and attention weights in (n + 1)� (n + 1) positions.

Then the selective attention weights As are obtained by

computing the Hadamard product of the mask matrix and the

attention weights, as follows:

As = A⊙M, (8)

where ⊙ is the calculation symbol for Hadamard product.
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Without changing the relevance of the different tokens, we

further update the elements as in the selective attention weights so

that the sum of the elements in each row is equal to one, which

further increases the proportion of discriminative information in

the class token. Take the first row of As as an example, each element

of this row as
0
is computed as:

as
0
0,i =

as0,i

oN
j=1a

s
0,j

: (9)

The new selective attention weights A
0
s represent the correlation

between tokens in local areas, and then after the calculation in Eq.

10, the information between these tokens interacts and the output Z

of TSSA is obtained. In the final TS Transformer Layer, the class

token combines the token information through MLP for category

predictions.

Z = A
0
s · V : (10)

The selective attention weights of each token-selective

transformer layer are updated on the basis of the previous layer,

and the number of selected tokens m of each layer is gradually

reduced narrowing and refining the distinguishing feature regions

layer by layer.

We apply TSSA to the deep layers of the model without

destroying the globality of the shallow layers, and the local

information based on the global basis is extracted for

classification. Starting from the first token-selective transformer

layer, the distinguishing tokens only aggregate important tokens

related to them, so that the class token associated with these

distinguishing tokens can minimize the interference of the

background tokens. Our model is actually a trade-off between

globality and locality, on the basis of not losing the globality, it

can accurately locate the discriminating area and extract

local features.
4 Experiments

In this section, we mainly introduce the experimental process

and analyze the experiment results. First, we introduce the three

marine biological datasets used in experiments, and briefly

introduce the specific settings. Then, we verify the efficacy of

TSVT by ablation study and analyze the experiment results.
4.1 Datasets

We validated the effectiveness of TSVT on three datasets of

marine organisms, namely ASLO-Plankton (Sosik and Olson,

2007), Sharks1, and WildFish (Zhuang et al., 2018). ASLO-

Plankton consists of 22 categories of marine plankton images, its

training set is unbalanced, and the number of images in different

subcategories conforms to the long-tail distribution; Sharks

contains images of 14 shark species, where the background of the

images is complex and the differences between images are subtle;

WildFish is a large-scale marine fish dataset with 1000 categories
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and 54459 images in total, and we randomly select images of 200

categories from WildFish to form a new dataset WildFish200. The

statistics of the three datasets are shown in Table 1.
4.2 Implementation details

The input image size of the ASLO-Plankton, WildFish200 and

Sharks datasets is 448×448 pixels, the size of each patch is 16×16.

We set the batch size on the three datasets to 8. SGD optimizer is

employed with a momentum of 0.9. The learning rate is initialized

as 0.03 and we adopt cosine annealing as the scheduler of optimizer.

TSVT imports the pre-trained ViT-B_16 on ImageNet21k as the

pretrained model. We complete the construction of the whole

model using PyTorch and run all experiments on four

NVIDIAGTX 1070 GPUs in one computer.
4.3 Comparison with the state-of-the-arts

Our method performs on par with a number of CNN-based

methods: B-CNN (Lin T.-Y. et al., 2015), NTS-Net (Yang et al.,

2018), TASN (Zheng et al., 2019), MC Loss (Chang et al., 2020), and

the recent transformer variants: ViT (Vaswani et al., 2017), RAMS-

Trans (Hu et al., 2021), TransFG (He et al., 2022) on ASLO-

Plankton, Sharks and WildFish200. The experiment results are

shown in Table 2. It can be seen from the results that ViT-based

methods have a higher classification accuracy than CNN-based

methods. Meanwhile, TSVT reaches 74.3%, 90.4% and 94.7% top-1

accuracy on ASLO-Plankton, Sharks and WildFish200 respectively,

which achieves higher accuracy in the identification of marine
Frontiers in Marine Science 07
organisms compared with other methods. The main reason for

the improvement is that our method further eliminates background

interference, accurately locates the discriminating areas, thus

enlarging the differences between categories.
4.4 Ablation study

We verify the efficacy of our proposed TSSA on the three

datasets, and further explore the impact of applying TSSA to

different layers, using different methods to select tokens and

selecting different numbers of tokens on model performance.

4.4.1 Impact of applying TSSA to different layers
We applied TSSA to the shallow layers (1-4), middle layers (5-8)

and deep layers (9-12) of TSVT respectively, to explore the

influence of token selection in different layers on model

performance. The experiment results in the Table 3 show that

applying TSSA to the deep layers achieves the best performance,

whilst starting token selection in the shallow layers achieves worse

performance. A possible reason is that the attention weights in

shallow layers cannot highlight the key points that should be paid

attention to, which is not enough to be used as the indicator for

selecting tokens. On the contrary, with the deepening of layers, the

feature information is accumulated, and the model starts to notice

discriminating regions. At this time, further eliminating

background and other interference can make the discriminative

local features account for a larger proportion of final features used

for classification. Global information needs to be strengthened by

layers of accumulation, premature destruction of the association

among all tokens at shallow layers is not conducive to extracting

global features of the model. Therefore, establishing the association

among all tokens at the shallow layers first, and then discarding

some tokens at the deep layers is a trade-off between global

information and local information, which is beneficial

for classification.

When TSSA is applied to the deep layers, the classification

performance of the model is improved. So we further explore the

impact of applying TSSA to different deep layers. In different
TABLE 2 Comparison of TSVT and state-of-the-art methods on three datasets of marine organisms.

Method Backbone Accuracy(%)

ASLO-Plankton Sharks WildFish200

B-CNN VGG-16 61.9 76.2 82.1

NTS-Net ResNet-50 69.4 84.5 87.3

TASN ResNet-50 70.0 85.2 88.7

MC Loss ResNet-50 69.6 86.3 86.2

ViT ViT-B_16 72.6 88.9 93.5

RAMS-Trans ViT-B_16 73.1 89.2 93.8

TransFG ViT-B_16 73.7 89.1 94.1

TSVT (Ours) ViT-B_16 74.3 90.4 94.7
TABLE 1 Statistics of ASLO-Plankton, Sharks and WildFish200 datasets.

Dataset Classes Training Testing

ASLO-Plankton 22 743 3300

Sharks 14 743 749

WildFish200 200 7929 3523
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ablative experiments, the number of selected tokens decreases from

the first TS transformer layer and the number in the final layer

remains the same. As shown from the Table 4, the classification

accuracy is constantly improved with the increase of the number of

layers. The best effect is achieved when TSSA is applied to layers 8-

12, which indicates that the model has been able to accurately locate

the distinguishing regions from the 8th layer, and the smaller the

reduction of tokens between layers, the better the classification

performance of the model.

4.4.2 Impact of the number of selected tokens
TSVT performs token selection layer by layer, and the latter

layer continues to select tokens based on those selected in the

previous layer in order to pinpoint discriminative regions

hierarchically. In the experiments, we set a parameter p about the

selection proportion to indicate the number of selected tokens,

which is the ratio of the number of selected tokens to the number of

all tokens. We studied the influence of the parameter p on the

model, and the experiment results are shown in Table 5. When p is

0.7, TSVT achieves the best performance on the three datasets. As

the p value increases from 0.7 to 0.9, the accuracy decreases,

probably because too many background tokens are not discarded,

leading to discriminative information being mixed with interference

information. When the value of p is smaller than 0.7, the accuracy

also decreases, which is because the number of tokens is too small

and too many important tokens are discarded. When the value of p

is smaller than 0.2, the number of selected tokens in the last layer is

less than 1, so we did not conduct related experiments. In

conclusion, TSVT is sensitive to the number of selected tokens.

4.4.3 Impact of token-selective methods
We select important tokens according to the attention weights.

In this part, we select tokens randomly at layers 9-12 with the

selection ratio p = 0:7 for comparison, which further verifies the

efficacy of our selection method. The two methods of random

selection and selection according to attention weights are

respectively applied in TSSA for experiments. As can be seen

from Table 6, the accuracy of the former method decreases by
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3.6%, 1.6%, 0.6% respectively compared with the latter method

(ours) on the three datasets. The reason is that some important

distinguishing tokens are discarded in the process of random

selection, and some tokens that interfere with classification

accuracy may be selected for classification.

4.4.4 Visualization
In order to further verify the effectiveness of our method in

locating discriminating regions, we use Grad-CAM (Selvaraju et al.,

2017) to visualize the attention map generated from the attention

weights of the final layer in TSVT and compare them with ViT. As

shown in Figure 3, for images with complex backgrounds, ViT is

easily affected by these backgrounds and focuses on objects

irrelevant to classification, such as reefs and corals, while after

excluding these interferences, TSVT easily locates marine

organisms and their most distinctive features, such as patterns

and spots on the fish. Taking the image in the first row and

column as an example, ViT considers the human head as the

discriminative region, while our method can accurately use the

effective information of the hammerhead shark’s head information

to predict the category. In addition, for images where the fish are

visually small due to the long shooting distance, TSVT can locate

the positions of the small targets more accurately, whereas ViT

sometimes cannot achieve such high precision positioning.
5 Conclusion

In this paper, in order to exclude the influence of the complex

background of the seabed and accurately locate discriminating

features, we propose a novel framework called TSVT for fine-

grained image classification of marine organisms, which achieves

the best performance on the three marine organism datasets

compared with other state-of-the-art works. We propose a local

attention mechanism called TSSA that excludes interfering tokens.
TABLE 5 Ablation experiments on the number of selected tokens.

p ASLO-Plankton Sharks WildFish200

0.9 73.2 89.1 93.8

0.8 72.9 89.4 94.4

0.7 74.3 90.3 94.7

0.6 72.9 89.9 94.3

0.5 72.1 88.5 93.7

0.4 71.3 88.1 91.1

0.3 69.2 87.9 88.7
TABLE 4 Ablative experiments on applying TSSA to different deep layers.

Layers ASLO-Plankton Sharks WildFish200

12 73.2 88.9 93.7

11-12 73.6 89.4 94.3

10-12 73.4 90.0 94.3

9-12 74.3 90.4 94.7
TABLE 3 Ablative experiments on applying TSSA to different layers.

Layers ASLO-Plankton Sharks WildFish200

1-4 69.5 85.7 92.5

5-8 71.0 88.9 93.4

9-12 74.3 90.4 94.7
TABLE 6 . Ablative experiments on token-selective methods.

Selection Methods ASLO-Plankton Shark WildFish200

random 70.7 88.8 94.1

max 74.3 90.4 94.7
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Each discriminating token interacts with other discriminating

tokens in the local area to extract positive fine-grained features to

the greatest extent. Then, we explore the impact of applying TSSA

to different layers, the number of selected tokens and token-selective

methods on the performance of TSVT.

However, we still select key tokens through attention weights,

which has the limitation that it must be applied to deep layers to

ensure the reliability of the selection. Meanwhile, the number of key

tokens in each image is not the same, so selecting tokens through

more effective learning methods as well as setting learnable

parameters to control the number of selected tokens is the

future direction.
Data availability statement

The original contributions presented in the study are included

in the article/supplementary material. Further inquiries can be

directed to the corresponding author.
Author contributions

GS, YW, and XW designed the study and wrote the draft of the

manuscript with contributions from YX and BW. BW and LB

collected the marine fish image datasets. YW and XW devised the

method. GS and YX performed the experiments. All authors
Frontiers in Marine Science 09
contributed to the experimental analysis and manuscript writing. All

authors contributed to the article and approved the submitted version.
Funding

This work was supported by the National Natural

Science Foundation of China (No. 32073029) and the Key

Project of Shandong Provincial Natural Science Foundation

(No. ZR2020KC027).
Acknowledgments

We thank the Intelligent Information Sensing and Processing

Lab at Ocean University of China for their computing servers and

collaboration during experiments. We kindly thank the Editor Dr.

Xuemin Cheng for her efforts to handle this manuscript and all the

reviewers for their constructive suggestions that helped us to

improve our present manuscript.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
FIGURE 3

Visualization results on marine biological datasets, in which the first and fourth rows are six images in Sharks and WildFish datasets, the second and
fifth rows are visualization of six images in the two datasets on ViT, and the third and sixth rows are visualization on TSVT.
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