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Pesticide residues have been reported in hive-stored products for long periods.
Larvae of honey bees experience oral or contact exposure to these products
during their normal growth and development inside the cells. We analyzed various
toxicological, morphogenic, and immunological effects of residue-based
concentrations of two fungicides, captan and difenoconazole, on the larvae of
worker honey bees, Apis mellifera. Selected concentrations (0.08, 0.4, 2, 10, and
50 ppm) of both fungicides were applied topically at a volume of 1 µL/larva/cell as
single and multiple exposures. Our results revealed a continuous, concentration-
dependent decrease in brood survival after 24 h of treatment to the capping and
emergence stages. Compared to larvae with a single exposure, the multiply
exposed youngest larvae were most sensitive to fungicidal toxicity. The larvae
that survived higher concentrations, especially multiple exposures, showed
several morphological defects at the adult stage. Moreover, difenoconazole-
treated larvae showed a significantly decreased number of granulocytes after
1 h of treatment followed by an increase after 24 h of treatment. Thus, fungicidal
contamination poses a great risk as the tested concentrations showed adverse
effects on the survival, morphology, and immunity of larval honey bees.
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Introduction

The economic and ecological importance of honey bees is high, as they provide valuable
pollination services to crops, in addition to a variety of hive products (Rişcu and Bura, 2013).
Biotic pollinators play an important role in food production and the maintenance of plant
ecosystems; among these pollinators, bees are essential for good levels of pollination of most
cultivated crops globally (Partap, 2011).
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Since the 1990s, alarming declines in the populations of
both wild and domesticated pollinators have been reported
worldwide (Finley et al., 1996; Abrol, 2012). Interactions
among different stressors like pests, diseases, pesticides,
changing climate, and management practices are linked to
these declines (Hristov et al., 2020). Moreover, race, comb
age, cell size, and diet also affect the overall colony survival
by inducing morphological or physiological variations (Abou-
Shaara and Al-Ghamdi, 2012; Alfalah et al., 2012; Sauthier et al.,
2017; Chole et al., 2019; Kaur et al., 2021). In addition, the
geographic origin of a species and varying environmental
conditions in a region also alter honey bee morphology (Al-
Kahtani and Taha, 2014; Al-Kahtani and Taha, 2021; Shawer
et al., 2021).

Among pesticides, insecticides cause maximum toxicity to bees,
whereas other pesticides like fungicides, herbicides, and plant growth
regulators are considered relatively safe (Mayer and Lunden, 1986;
Devillers, 2002). However, recent studies have demonstrated the
negative impact of fungicides on various hymenopterans
(Heneberg et al., 2021; Thompson et al., 2023) including honey
bees (Drummond, 2022; Serra et al., 2023; Xiong et al., 2023). The
application of fungicides on blooming crops (Mayer and Lunden,
1986; Tamburini et al., 2021) leads to the direct contamination of
forager bees, which, along with the collected pollen or nectar,
transport fungicide residues to hives and, thus, contaminate the
entire colony, including hive-stored products (Devillers, 2002;
Bogdanov 2006). While the concentrations of fungicidal residues
declined from treated flowers to forager bees (Drummond, 2022)
to hive-stored honey and brood (Piechowicz et al., 2018), residues
remain abundant in various hive products (Piechowicz et al., 2018;
Rondeau and Raine, 2022; Xiao et al., 2022) and in some cases even
exceeded the levels of concern for chronic risk to bees (Rondeau and
Raine, 2022). The persistence of residues in hive-stored products may
increase brood exposure to these residues. However, few studies have
reported the role of residual fungicides on compromised bee health
(Mullin et al., 2010; Rondeau and Raine, 2022). The toxicity criteria
for field-recommended concentrations of captan toward honey bee
brood and adults have been reported (Mussen et al., 2004; Ladurner
et al., 2005) but are much higher than the residual forms of captan
present in hive-stored products. Furthermore, fungicides like
difenoconazole were studied only jointly with other pesticides or
pests (Almasri et al., 2021; Pal et al., 2022), which masked their
individual effects.

In the present scenario, the decline in the honey bee
population is linked to weakened immune systems due to
pesticides. These immuno-challenged bees are more prone to
disease (Pamminger et al., 2018). Immunity in insects is
generally comprised of cellular and humoral responses. At
the cellular level, hemocytes (predominantly plasmatocytes
and granulocytes) play an important role in immunity as
they are involved in defense responses like phagocytosis,
encapsulation, and nodulation, and show variations in their
number in response to a foreign agent (Kwon et al., 2014; Negri
et al., 2014; Barakat et al., 2016). The adverse effects of
insecticides on the hemocytes of honey bees have been
reported (Perveen and Ahmad, 2017; Sukkar et al., 2023) but
similar studies for fungicides are lacking (Inoue et al., 2022).
Until now no information has been reported regarding the

adverse effects of residual forms of captan and
difenoconazole on honey bee broods. Therefore, the present
study assessed the individual effects of these fungicides (in both
single and multiple exposures) on larvae survival and immunity
and also on the morphology of adult bees developed from
treated larvae.

Materials and methods

Hive selection

Three well-populated hives (each with 8–10 frames) of A.
mellifera were selected from the apiary of Khalsa College,
Amritsar (India) for each fungicide. These colonies were well
maintained throughout the experimental period.

Selection of fungicides and concentrations

Captan 50 WP (Captaf, Rallis India Ltd., Mumbai) and
difenoconazole 25 EC (Score, Syngenta India Ltd., Pune) were
selected for the study. The concentrations of both fungicides were
selected based on reported residual amounts in various hive
products. The maximum reported residues of difenoconazole
in hive-stored honey, pollen, and bee bread varied from
0.0006–0.0009 mg/kg, 0.043–0.411 mg/kg, and
0.27–0.327 mg/kg, respectively. Similarly, the maximum
reported residues of captan in hive-stored honey, pollen, bee
wax, and bee bread varied from 0.009–0.019 mg/kg,
2.99–10.36 mg/kg, 0.069–0.4 mg/kg, and 6.39 mg/kg,
respectively (Kubik et al., 2000; Bernal et al., 2010; Johnson
et al., 2010; Mullin et al., 2010; Chauzat et al., 2011; Rennich
et al., 2012; Stoner and Eitzer, 2013; McArt et al., 2017). An
extensive literature review suggested that growing larvae may be
exposed to a maximum of 10 ppm of captan and 0.4 ppm of
difenoconazole either ectopically or via food. Therefore, the final
concentrations (including the maximum reported residues and
concentrations above and below these residues) of both
fungicides were selected to be 0.08 ppm, 0.4 ppm, 2 ppm,
10 ppm, and 50 ppm. A negative control (NC) consisting of
distilled water (solvent) and an untreated control (UC) were
also included for comparison.

Larval culture and maintenance to obtain
uniformly aged worker larvae

To obtain uniformly aged larvae of worker honey bees, a vertical
queen excluder was introduced in each colony to cage the queen on
one side along with bees and an empty drawn frame for egg laying.
After every 24 h, a frame with newly laid eggs was replaced with
another empty comb for continuous egg laying. Frames with eggs
were marked with the date of egg laying and kept on the other side of
the hive. For the measurement of age, newly hatched larvae were
defined as 1 day old and so on up to 6 days old. Accordingly, the
larvae were divided into three age groups: 1–2, 3–4, and
5–6 days old.
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Application of fungicides

Different colored pins were used on a single frame to mark
larvae receiving different concentrations and the controls.
Depending upon the persistence of residues in hive products,
risks related to honey bee health may increase due to increased
exposure. The larval stage usually lasts for 5–6 days, and they are
inspected and fed multiple times by multiple bees (Huang and
Otis, 1991), which likely increases the possibility of larval
exposure to contaminated food multiple times before the
capping of their cells. Thus, in the present study, selected
larvae were exposed both once and multiple times to selected
concentrations of each fungicide. In one-time exposure (OTE),
larvae belonging to the three different age groups were exposed
once. In multiple exposures (ME), 1–2-day-old larvae were
exposed four times, and 3–4-day-old larvae were exposed
twice. From each tested concentration and solvent, 1 µL was
delivered topically into cells containing larvae (Atkins and
Kellum, 1986). A total of 90 larvae were selected (30 from
each of three hives), for each concentration per age group per
fungicide and control. After the treatments, the frames were
returned to their respective hives, where they were fed by the
nurse bees. Survival was checked 24 h after treatment (HAT), at
capping, and at emergence.

Morphometric analysis

After capping, the treated larvae were caged and the emerging
adults were collected and checked for morphological variations in
length and width of the head; length and breadth of the abdomen,

forewing, and hindwing; and length of the hind leg (Figure 1). All
body parts were measured with a Magnus trinocular
stereomicroscope (MSZ-TR [LED]) using MagVision advanced
image analysis software (MIPS-ver 3.7).

Cellular immunity analysis

Similar treatments were administered to 4-day-old worker
larvae. Differential hemocyte counts (DHCs) were estimated at
1 HAT and 24 HAT. Hemolymph was extracted by
puncturing the larva from the lateral side with a sterilized
needle. Smears were prepared on clean glass slides. Cells were
stained using Giemsa’s staining solution. The prepared slides
were observed using a binocular microscope (Olympus
CX21i LED) to identify cells based on the shape and size of
the cells and nuclei, vacuolization, and cytoplasmic
staining. A total of 100 cells per slide were counted, and
three slides per treatment were observed containing
hemolymph of three different larvae administered the same
treatment.

Statistical analysis

Statistical analyses were performed using IBM SPSS Statistics for
Windows, version 21.0. One-way ANOVA followed by Tukey’s
HSD (at a 0.05 level of significance) was used to analyze the
effects of concentration on survival, morphology, and DHC.
Two-way ANOVA was used to analyze the combined effect of
concentration and time on DHC.

FIGURE 1
Measurement of (A) head, (B) abdomen, (C) hind leg, (D) forewing, and (E) hindwing sizes.
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Results

Effects of captan and difenoconazole on
worker larvae survival

A single exposure to the 10 ppm concentration of captan
significantly reduced the survival of 1–2-day-old larvae (at the
emergence stage) compared to UC and NC. In addition, the
50 ppm concentration of captan significantly lowered the
survival of 1–2-day-old larvae (at all stages of observation),
3–4-day-old larvae (capping and emergence stages), and 5–6-
day-old larvae (emergence stage), with the lowest survival
(65.7%) observed in 1–2-day-old larvae at the emergence
stage (Figure 2). However, OTE to 10 and 50 ppm of
difenoconazole significantly reduced the survival of 1–2-day-
old larvae (at capping and emergence stage) and older 3–4- and
5–6-day-old larvae (at emergence stage), with the lowest
survival (66.7%) observed in 1–2-day-old larvae at 50 ppm at
the emergence stage (Figure 3). Moreover, 50 ppm of
difenoconazole also lowered the survival of 1–2- and 3–4-
day-old larvae after 24 h of treatment.

ME had more pronounced effects, as 10 ppm and 50 ppm of
both fungicides significantly lowered the survival of all tested age
groups at all stages of observation. The lowest bee survival (44.3% for
groups exposed to captan and 46.7% for groups exposed to
difenoconazole) was observed at the emergence stage after
exposing 1–2-day-old larvae to the 50 ppm concentration
(Figures 4, 5). The lower tested concentrations had no significant
effect on brood survival in both OTE and ME.

Effects of captan and difenoconazole on the
morphology of adults developed from
treated worker larvae

All tested larval age groups after OTE to 10 and 50 ppm of
captan showed significant reductions in forewing length at the adult
stage compared to UC and NC, with maximum reductions at
50 ppm. Additionally, the hind leg length was also significantly
reduced in bees developed from 1–2- and 3–4-day-old larvae after
OTE to 50 ppm of captan (Figure 6). However, OTE to 50 ppm of
difenoconazole significantly reduced the forewing length and

FIGURE 2
Survival of 1–2-, 3–4-, and 5–6-day-old honey bee larvae after OTE to captan. The different letters (a, b . . . ) indicate significant differences by
Tukey’s HSD (p < 0.05).

FIGURE 3
Survival of 1–2-, 3–4-, and 5–6-day-old honey bee larvae after OTE to difenoconazole The different letters (a, b . . . ) indicate significant differences
by Tukey’s HSD (p < 0.05).
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FIGURE 4
Survival of 1–2- and 3–4-day-old honey bee larvae after ME to captan. The different letters (a, b . . . ) indicate significant differences by Tukey’s HSD
(p < 0.05).

FIGURE 5
Survival of 1–2- and 3–4-day-old honey bee larvae after ME to difenoconazole. The different letters (a, b . . . ) indicate significant differences by
Tukey’s HSD (p < 0.05).

FIGURE 6
Morphological variations in adult honey bees developed from larvae after OTE and ME to captan. UC, untreated control; NC, negative control; OTE,
one-time exposure; ME, multiple exposures. The different small letters (a, b . . . ) within a column indicate significant differences by Tukey’s HSD (p < 0.05).
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breadth only in bees developed from 1–2-day-old larvae
(Figure 7).

More significant variations were observed in ME than in
OTE (Supplementary Table S1). The highest (50 ppm)
concentration of captan significantly reduced the lengths of
the abdomen, forewing, and hind leg in bees developed from
both tested age groups of larvae. Additionally, bees developed
from 1–2-day-old larvae treated with 10 and 50 ppm showed

significantly reduced head width and forewing size (Figure 6).
Head width, abdomen breadth, forewing length and breadth,
and hind leg length were significantly reduced in bees exposed
as 1–2-day-old larvae to 50 ppm of difenoconazole. Only the
forewing length was significantly reduced at 10 ppm. Bees
developed from 3–4-day-old treated larvae showed significant
reductions in similar body parts except for the abdomen at
50 ppm (Figure 7).

FIGURE 7
Morphological variations in adult honey bees developed from larvae after OTE and ME to difenoconazole. UC, untreated control; NC, negative
control; OTE, one-time exposure; ME, multiple exposures. The different small letters (a, b . . . ) within a column indicate significant differences by Tukey’s
HSD (p < 0.05).

FIGURE 8
Hemocytes observed in worker honey bee larvae. (A) Granulocytes. (B) Permeabilized cell. (C) Spindle-shaped cell. (D) Permeable nucleus.
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Effects of captan and difenoconazole on
DHC of worker larvae

Four types of cells—granulocytes, permeabilized cells, spindle-
shaped cells, and permeable nuclei—were identified from the
hemolymph of 4-day-old worker larvae (Figure 8), with the
dominance of granulocytes followed by permeabilized cells and
other hemocyte communities (including spindle shaped-cells and
permeable nuclei) in control larvae.

Two-way ANOVA analysis of captan-exposed larvae showed
time-dependent but concentration-independent significant
variations in hemocytes (Figure 9). However, two-way ANOVA
analysis of difenoconazole-exposed larvae showed significant time-
and concentration-dependent variations in hemocytes. Treated
larvae at 1 HAT showed significant variations in the numbers of
granulocytes and permeabilized cells at 10 and 50 ppm compared to
UC and NC. The lowest granulocyte count, 26.3%, was observed at
50 ppm along with 65.7% permeabilized cells and 8% others.

FIGURE 9
Effect of captan on the differential hemocyte counts (DHC) of honey bee larvae.

FIGURE 10
Effect of difenoconazole on the differential hemocyte counts (DHC) of honey bee larvae, where * indicates a significant difference by Tukey’s HSD
(p < 0.05).
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However, at 24 HAT, the counts were 61% granulocytes, 36.3%
permeabilized cells, and 2.7% others, which was statistically non-
significant compared to controls (Figure 10).

Discussion

Effects of fungicides on survival

Our results indicated that both tested fungicides had concentration-
and age-dependent effects, with maximum damage at 50 ppm in the
youngest (1–2-day-old) larvae followed by 3–4- and 5–6-day-old larvae.
This age-dependent variation in sensitivity could have occurred due to
two reasons. The first possibility is the increased body mass of older
larvae. The average body weight of the oldest worker larva is more than
50 times that of the youngest larva (Malone et al., 2002). Since the
amount of pesticide applied to any individual is a function of its body
mass (Malbert-Colas et al., 2020), the quantity of fungicide applied per
unit body mass of older larvae was lower compared to younger larvae,
thusmaking older larvae less sensitive. Second, the age-specific effects of
fungicides could be attributed to age-dependent variations in
detoxifying enzyme levels, which usually increase with age in bees
(Smirle, 1993). Detoxifying activity is further enhanced by
phytochemicals like abscisic acid and p-coumaric acid, which are
naturally present in bee food, i.e., pollen and honey (Mao et al.,
2013; Negri et al., 2015). Food consumption usually increases with
the age of the growing larva and peaks on the 4–5th day of larval age
(Rortais et al., 2005). Furthermore, the quality of food consumed also
varies with age as young larvae are predominantly fed royal jelly, while
older larvae receive pollen (Haydak, 1970). Thus, the higher survival of
older larvae may be due to greater consumption of pollen, which
naturally contains phytochemicals responsible for pesticide tolerance
and detoxification.

In our study, residue-based and higher concentrations of captan
significantly altered brood survival. Captan shows antifungal activity
due to its negative interaction with glutathione (Roberts et al., 2007),
which also play an important role in oxidative stress management in
animals (Wu et al., 2004). Thus, captan presumably has the same
mode of action in honey bees as in fungi. Our results on A. mellifera
agree with those of Mussen et al. (2004) who reported complete
mortality of worker larvae after oral exposure to captan at a test dose
of 0.8 mg/10 g diet (80 ppm/larva) but contrast with those of Everich
et al. (2009) who reported nonsignificant effects of available
commercial formulations of captan 50 WP and captan 80 WDH
on overall hive health including foragers and brood after their
application on blooming crops at a rate of 5 kg a. i./ha. As
reported by Mussen et al. (2004), foragers are contaminated with
1 µg of pesticide for each 1 pound of pesticide applied per acre; thus,
the application of 5 kg a. i./ha (4.46 lb/acre) in the study of Everich
et al. (2009) would lead to the contamination of a visiting forager
with 4.46 µg of captan (44.6 ppm/bee). These variations in the
toxicity behavior of captan could be attributed to its different
formulations, concentrations, exposure routes, and age or stage of
the test insect.

We also found that higher concentrations of difenoconazole
significantly reduced brood survival. Azole fungicide shows fungus
toxicity due to its interference with cytochrome P-450 (Yoshida,
1988) which also regulates detoxification process in insects (Haas

et al., 2022). Therefore, difenoconazole toxicity in honey bees occurs
due to oxidation stress induced by the fungicide by reducing or
inhibiting the activity of enzymes involved in antioxidant defenses
(Pal et al., 2022).

Effects of fungicides on morphology

Broods that survived higher fungicide concentrations showed
various amorphogenic alterations in the adult stages. Our results
indicated that residue-based concentrations of captan significantly
reduced the sizes of the forewing and head in bees developed from
the youngest group of larvae. Moreover, higher concentrations had
more severe effects on morphology. These results agree with those of
Atkins and Kellum. (1986), who showed that the negative effect of
captan was greatly enhanced when applied to younger stages than
later stages and that the contaminated larvae that survived
developed into deformed bees. Our results also demonstrated
that residue-based concentrations of difenoconazole had no
adverse effect on the morphology of adults developed from
treated larvae. However, higher concentrations significantly
altered the morphology.

Morphological variations in adult insects may occur due to the
disturbance of the imaginal discs of larvae (Gibson and Schubiger,
2000) which form the basic body structure in the adult stage,
including legs in honey bees (Santos and Hartfelder, 2015). The
treatment of larvae with fungicides may also disturb their imaginal
discs; however, more research is needed on this topic. Other possible
explanations for the morphogenic effects could be the altered
behavior of nurse bees, as they change nursing activity with the
condition of developing larvae (Siefert et al., 2020) and show lesser
brood care in case of contaminated broods. The resulting malformed
adults may interfere with the future work efficiencies of bees by
reducing their lifespan (Wu et al., 2011), foraging (Higginson and
Barnard, 2004), and learning activities (Worden et al., 2005).

Effects of fungicides on DHC

The results of the current study provided experimental evidence
that exposure of 4-day-old A. mellifera larvae to fungicides led to
significant variations in DHC. Under normal conditions, we found
that granulocytes are the most dominant hemocyte type, followed by
permeabilized cells and others. Richardson et al. (2018) also
reported similar types of cells with a predominance of
granulocytes in worker honey bee larvae. Granulocytes and
plasmatocytes are the two main types of hemocytes, which
provide cellular immunity in insects through defense responses
like encapsulation, phagocytosis, and nodulation. The other
hemocyte components participate by interacting with these two
hemocytes (Kwon et al., 2014).

The results of the current experiments demonstrated that with
higher concentrations of difenoconazole, granulocyte numbers were
significantly decreased while the counts of permeabilized cells and
others were increased at 1 HAT. The decrease in granulocytes may
have occurred due to reduced mitotic division or increased cell death
following pesticide application (Uckan and Sak, 2010). Another
possible explanation for these variations in granulocyte counts could
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be fungicide-generated oxidative stress (Han et al., 2016), which can
cause cell injury (Sies, 2000). While the field-recommended
concentrations of difenoconazole have very low or no toxicity to
bees (Mommaerts and Smagghe, 2011), it enhances the toxicity of
other pesticides when used in combination (Pal et al., 2022). This
enhanced toxicity could be linked to the weakening of bee immune
systems by difenoconazole due to reduced granulocyte count.

Furthermore, at 24 HAT, our results showed increases in
granulocyte counts and decreases in all other hemocyte types.
The increase in granulocytes might be due to the initiation of
defense responses against fungicides. Our results are consistent
with those reported by Negri et al. (2014) and Barakat et al.
(2016), who also reported increased granulocyte counts in honey
bee larvae at 24 HAT following exposure to other stress factors like
nylon implants and bacteria injections. James and Xu (2012)
reported that the increased total hemocyte and granulocyte
counts were closely associated with cellular defense responses and
detoxification of pesticides.

Both fungicides adversely affected the brood survival in a
concentration-dependent manner. The effects of fungicides
applied to immature stages (larvae) were observed in the mature
stages as they developed into malformed adults. More pronounced
effects of both tested fungicides were observed in multiply exposed
larvae as compared to singly exposed larvae. The application of
fungicides further affected larval immunity by reducing the number
of granulocytes at 1 HAT. Therefore, fungicides, a class of pesticides
generally considered to be relatively non-toxic to bees, showed
noteworthy effects on the survival, morphology, and immunity of
honey bee larvae. Thus, the toxicity criteria of fungicides must be re-
evaluated, particularly in the context of immature honey bee stages.
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