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Background: The gut microbiota has emerged as a potential therapeutic target to 
improve the management of obesity and its comorbidities.

Objective: We investigated the impact of a high fiber (∼38 g/d) plant-based diet, 
consumed ad libitum, with or without added inulin-type fructans (ITF), on the gut 
microbiota composition and cardiometabolic outcomes in subjects with obesity. 
We also tested if baseline Prevotella/Bacteroides (P/B) ratio predicts weight loss 
outcomes.

Methods: This is a secondary exploratory analysis from the PREVENTOMICS 
study, in which 100 subjects (82 completers) aged 18–65 years with body mass 
index 27–40 kg/m2 were randomized to 10 weeks of double-blinded treatment 
with a personalized or a generic plant-based diet. Changes from baseline to end-
of-trial in gut microbiota composition (16S rRNA gene amplicon sequencing), 
body composition, cardiometabolic health and inflammatory markers were 
evaluated in the whole cohort (n = 82), and also compared in the subgroup of 
subjects who were supplemented with an additional 20 g/d ITF-prebiotics (n = 21) 
or their controls (n = 22).

Results: In response to the plant-based diet, all subjects lost weight (−3.2 [95% CI 
–3.9, −2.5] kg) and experienced significant improvements in body composition and 
cardiometabolic health indices. Addition of ITF to the plant-based diet reduced 
microbial diversity (Shannon index) and selectively increased Bifidobacterium and 
Faecalibacterium (q < 0.05). The change in the latter was significantly associated 
with higher values of insulin and HOMA-IR and lower HDL cholesterol. In addition, 
the LDL:HDL ratio and the concentrations of IL-10, MCP-1 and TNFα were 
significantly elevated in the ITF-subgroup. There was no relationship between 
baseline P/B ratio and changes in body weight (r = −0.07, p = 0.53).

Conclusion: A plant-based diet consumed ad libitum modestly decreases body 
weight and has multiple health benefits in individuals with obesity. Addition of 
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ITF-prebiotics on top this naturally fiber-rich background selectively changes gut 
microbiota composition and attenuates some of the realized cardiometabolic 
benefits.

Clinical trial registration: [https://clinicaltrials.gov/ct2/show/NCT04590989], 
identifier [NCT04590989].
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Introduction

It is well-established that a dynamic population of microorganisms 
residing in the gastrointestinal tract—namely, the gut microbiota—
partakes in regulating various host signaling pathways and 
physiological functions including energy homeostasis, glucose and 
lipid metabolism, and inflammatory responses (1–3). These processes 
have been shown to be partly mediated by the production of microbial 
metabolites such as short-chain fatty acids (SCFAs)—primarily 
acetate, propionate, and butyrate—from the fermentation of dietary 
fiber and resistant starch in the gut (1, 2). Disruption of intestinal 
microbiota function can alter its derived metabolites and byproducts, 
which may trigger a broad range of physiological responses linked to 
increased risk of developing metabolic diseases such as obesity and 
type 2 diabetes (T2D) (2, 3).

Diet is a key factor shaping the composition and function of gut 
microbiota (2, 4). Dietary patterns such as vegetarian or vegan diets 
and animal-based diets demonstrate distinct effects on gut microbiota 
composition (5, 6). Plant-based diets contain a variety of whole grains 
and are typically rich in fiber, while lower in saturated fat and protein 
as opposed to omnivorous diets (5, 7). Greater adherence to plant-
based diets was reported to have favorable outcomes on body weight 
homeostasis and cardiometabolic heath (7–9) potentially and partly 
via promoting the preservation of a more diverse and stable ecosystem 
of beneficial bacteria residing in the gut (6). Different types of dietary 
fibers—depending on their chemical structure and physical 
properties—may stimulate the growth of specific taxa that express 
specific genes encoding enzymes required for their metabolism (4, 
10). For example, inulin-type fructans (ITFs) are a type of fermentable 
dietary fibers known as prebiotics that induce beneficial health effects 
resulting from cross-feeding interactions between bifidobacteria and 
butyrate-producing bacteria (11). ITF-prebiotics, including fructo-
oligosaccharides, oligofructose and inulin, are among the most 
investigated and well-established prebiotics, and have been shown to 
affect intestinal health and metabolism (11–14). However, there is a 
notable variation in the effects of dietary fiber on gut microbiota (15) 
and host health, which may be attributed to the unique microbial 
community that each individual harbors and its fiber-fermentation 
capacity (16, 17). This highly individualized response is opening the 
door to discover new potential microbiota-targeted therapeutics for 
the prevention and management of obesity and its metabolic 
comorbidities through precision nutrition (18). From this perspective, 
profiling the gut microbiome is emerging as a promising prognostic 
marker to predict response to dietary interventions (19). For instance, 

recent studies have found that individuals with high Prevotella-to-
Bacteroides (P/B) ratio lose more weight than individuals with low P/B 
ratio when consuming a diet rich in whole grains and fiber (20–22), 
presumably due to the distinct fermentation responses dependent on 
Prevotella species (16, 19). Accordingly, in this secondary exploratory 
analysis from the PREVENTOMICS study (23, 24), the main objective 
was to investigate the impact of consuming an ad libitum high-fiber 
plant-based diet with or without the addition of isolated ITF-prebiotics 
on changes in gut microbiota in subjects with obesity, and explored 
associations with different metabolic health markers. In addition, 
we  investigated whether weight loss can be  predicted based on 
baseline P/B ratio as previously suggested.

Materials and methods

Study design

The PREVENTOMICS trial was a 10-week randomized, double-
blind, placebo-controlled study conducted from October 2020 to June 
2021 at the Department of Nutrition, Exercise and Sports (NEXS) at 
the University of Copenhagen, Denmark, according to the Declaration 
of Helsinki guidelines. The study was approved by the ethical 
committee of the Capital Region of Denmark (H-20029882), and the 
trial was registered at clinicaltrials.gov (NCT04590989). All 
participants signed an informed consent prior to inclusion.

One hundred generally healthy subjects (free from diagnosis of 
cancer and chronic diseases such as diabetes, cardiovascular, renal 
or liver disease (23)) aged 18–65 years, with body mass index ≥27 
but <40 kg/m2 and elevated waist circumference (males >94 cm; 
females >80 cm), were randomly assigned in a 1:1 ratio stratified by 
cluster (oxidative stress; inflammation; carbohydrate metabolism; 
lipid metabolism; microbiota-generated metabolites) to either a 
personalized diet group or a control diet group (Figure 1) using a 
computer-generated sequence with random permuted block sizes 
of two within each stratum. Allocation to each cluster was based on 
analysis of metabolic and genetic biomarkers at baseline as 
described in detail elsewhere (23). The randomization was 
performed by a person not involved in the study to ensure blinding. 
Of the 100 adults recruited, 82 participants completed the 10-week 
intervention and—given the absence of differences between clusters 
(24)—were evaluated in a single-arm cohort in the present analysis 
(Figure  1). In addition, a subgroup analysis was performed as 
described below.
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Dietary intervention

All subjects received easy-to-prepare breakfast and dinner meal 
boxes twice a week (6 meals/delivery) for a total of 12 meals/week from 
the company Simple Feast (Copenhagen, Denmark); the diets were 
isocaloric and complied with national dietary guidelines on 
macronutrient distribution (23). The food provided was vegetarian and 
organically produced, however, participants were allowed to eat 
non-organic/non-vegetarian food as part of the meals not provided 

(lunches and all Saturday meals). Participants were instructed to 
consume the diets ad libitum. In contrast to the control group, meals for 
each cluster in the personalized diet group were supplemented with 
bioactive compounds provided by CARINSA (Spain). The food items, 
calorie and nutrient contents, and bioactive ingredients of the various 
meals have been presented elsewhere in detail (23). The meals of 
carbohydrate and microbiota clusters were both supplemented with an 
additional 20 g/d of fiber in the form of inulin and its hydrolyzed form 
fructooligosaccharide (FOS) extracted from chicory root as a functional 

FIGURE 1

Study design and flowchart. Abbreviations: ITF, inulin-type fructans; CARB, carbohydrate cluster; LIPID, lipid cluster; INFL, inflammation cluster; OXIS, 
oxidative stress cluster; MB, microbiota cluster. *Group receiving 20 g/d inulin + fructooligosaccharides.
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ingredient, coupled with inulin-rich food items during the 10-week 
intervention (23). Therefore, these two clusters were pooled together 
into one subgroup for the purposes of this secondary exploratory 
analysis (Figure 1), referred to as ITF-prebiotics group (n = 21). Given 
that both the personalized and the control groups in the original study 
received high fiber (38 ± 11 g/d) plant-based meals with similar 
macronutrient composition, changes in outcomes (i.e., the difference 
between end-of-study and baseline measurements) were investigated in 
the whole cohort of completers (n = 82) and separately in the 
ITF-prebiotics subgroup (n = 21) and their controls (n = 22) (Figure 1).

Dietary intake was measured by 3-day estimated weight food 
records before and during week 3 of the 10-week intervention (two 
non-consecutive weekdays and one weekend day). Nutrient analysis 
was carried out with Vitakost (Conava ApS; Kolding, Denmark), 
which is based on the Danish national food composition database 
(frida.fooddata.dk, version 4, 2019).

Compliance was assessed twice a week with an electronic 
questionnaire, by reporting the proportion of food consumed from 
the provided meals during the previous 3 days (24).

Anthropometrics and blood parameters

Assessment of anthropometrics (weight, height, waist 
circumference), body composition (by dual-energy X-ray 
absorptiometry) and blood pressure was conducted in the overnight 
fasted state. Furthermore, fasting blood samples were collected for the 
measurement of plasma glucose and serum triglyceride, total cholesterol 
(TC), low- and high-density lipoprotein cholesterol (LDL-C and 
HDL-C, respectively) and C-reactive protein (CRP) by using standard 
techniques at NEXS, University of Copenhagen with a Pentra 400 
Analyzer (HORIBA ABX, France). Serum insulin was measured on the 
IMMULITE 2000 Immunoassay System (Siemens Healthcare 
Diagnostics Products Ltd., United Kingdom). Plasma interleukins 6 and 
10 (IL6 and IL10, respectively), tumor necrosis factor α (TNFα) and 
monocyte chemoattractant protein 1 (MCP1) were determined by 
commercially available enzyme-linked immunosorbent assay (ELISA) 
according to the respective kit instructions.

Gut microbiota analysis

Fecal samples were collected in a sterile container before and after 
the 10-week intervention and stored at −80°C until DNA extraction. 
The DNeasy PowerSoil Pro Kits (Qiagen, Germany) was used to extract 
total DNA from the fecal samples according to the manufacturer’s 
instructions. The final purified DNA was stored at −80°C. The bacterial 
DNA concentration was determined by using the Qubit HS Assay Kit 
(Invitrogen, Carlsbad, California, United  States) on a Qubit 4 
Fluorometric Quantification device (Invitrogen, Carlsbad, California, 
United States). The bacterial community composition was defined by 
using Illumina NextSeq-based high-throughput sequencing (HTS) 
(Illumina Inc.) of the 16S rRNA gene V3-region (25).

Raw sequence reads were imported into CLC genomic workbench 
(v8.5, CLCbio, Qiagen) as FASTQ files, demultiplexed and trimmed 
to remove barcodes and primers. The trimmed sequences were 
exported to Rstudio (version 4.0.5; Team RStudio 2015) and the 
Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline (v1.22) 

(26) was used to denoise and merge forward and reverse reads and 
generate Amplicon Sequence Variants (ASVs), which were filtered for 
chimeric sequences and the resulting ASV taxonomically classified 
using the Ribosomal Database Project database (27). In addition, for 
selected ASVs, nBLAST analysis (28) against the 16S rRNA gene 
database was performed in order to confirm taxonomy assigned 
according to the RDP database. The ASV taxonomic classification 
table and the ASV sequences and counts per sample were imported 
into Quantitative Insights into Microbial Ecology 2 software (QIIME 
2 Core–2020.11) (29). ASVs assigned to Cyanobacteria/chloroplast 
or with a frequency <10 reads across all samples were removed and 
the core diversity metrics function was applied with a rarefaction 
depth of 11,000 reads per sample to generate α-diversity indices 
(Shannon index, Observed ASVs and Evenness index) and β- 
diversity (Bray-Curtis). Based on the filtered and rarefied ASV table, 
ASVs were collapsed into genus, family and phylum level taxonomy. 
Subjects with no detectable taxa at the given taxonomic level were 
given a value of half the detection limit (relative abundance of 
0.000045).

Quantification of serum lactate and 
branched-chain amino acids

Serum lactate and the branched-chain amino acids (BCAAs) 
leucine, isoleucine, and valine were quantified before and after the 
intervention using nuclear magnetic resonance (NMR), following 
extraction and concentration procedures as described previously (30). 
In brief, serum samples were placed in 2 mL 96-deepwell plates using 
200 μL for aqueous extraction with methanol:water. After extraction, 
solvents from the samples were removed using a speed vacuum 
concentrator or N2 steam and then stored at −80°C until further analysis. 
For NMR measurements, the hydrophilic extracts were reconstituted in 
600 μL of D2O phosphate buffer (PBS 0.05 mM, pH 7.4, 99.5% D2O) 
containing 0.73 mM trisilylpropionic acid (TSP). 1H NMR spectra were 
recorded at 300 K on an Avance III 600 spectrometer (Bruker, Germany) 
operating at a proton frequency of 600.20 MHz using a 5 mm PABBO 
gradient probe. One-dimensional 1H pulse experiments were carried out 
using the nuclear Overhauser effect spectroscopy (NOESY) presaturation 
sequence (RD–90°–t1–90°–tm–90° ACQ) to suppress the residual water 
peak, and the mixing time was set at 100 ms. The exponential line 
broadening applied before Fourier transformation was of 0.3 Hz. The 
frequency domain spectra were phased, baseline-corrected and 
referenced to TSP or TMS signal (d = 0 ppm) using TopSpin software 
(version 3.6, Bruker). All acquired 1H NMR from the PREVENTOMICS 
samples were compared to references of pure selected compounds with 
the metabolic profiling AMIX spectra database (Bruker), HMDB, and 
Chenomx databases for metabolite identification. After pre-processing, 
specific 1H NMR regions identified in the spectra were integrated using 
the AMIX 3.9 software package.

Statistical analysis

Statistics were performed with QIIME2, R and SPSS Statistics 
(IBM SPSS Statistics, Version 28.0, IBM, Armonk, NY). Characteristics 
of study participants in the personalized and control groups at baseline 
were tested using t-test for normally distributed data, Mann–Whitney 
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U-test for non–normally distributed data, or Pearson’s Chi-squared 
test for categorical data.

The change from baseline to week 10  in anthropometric 
measurements and health outcomes in all subjects (n = 82) were 
evaluated using paired t-test or Mann–Whitney U-test, as 
appropriate. One-way repeated measures ANOVA, adjusted for sex, 
was carried out for the changes from baseline within and between 
ITF-prebiotics (n = 21) and control (n = 22) subgroups. Changes in 
dietary intake extracted from food logs reported by the participants 
(valid data = 79; ITF-prebiotics = 20, Control = 22) were assessed 
with paired and independent t-tests for within the cohort and 
between the subgroups, respectively. Spearman’s rank correlation 
analysis was used to explore potential associations between 
significant changes in gut microbiota composition induced by 
ITF-prebiotics and host metabolic markers. Correlations between 
baseline log-transformed P/B ratios and changes in body weight 
were analyzed using Pearson’s correlation.

For gut microbiota analysis, the average of the top three most 
abundant phyla in the whole cohort as well as family and genus with an 
average relative abundance greater than 2% were included (Figure 3A). 
To compare the relative abundance between the ITF-prebiotics and 
control subgroups, a Mann–Whitney U test was performed, and 
Wilcoxon signed rank test was used for within group analyses. p-values 
of within group comparisons were corrected to control for false discovery 
rate (FDR) due to multiple testing according to the Benjamini and 
Hochberg procedure and a significance level of q < 0.05 was used. Beta 
diversity was examined with Bray-Curtis principal coordinates analysis 
(PCoA) scores from axis 1 and 2 as dependent variables to explore the 
change over time in the whole cohort as well as the differences between 
the two subgroups. All linear models were validated by investigating 
residual plots and q-q plots, and variables were log-transformed if 
required. p-values <0.05 were considered statistically significant.

Results

Study participants

In total, 82 subjects (26 men and 56 women) completed the study 
(24), of which 21 and 22 were assigned to the ITF-prebiotics and 
control subgroups, respectively (Figure 1). Baseline characteristics are 
presented in Table 1. More women than men were included but the 
sex distribution was not significantly different between the two 
subgroups (p = 0.23). There were no significant differences between 
the two subgroups in all outcomes at baseline.

In the whole cohort, calorie intake significantly decreased 
(−280 ± 622 kcal/day), whereas fiber intake increased (12 ± 12.8 g/
day) (both p < 0.001). The percent of the total energy from protein 
(−2.3 ± 3.0%) and fat (−2.3 ± 7.5%) decreased significantly (both 
p ≤ 0.01) while that from carbohydrate increased (4.3 ± 7.9%, 
p < 0.001). No statistically significant differences were observed 
between the control and ITF subgroups in the changes in energy 
and macronutrient intakes (all p > 0.10) except for fiber intake 
which increased in both but significantly more in the ITF than in 
the control group (by 24 ± 12 and by 10.5 ± 9.9 g/day, respectively, 
p < 0.001).

The achieved level of compliance was high for all participants and 
subgroups, with an average of 90 ± 11% of the delivered meals being 
consumed during the 10-week intervention period (24).

Plant-based diet, with or without isolated 
ITF-prebiotics, improves health markers

Participants in the whole cohort reduced their weight 
(−3.2 kg ± 3.1, p < 0.001), waist circumference (−2.2 ± 3.3 cm, 
p < 0.001), and fat mass (−2.0 ± 2.3 kg, p < 0.001), and experienced 
significant improvements in glucose homeostasis with no differences 
between diet subgroups (Table 2). Improvements in lipid profile were 
observed in the whole cohort, however, a significant reduction in 
LDL-and total cholesterol over time was observed only among the 
control subgroup, whereas a significant reduction in HDL-C was 
observed only in the ITF-prebiotics subgroup. Accordingly, the 
LDL:HDL ratio was significantly lower in the control compared to ITF 
subgroup at the end of the study, despite similar weight loss.

With respect to inflammatory markers, significant increases in 
TNFα and IL-10  in the whole cohort were driven largely by the 
ITF-prebiotics subgroup. MCP-1 also increased in the ITF-prebiotics 
group but not in the control group. Overall, however, no significant 
differences were observed between subgroups (Table 2).

Inulin-type fructans reduces the number of 
observed species as well as the Shannon 
diversity index in the ITF-subgroup

Two stool samples were excluded from analysis after quality 
control due to unexpected low reads (<3,000), resulting in 80 out of 
the collected 82 fecal samples being included in the analysis 
(Table  3). Metrics of α-diversity (number of observed species, 
Shannon and Pielou’s evenness) showed that the whole cohort 
(n = 80) had a significant decrease in richness (p = 0.034) 
(Figure 2B), mainly driven by ITF supplementation (ITF -26.3± 57, 
p = 0.05 vs. control -8.4± 46.4, p = 0.42; Figure  2C), which also 
decreased Shannon diversity (p = 0.035) (Figure 2C). The increase 
in α-diversity (Shannon index) correlated with improvements in 
insulin sensitivity and with reductions in visceral adipose tissue and 
fat mass in the ITF-subgroup (p < 0.05). Principal coordinate 
analysis (PCoA) based on Bray Curtis dissimilarity metrics detected 
systematic change from baseline to end-of-trial in the whole cohort 
(n = 80) but no differences between the two subgroups (Figure 2A).

Intervention-induced changes in gut 
microbiota taxa

In the whole cohort, the relative abundance between baseline and 
end-of-trial was increased for Ruminococcaceae and Bifidobacteriaceae 
(0.024 ± 0.075, PFDR = 0.01; and 0.022 ± 0.062, PFDR < 0.01; respectively, 
Table 3) and decreased for Lachnospiraceae (−0.03 ± 0.11, PFDR < 0.03). 
These changes were largely driven by ITF supplementation (Table 3). 
Furthermore, the relative abundance of Erysipelotrichaceae 
(−0.012 ± 0.034, PFDR = 0.02) and Coriobacteriaceae (−0.007 ± 0.020, 
PFDR < 0.01) was reduced in the whole cohort.

There was a significant increase in Actinobacteria phylum in the 
ITF-prebiotics group (0.043 ± 0.061, PFDR = 0.02). At the genus level, 
supplementation with ITF-prebiotics resulted in a significant increase 
in the relative abundance of Bifidobacterium (0.052 ± 0.058, PFDR = 0.03) 
and Faecalibacterium (0.058 ± 0.075 PFDR = 0.04) (Figure 3B); the latter 
seemed to be  increased at the expense of Collinsella in the 
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ITF-subgroup (r = −0.5, p < 0.02) and in all subjects (n = 80, rs = −0.4, 
p < 0.001). Notably, the change in Faecalibacterium abundance 
following ITF supplementation correlated positively with the change 
in insulin and HOMA-IR score (rs = 0.59, p < 0.01; rs = 0.57, p < 0.01) 
and negatively with HDL-C (rs = −0.5, p = 0.02). In addition, the 

change in Bifidobacterium significantly correlated with the reduction 
in total cholesterol (rs = −0.5, p = 0.01) and LDL-C (rs = −0.5, p = 0.04) 
in the control group. A significant increase in the relative abundance 
of Faecalibacterium prausnitzii (F. prausnitzi) species was detected in 
the ITF-prebiotics subgroup (Figure 3C). All changes from baseline to 

TABLE 1 Characteristics of study participants at baseline.

All (n = 82) ITF-prebiotics (n = 21) Control (n = 22) p-value ITF-prebiotics vs. Control

Sex (% female) 56 (68%) 16 (76%) 13 (59%) 0.23

Age, years 45 ± 12 45 ± 10 42 ± 13 0.47

Anthropometry

Body weight, kg 96 ± 16 96.7 ± 14 101 ± 15 0.31

Fat mass, kg 38.5 ± 9 40 ± 9.5 40 ± 9 0.95

Body mass index, kg/m2 32 ± 3.5 32.5 ± 3.4 33 ± 3.8 0.58

Waist circumference, cm 102 ± 11 104 ± 9.6 105 ± 11 0.79

Lean body mass, kg 54 ± 11 53 ± 10 57 ± 11 0.23

Visceral adipose tissue, g 1,427 ± 851 1,595 ± 847 1,631 ± 980 0.90

Total body fat, % 40 ± 7 41.5 ± 7 40 ± 7 0.49

Blood Pressure

Systolic, mm Hg 122 ± 19 121 ± 15 126 ± 16 0.42

Diastolic, mm Hg 84 ± 10 85 ± 11 85 ± 10 0.98

Glucose homeostasis

Glucose, mg/dL 94.0 ± 9.0 95.3 ± 8.7 95.2 ± 10.5 0.97

Insulin, mU/L 7.0 (4.7, 10.0) 8.2 (5.3, 12.1) 8.3 (5.4, 11.4) 0.88

HOMA-IR 1.5 (1.1, 2.4) 2.0 (1.1, 2.9) 1.9 (1.2, 2.7) 0.82

Lipid Profile

Total cholesterol, mmol/L 4.9 ± 0.9 4.7 ± 0.8 4.9 ± 1.0 0.35

HDL cholesterol, mmol/L 1.4 ± 0.3 1.3 ± 0.3 1.24 ± 0.24 0.27

LDL cholesterol, mmol/L 3.0 ± 0.8 2.8 ± 0.7 3.3 ± 0.8 0.07

Triglycerides, mmol/L 1.0 (0.7,1.5) 1.1 (0.8, 1.6) 1.1 (0.8, 1.4) 0.89

Total cholesterol/HDL 3.7 ± 0.10 3.7 ± 0.95 4.1 ± 0.87 0.16

LDL/HDL 2.3 ± 89 2.2 ± 0.8 2.7 ± 0.8 0.06

Inflammatory biomarkers

CRP, mg/L 1.4 (0.7, 2.8) 1.7 (0.8, 3.1) 1.3 (0.6, 2.3) 0.31

TNFα, pg./mL 0.50 ± 0.14 0.51 ± 0.09 0.49 ± 0.11 0.57

IL-6, pg./mL 1.2 (1.0, 1.9) 1.3 (1.0, 1.8) 1.1 (0.8, 1.5) 0.50

IL-10, pg./mL 1.0 (0.4, 1.3) 0.9 (0.4, 1.3) 1.0 (0.7, 1.3) 0.98

MCP1, pg./mL 175 ± 33 175 ± 37 182 ± 33 0.49

Dietary intake

Energy, kcal/d 2,352 ± 654 2,303 ± 420 2,434 ± 777 0.50

Fat, %E 37 ± 7 35 ± 6 37 ± 8 0.36

Protein, %E 16 ± 3 16 ± 3 16 ± 4 0.90

Carbohydrate, %E 42 ± 8 45 ± 6 42 ± 8 0.13

Dietary fiber, g/d 26 ± 10 27 ± 7 22 ± 8 0.04

Data are presented as mean ± SD or median with quartiles, and comparisons between groups at baseline analyzed using the t-test for normally distributed data and the Mann–Whitney U test 
for non-normally distributed data. Categorical variables were analyzed by Pearson’s chi-square test. p-values are shown only for descriptive purposes and not for hypothesis testing.
The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated as fasting plasma glucose (mmol/L) × fasting plasma insulin (mU/mL)/22.5.
ITF, inulin-type fructans; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance; CRP, C-reactive protein; TNFα, tumor 
necrosis factor α; IL6, interleukin 6; IL10, interleukin 10; MCP1, monocyte chemoattractant protein.
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end-of-trial in the control group were not significant, and no 
significant differences between subgroups were observed, except for 
the change in F. prausnitzii (Figure 3C).

Weight loss is Not predicted by baseline 
fecal P/B

Prevotella was detected in 40 subjects at baseline, whereas 42 had 
non-detectable Prevotella levels and were assigned a value of half the 
limit of detection (relative abundance of 0.000045). There was no 
correlation between the P/B ratio at baseline with weight changes 

following the 10-week study period in all participants (Figure 4) or 
those in the ITF and control subgroups. The same was true when 
excluding subjects with non-detectable Prevotella from the analysis.

Effect of the dietary intervention on lactate 
and BCAAs

As expected, serum lactate and BCAAs were significantly (all 
p < 0.01), and to the same extent, reduced in both subgroups given the 
consumption of very similar plant-based diets over the 10-week 
study period.

TABLE 2 Effect of plant-based diet and added ITF-prebiotics on the change of anthropometric measurements and health parameters.

All (n = 82)a ITF-prebiotics (n = 21) Control (n = 22) p-value (ITF-prebiotics 
vs. Control)

Anthropometry

Body weight, kg −3.2 ± 3.1** −3.3 ± 0.7** −3.7 ± 0.7** 0.70

Body mass index, kg/m2 −1.0 ± −1.0** −1.1 ± 0.2** −1.2 ± 0.2** 0.86

Waist circumference, cm −2.2 ± 3.3** −2.7 ± 0.8** −2.6 ± 0.8** 0.97

Lean body mass, kg −1.0 ± 1.3** −0.9 ± 0.3** −1.3 ± 0.3** 0.33

Fat mass, kg −2.0 ± 2.3** −2.3 ± 0.6** −2.4 ± 0.6** 0.96

Visceral adipose tissue, g −143 ± 236** −193 ± 57** −170 ± 56** 0.78

Total body fat, % −1.0 ± 1.3** −1.0 ± 0.4** −1.0 ± 0.4** 0.99

Blood Pressure

Systolic, mm Hg 0.2 ± 15 0.2 ± 3.0 −2.0 ± 3.0 0.62

Diastolic, mm Hg −3 ± 6.6** −2.7 ± 1.1* −3.3 ± 1.1** 0.72

Glucose homeostasis

Glucose, mg/dL −1.4 ± 5.8* −0.2 ± 1.3 −0.9 ± 1.3 0.73

Insulin, mU/Lb −10 (−26, 5)** −10 (−21, 3) −11 (−22, 1) 0.91

HOMA-IRb −10.5 (−29, 3)** −10 (−22, 4) −11 (−23, 2) 0.88

Lipid Profile

Total cholesterol, mmol/L −0.3 ± 0.5** −0.2 ± 1.0 −0.3 ± 1.0** 0.29

HDL cholesterol, mmol/L −0.06 ± 0.15** −0.10 ± 0.03** −0.05 ± 0.03 0.23

LDL cholesterol, mmol/L −0.16 ± 0.44** −0.04 ± 0.08 −0.24 ± 0.07** 0.07

Triglycerides, mmol/Lb −4.4 (−23, 31) 1.4 (−13, 19) 3.3 (−11, 20) 0.88

Total cholesterol/HDL −0.06 ± 0.50 0.15 ± 0.11 −0.13 ± 0.11 0.07

LDL/HDL −0.04 ± 0.42 0.16 ± 0.09 −0.10 ± 0.09 0.04

Inflammatory biomarkers

CRP, mg/Lb,c −6.7 (−41, 42) −1.6 (−31, 41) −1.4 (−30, 39) 0.99

TNFα, pg./mL 0.02 ± 0.07* 0.05 ± 0.02** 0.01 ± 0.02 0.07

IL-6, pg./mLb 2.5 (−24, 27) −1.1 (−17, 19) 9 (−9, 31) 0.43

IL-10, pg./mLb 9.6 (−6, 39)** 51 (14, 102)** 19 (−10, 58) 0.24

MCP1, pg./mL 4.2 ± 21 10.9 ± 5.3* 4.7 ± 5.2 0.43

aData for all participants are presented as mean ± SD or median percent change with (quartiles), using paired t-test for normally distributed data and the Mann–Whitney U test for non-
normally distributed data. To observe differences between the basal state and week-10 as well as between ITF-prebiotics and Control, one-way repeated measure ANOVA, adjusted for sex, was 
performed and values are presented as estimated mean ± SEM. bLog-transformation was performed to non-normally distributed residuals, and data thus represent mean percent change with its 
corresponding 95% CI.
cExcluding 1 outlier (n = 1).
**p < 0.01, *p < 0.05 significant difference from baseline. Significant difference between the subgroups are displayed in bold.
The homeostatic model assessment of insulin resistance (HOMA-IR) was calculated as fasting plasma glucose (mmol/L) × fasting plasma insulin (mU/mL)/22.5.
ITF, inulin-type fructans; HDL, high-density lipoprotein; LDL, low-density lipoprotein; HOMA-IR, homeostatic model assessment of insulin resistance; CRP, C-reactive protein; TNFα, tumor 
necrosis factor α; IL6, interleukin 6; IL10, interleukin 10; MCP1, monocyte chemoattractant protein 1.

https://doi.org/10.3389/fnut.2023.1108088
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Aldubayan et al. 10.3389/fnut.2023.1108088

Frontiers in Nutrition 08 frontiersin.org

Discussion

The present study explored changes in gut microbiota and host 
metabolism after 10 weeks on a high fiber plant-based diet with or 
without the addition of isolated ITF-prebiotics. Our results 
reinforce current evidence demonstrating that plant-based diets are 
effective in reducing body weight and improving glucose and lipid 
profiles (7–9). We  found that a predominantly plant-based diet 
(with a fiber content of ∼38 g/d) consumed ad libitum for a period 
of 10 weeks reduced fasting glucose, insulin, total cholesterol, and 
LDL-C levels, concomitant with improvements in measurements of 
body composition including fat mass, body fat percentage, total and 
visceral adipose tissue, and waist circumference. However, the 

addition of 20 g/d isolated ITF-prebiotics to the already high fiber 
diet did not provide additional benefits on various physiological 
parameters. If anything, ITF supplementation mitigated some of the 
beneficial effects of the plant-based diet on cardiometabolic risk 
factor profile, for the same amount of weight loss. This is in line 
with previous studies that found supplementation with inulin and/
or FOS does not have significant independent effects on fasting 
glycemia and insulinemia, HOMA-IR index or lipid profile (31–35). 
Nonetheless, others demonstrated that ITF-prebiotics may have 
lipid-lowering (36) or glucose-lowering (13, 37, 38) effects, 
particularly among those with impaired fasting glycemia or 
hypercholesterolemia. In the present study we recruited individuals 
with obesity who were otherwise healthy (i.e., without hypertension, 

TABLE 3 Changes in relative abundance of fecal bacteria at the family, phylum and genus level in subjects receiving plat-based diet for 10 weeks.

All (n = 80) ITF-prebioticsa (n = 20) Control (n = 21) p-valuesb

Pre Post Pre Post Pre Post All ITF-
prebiotics

Control

Phyla

Firmicutes 0.745 ± 0.108 0.724 ± 0.116 0.763 ± 0.071 0.728 ± 0.112 0.749 ± 0.096 0.705 ± 0.136 0.13 0.23 0.65

Bacteroidetes 0.140 ± 0.113 0.139 ± 0.106 0.131 ± 0.087 0.123 ± 0.085 0.123 ± 0.103 0.135 ± 0.118 0.65 0.68 0.36

Actinobacteria 0.084 ± 0.067 0.098 ± 0.065 0.081 ± 0.060 0.124 ± 0.063 0.101 ± 0.067 0.114 ± 0.065 0.90 0.02 0.41

Family

Lachnospiraceae 0.372 ± 0.110 0.344 ± 0.092 0.383 ± 0.081 0.327 ± 0.092 0.368 ± 0.090 0.329 ± 0.094 0.03 0.03 0.26

Ruminococcaceae 0.230 ± 0.072 0.254 ± 0.074 0.231 ± 0.067 0.275 ± 0.080 0.238 ± 0.058 0.250 ± 0.060 0.01 0.04 0.46

Bacteroidaceae 0.065 ± 0.067 0.065 ± 0.069 0.075 ± 0.070 0.074 ± 0.075 0.049 ± 0.054 0.052 ± 0.043 0.91 1.00 0.43

Bifidobacteriaceae 0.049 ± 0.061 0.071 ± 0.063 0.045 ± 0.052 0.097 ± 0.064 0.064 ± 0.059 0.085 ± 0.064 <0.01 0.01 0.32

Erysipelotrichaceae 0.048 ± 0.047 0.036 ± 0.032 0.052 ± 0.063 0.033 ± 0.039 0.045 ± 0.042 0.032 ± 0.025 0.02 0.13 0.34

Prevotellaceae 0.038 ± 0.074 0.041 ± 0.069 0.016 ± 0.033 0.021 ± 0.036 0.045 ± 0.073 0.047 ± 0.083 0.91 0.18 0.27

Coriobacteriaceae 0.026 ± 0.020 0.019 ± 0.014 0.029 ± 0.021 0.022 ± 0.012 0.028 ± 0.029 0.019 ± 0.016 <0.01 0.10 0.20

Genera

Faecalibacterium 0.121 ± 0.069 0.154 ± 0.072 0.128 ± 0.061 0.186 ± 0.082 0.126 ± 0.052 0.147 ± 0.052 <0.01 0.04 0.52

Lachnospiraceae, 

unclassified genus

0.101 ± 0.033 0.096 ± 0.030 0.108 ± 0.049 0.086 ± 0.030 0.092 ± 0.026 0.089 ± 0.027 0.50 0.28 0.80

Blautia 0.099 ± 0.058 0.084 ± 0.048 0.103 ± 0.054 0.071 ± 0.04 0.104 ± 0.051 0.096 ± 0.059 0.04 0.10 0.73

Bifidobacterium 0.049 ± 0.061 0.071 ± 0.064 0.045 ± 0.053 0.097 ± 0.064 0.064 ± 0.059 0.085 ± 0.064 <0.01 0.03 0.40

Agathobacter 0.041 ± 0.042 0.033 ± 0.028 0.039 ± 0.032 0.031 ± 0.023 0.040 ± 0.040 0.026 ± 0.023 0.50 0.76 0.45

Bacteroides 0.036 ± 0.043 0.034 ± 0.038 0.053 ± 0.055 0.044 ± 0.045 0.021 ± 0.015 0.025 ± 0.021 0.78 0.71 0.66

Prevotella 0.031 ± 0.068 0.036 ± 0.063 0.015 ± 0.032 0.016 ± 0.032 0.035 ± 0.070 0.041 ± 0.075 0.48 0.30 0.69

Ruminococcaceae, 

unclassified genus

0.034 ± 0.026 0.031 ± 0.021 0.037 ± 0.031 0.033 ± 0.025 0.032 ± 0.023 0.030 ± 0.19 0.41 0.64 0.76

Gemmiger 0.033 ± 0.025 0.031 ± 0.026 0.028 ± 0.018 0.025 ± 0.019 0.040 ± 0.034 0.037 ± 0.025 0.50 0.73 0.66

Phocaeicola 0.028 ± 0.035 0.030 ± 0.037 0.020 ± 0.020 0.029 ± 0.038 0.028 ± 0.043 0.026 ± 0.030 0.50 0.43 0.80

Clostridium_XlVa 0.026 ± 0.018 0.023 ± 0.017 0.033 ± 0.019 0.032 ± 0.023 0.027 ± 0.021 0.023 ± 0.016 0.47 0.95 0.75

Collinsella 0.025 ± 0.020 0.018 ± 0.013 0.028 ± 0.021 0.021 ± 0.012 0.025 ± 0.027 0.018 ± 0.016 0.01 0.30 0.52

Roseburia 0.020 ± 0.026 0.023 ± 0.022 0.019 ± 0.021 0.022 ± 0.023 0.016 ± 0.021 0.016 ± 0.020 0.44 0.92 0.97

aGroup receiving 20 g/d inulin + fructooligosaccharides.
bp-values were adjusted to control the false discovery rate for multiple testing according to the Benjamini and Hochberg procedure. Significant changes are displayed in bold.
Values are displayed as means ± standard deviation using Wilcoxon paired test. ITF, inulin-type fructans.
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glucose abnormalities, and dyslipidemia), and found trends for 
attenuated reduction in glucose and LDL-C and augmented 
reduction in HDL-C in the ITF-subgroup relative to control, despite 
similar weight loss. These observations raise the possibility that the 
glucose and lipid-modifying ability of ITF-prebiotics mostly 
benefits those with compromised glycemic control and lipid profile 
at baseline. From a mechanistic perspective, a review by McRorie 
et al. (39) proposed that the cholesterol-lowering and improved 
glycemic effects of soluble fibers are highly correlated with their 
high viscosity gel-forming properties. Accordingly, non-viscous 
soluble fibers such as inulin and FOS do not exhibit these viscosity/
gel-dependent beneficial health effects (39, 40).

Supplementation with ITF-prebiotics for 10 weeks altered the fecal 
bacterial community of the participants. Overall, in agreement with 
previous findings (38), we  observed a decrease in gut microbiota 
richness among the whole cohort, which was mainly driven by the 
ITF-prebiotics subgroup (reduced alpha diversity measures). 
Therefore, it may be inferred that providing one type of isolated fiber 
for enough time induces a decrease in diversity and promotes the 
growth of certain taxa attributable to their specific ability to metabolize 
this type of fiber. Of particular interest, the administration of 20 g/d 
ITF-prebiotics in the present study led to a selective increase in the 
abundances of Bifidobacterium (∼2.2 fold) and F. prausnitzii (∼1.6 
fold), in line with previous studies (31, 41–44). Specific stimulation of 

A

B

C

FIGURE 2

Alpha-and beta-diversity comparisons of the gut microbiome from baseline to end-of-trial. (A) The change in principal coordinate analysis (PCoA) of 
the β-diversity index Bray Curtis (p < 0.01) in all participants (n = 80) (on the left), and between ITF-prebiotics (n = 20) vs. control (n = 21) (on the right) after 
the dietary intervention (p = 0.21). (B) Changes in α-diversity indices: number of observed species (p = 0.03), Shannon (p = 0.26) and Pielou’s evenness 
(p = 0.67) in all participants (n = 80), and in (C) ITF-prebiotics (n = 20) vs. control (n = 21) from baseline. *p < 0.05, **p < 0.01. ITF, inulin-type fructans.
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these taxa as a function of prebiotics has been shown to be associated 
with various health parameters resulting from cross-feeding 
interactions between acetate-producing bifidobacteria with 

butyrate-producing F. prausnitzii (45). Despite the bifidogenic effect 
of ITF in the present study, no strong correlation was found between 
changes in Bifidobacterium and F. prausnitzii abundances with changes 
in glucose and triglyceride concentrations, as reported previously (46). 
However, Faecalibacterium species abundance was positively correlated 
with serum insulin levels and HOMA-IR, contrary to previous 
findings (47). Interestingly, a recent study analyzing Faecalibacterium-
like metagenome-assembled genomes identified twelve clades of this 
genus in the human gut, suggesting different functional potential and 
diversity associated with diet, health, and disease (48). That said, 
investigating which clade or strain is associated with a particular 
function is yet to be explored.

Obesity and T2D are recognized as states of chronic low-grade 
inflammation associated with gut dysbiosis and manifested by 
higher levels of circulating proinflammatory cytokines (3). Current 
evidence on the potential influence of gut microbes on immune 
responses are largely derived from in vitro and animal models, 
whereas findings from human studies are few and equivocal. Several 
studies have reported that the microbial diversity and the abundance 
of Bifidobacterium species and butyrate-producing bacteria, e.g., 
F. prausnitzii, in the human colon is markedly decreased in patients 
with gut diseases such as inflammatory bowel disease (49). 
F. prausnitzii are involved in immunomodulation by downregulating 
the NF-κB pathway and consequently inhibiting the synthesis of 
pro-inflammatory cytokines IL-6 and IL-12, while facilitating the 
induction of anti-inflammatory IL-10 (50). An in vitro study by Pang 

A

B C

FIGURE 3

Changes in microbial composition from baseline to end of trial. (A) Relative abundances of bacterial taxa accounting for more than 2% at the genus 
level assessed using Illumina 16S rRNA gene sequencing in subjects with obesity (all cohort, n = 80) consuming plant-based diet and in a subgroup 
consuming ITF-prebiotics (n = 20) vs. their controls (n = 21). (B) Genera and (C) species with significant changes from baseline in ITF-prebiotics group 
analyzed using Wilcoxon paired test with a false discovery correction according to the Benjamini and Hochberg procedure. Mann–Whitney U test was 
performed to compare the relative abundance between the control and ITF-prebiotics subgroups. *p < 0.05, **p < 0.01 significant change from baseline. 
ITF, inulin-type fructans.

FIGURE 4

Changes in body weight from baseline to end-of-trial in relation to 
baseline fecal log-transformed Prevotella-to-Bacteroides ratio in all 
participants (n = 82). Pearson’s correlation coefficients and p values 
are displayed. Vertical line denotes the mean log P/B ratio.
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et  al. demonstrated that inulin-type fructans, derived from 
Platycodon grandifloras, induced a significant increase in IL-10 
mRNA levels along with a minor increase in TNFα (51). Another 
study confirmed that FOS and inulin independently increased 
TNFα, IL-1β, and IL-10  in human peripheral blood monocytes 
mediated through TLR signaling (52). In fact, only TNFα and IL-10 
were significantly induced (52). This direct role was investigated in 
vitro demonstrating that ITF-prebiotics act as TLR4 ligands in 
intestinal epithelial cells and induce the production of MCP-1 and 
macrophage inflammatory protein 2 (MIP2), with an efficacy that 
was 50–80% that of lipopolysaccharide (53). Our study yielded 
similar results with ITF supplementation significantly increasing 
IL-10 and MCP-1 levels and mildly increasing TNFα. On the other 
hand, Clarke et al. reported a decrease in serum IL-10 concentration 
following 28 days of 15 g/d fructans consumption among 30 healthy 
adults (54), and Dehghan et al. found a decrease in TNFα, CRP and 
lipopolysaccharide among women with T2D after 8 weeks of 10 g/d 
inulin supplementation together with a trend for increased IL-10 
(55). The reasons for the conflicting results observed across studies 
remain to be  clarified. Interestingly, however, Hippe et  al. (56) 
reported that F. prausnitzii phylotypes found in individuals with 
obesity and T2D were different compared to those found in lean 
counterparts who had the highest in F. prausnitzii but the lowest in 
its butyrate production capacity (BUT gene). Notably, the highest 
BUT gene abundance was observed among patients with T2D, 
suggesting that butyrate-producing capacity differs between 
F. prausnitzii phylotypes, and its protective role may 
be concentration-dependent. The authors speculated that a specific 
threshold of butyrate production can be  protective—improving 
adiposity and glucose homeostasis; whereas increased concentrations 
could be detrimental—promoting inflammation. There is still much 
to be  learned by investigating the complex signaling pathways 
involved in the direct and indirect prebiotics-gut microbiota 
interactions with host health including the immune system, leading 
to either an anti-or a pro-inflammatory response.

With respect to weight management in relation to microbial 
enterotypes, in contrast to previous findings (20, 21), baseline P/B 
ratio in this study did not predict weight loss success. However, in 
accordance with previous observations (19, 22), the association 
between the Prevotella enterotype and weight loss was observed only 
among a subgroup of individuals having low salivary amylase gene 
copy number. Here, we did not evaluate this gene variant. Also, about 
half of the participants (51%) had no detectable fecal Prevotella at 
baseline. This is higher than previously reported (19–21) and basically 
excluded half of the participants from the analysis, resulting in low 
statistical power for detecting significant relationships with health 
outcomes. Moreover, previous research suggests that individuals with 
no detectable Prevotella have a differential weight loss response 
compared to those with low P/B ratio (20).

To our knowledge, this is the first study that compared the health 
effects of consuming a diet naturally rich in fiber, with prebiotic 
properties, and its effects on gut microbiota composition and 
physiological outcomes relative to a similar plant-based diet 
supplemented with inulin and FOS. We  demonstrate that 
improvements in various health parameters can be achieved with a 
varied high-fiber diet rather than supplementation with an isolated 
nutrient which in fact was associated with reduced microbial diversity 
and attenuated cardiometabolic benefits. However, these results 
should be interpreted with caution given the exploratory nature of our 

analysis. Intriguingly, other studies (57, 58) reported favorable changes 
in metabolic markers following dietary intervention with ITF-prebiotic 
despite observed reduced gut microbiota diversity, which appear to 
contradict the notion that overall greater diversity and/or richness 
translates to better health. Therefore, the relationships between 
decreased gut microbial diversity and health outcomes in addition to 
what constitutes a healthy gut microbiome require further 
investigation. In addition, we  did not measure bowel habits or 
gastrointestinal symptoms but we nevertheless encountered only 4 
dropouts in the ITF-prebiotics subgroup. It has previously been 
reported that inulin fructans are generally well-tolerated up to a level 
of 20 g/d (59). An important limitation concerning research with gut 
microbiome is the lack of quantitative data on actual fluxes of SCFAs 
and of relevant metabolic processes and interconversions resulting 
from prebiotics fermentation. Similarly, our study provides no insight 
into gut microbial SCFA production. Considering that the majority of 
SCFAs are rapidly utilized by colonocytes (butyrate being the primary 
energy source), or consumed in cross-feeding between different gut 
microbiota (leaving only ∼5% of total SCFAs excreted in stool), 
interpretation of concentrations in peripheral blood and/or urine may 
not accurately reflect the amounts produced in the gut and 
subsequently absorbed in the systemic circulation. Lastly, it is possible 
that the absence of significant differences between the two subgroups 
in our study was due to the control diet being already very high in 
fiber (33 g/d) and plant foods; inulin is naturally present in a wide 
variety of plants such as onions, garlic, leek, bananas, asparagus, 
artichoke, wheat, and chicory (60).

Collectively, while evidence for direct and indirect health effects 
of prebiotics is rapidly accumulating, results from interventions in 
human subjects are inconsistent and make it challenging to draw 
comprehensive conclusions, thereby limiting translation to practice. 
This could be related to (1) the heterogeneity of study designs and the 
generally small sample sizes, (2) the habitual intake of dietary fiber, (3) 
the duration of supplementation as well as factors related to differences 
in the type, dose, and physicochemical properties of the prebiotics, 
and (4) the gut microbiota’s fermentation capacity. The bidirectional 
relationship between gut microbiota and host adds further complexity. 
Therefore, future research efforts should focus on unraveling the 
potential mechanisms underlying these complex pathways and 
microbial functionality through metagenomic analysis before targeted 
dietary advice can be  implemented. Well-powered large-scale 
prospective randomized multi-omics trials designed to tailor a diet 
based on baseline microbiota profile, amongst others, are warranted 
to provide more concrete evidence. Consideration of individual 
factors, including, but not limited to, health status, age and sex could 
also explain the variation of the microbiota responses to diet 
among individuals.

Conclusion

In summary, our results indicate that ad libitum consumption of 
a balanced plant-based diet that is naturally rich in fiber significantly 
decreases body weight and improves glycemic and lipid profiles, 
whereas the addition of ∼20 g/d of isolated inulin-type fructans has 
no additional benefits in generally healthy individuals with obesity 
despite modulating gut microbiota composition. There is insufficient 
evidence at present to support precision dietary advice for weight loss 
merely informed by individual gut microbiota profile.
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