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Editorial on the Research Topic

What sensory ecology might learn from landscape ecology?

Increasing awareness by the mid-20th century that the spatio-temporal heterogeneity

of the environment has a crucial impact on the flow of both matter and energy at various

scales (population, community, and ecosystem level) gave rise to Landscape Ecology as

ecological discipline (Naveh and Lieberman, 1984; Forman and Godron, 1986). Almost

contemporarily, science witnessed the dawn of Sensory Ecology (Ali, 1978; Lythgoe, 1979;

Huber and Markl, 1983; Barth, 1986; Dusenbery, 1992; recent review in Willemart, 2023),

which focuses on understanding information flow in the environment (signal generation,

propagation, perception, and interpretation). Just like the flow of matter and energy,

information flow is far from constant owing to spatio-temporal variations of the biotic

and abiotic environment (Endler, 1993; Pijanowski et al., 2011). These natural fluctuations

have driven the evolution of plastic sensory systems in animals (Pyza, 2013; Maruska and

Butler, 2021). However, the efficiency of information flow is threatened by rapid human

modifications of the environment by increasing the acoustic, chemical, and visual noise,

thereby interfering with the information necessary for communication and orientation

(Pijanowski et al., 2011; Riffell et al., 2014; Duarte et al., 2021).

The present Research Topic is an effort to integrate Sensory Ecology and Landscape

Ecology, calling attention to the importance of considering environmental heterogeneity

in investigations of sensory adaptations of animals. A crucial first step is to measure the

variation in a particular sensory landscape. In their contribution, Nilsson et al. highlight

the importance of quantifying the distribution of light reaching animals’ eyes in different

environments. The authors demonstrate the association of vertical light gradients with

weather conditions, time of day, and season. This information is vital for species that

primarily use vision for finding suitable habitats, foraging, and for social interactions. Many

animals, however, rely on chemical information in the environment, which is strongly

influenced by the variability of air speed and direction. Analyzing air movement dynamics

in a tropical dry forest in Costa Rica, DePasquale et al. found that air speed and turbulence

increased with height above ground, peaked at midday, and may be lower in late than early

successional parts of the forest. Species that use olfaction as primary source of information

may have adapted to and even exploit this predictability of air movement patterns.
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Spatio-temporal variations in the sensory environment are

certainly the dominant driver of the evolution of sensory systems.

Using statistical methods to control for effects of phylogenetic

proximity and repeated measurements in their data sets, Huang

et al. found strong evidence that relative eye size across six snake

families fromTaiwan changes with habitat type (bigger in terrestrial

than aquatic snakes) and activity pattern (bigger in diurnal than

nocturnal snakes). Thus, low light conditions associated with both

aquatic and nocturnal lifestyles may have facilitated the evolution

and/or improvement of sensory modalities alternative to vision, as

is well-known in fish. Weakly electric fish, for instance, generate

discharges of their electric organs to sense their environment and

to communicate. In addition to an increased electrical activity

during night time, Mucha et al. observed elevated electric organ

discharges in visually complex habitats (floating vegetation in dense

swamps) during the day in two species fromUganda. These findings

emphasize the importance of spatio-temporal heterogeneity in light

intensity concerning the use of different sensory modalities in

these animals.

The evolution of signals goes hand in hand with the evolution

of the sensory systems of receivers. The main drivers are

sexual selection, competition, and predation. Despite their species

specificity, signals may vary between and even within populations,

as is the case with floral colors of a plant population in the

Atacama Desert. Martínez-Harms et al. suggest that different color

phenotypes, associated with different pigment compositions, are

perceived differently by pollinators. This, eventually, enhances

cross-pollination among individuals of the same phenotype and

drives diversifying (positive) selection. By contrast, Yeager and

Barnett found no evidence for positive selection in aposematic

signal variation in a poison frog population from Ecuador. The

authors argue that phenotype variation has not been reduced

due to a weak purifying (negative) selection on a signal that is

highly conspicuous to mates, rivals, and predators. In addition

to sexual selection, competition, and predation, signal divergence

between environments may be due to spatio-temporal variations

in biotic and abiotic variables. In their contribution, Schirmer

et al. show divergent color patterns in butterfly assemblages from

two neighboring biomes in northeastern Brazil. The authors argue

that darker wings in species from the rainforest are, presumably,

associated with increased parasite-pressure, whereas lighter wing

colors in the tropical dry forest may be an adaptive response to an

elevated need for thermoregulation in this biome.

Although crucial for our understanding of the evolution

of sensory systems and signals, information on spatio-temporal

variations of the environment is frequently challenging to obtain.

In their review, Chhaya et al. advocate the use of long-term

acoustic monitoring to assess both the structure and the dynamics

of acoustic communities (ensemble of vocalizing species in the

environment), thereby providing real-time information on species

distributions and movements. Similarly, Gonzales et al. propose

long-term visual monitoring through remote sensing tools to map

floral resource isolation and to investigate changes of resource

patches over time. Such long-termmonitoring techniques are key to

identify anthropogenic changes in the sensory landscape that cause

disturbances of information flow in the environment.

Human actions interfere with the environment at multiple

levels. Anthropogenic climate change, for instance, increases the

frequency of prolonged periods of excessive heat. Perl et al.

investigated the impact of such heat waves during the final stage

of pupal development on the behavior of a bumble bee species. The

observed negative effects on vision, mechanoreception, olfaction,

and taste show how human disturbances may alter the sensory

systems of bumble bees and, thus, the way they perceive the

environment. Yet, anthropogenic interference is not restricted

to alterations of sensory systems. Signaling, as well, may be

compromised in human-changed landscapes. Koneru and Caro

demonstrate multiple ways of how visual signaling in animals

is influenced by anthropogenic environmental changes. Human

impacts range from alterations in pigment production through

dietary changes to increasing colouration-background mismatches

through changes in climate and landscape. Nair and Balakrishnan

discuss how changes in the sensory environment interfere with

the transmission and reception of acoustic sexual signals in

katydids. In their study, the reduction of available signaling sites,

owing to anthropogenic habitat modifications, provoked sub-

optimal clustering of the males, thereby increasing competition

over females.

Over the past decades, the impact of anthropogenic

disturbances on ecosystem functioning has become a hot

topic in Ecology. This Research Topic highlights the importance

of integrative approaches, uniting Landscape Ecology and Sensory

Ecology, to comprehend how natural and anthropogenically-

driven environmental variations shape information flow and,

eventually, natural selection in animals. Key questions for future

research to answer in this context are: (1) To what extent do

spatio-temporal variations in the abiotic environment at different

geographic scales affect signal propagation? (2) To what extent do

spatio-temporal variations in the biotic and abiotic environment

drive the differentiation of sensory niches among animals? (3)

Which environmental cues do animals use for decision-making,

such as microhabitat choice? (4) How does anthropogenic

interference influence the generation, propagation, reception,

and discrimination of sensory information? We hope that this

compilation of manuscripts stimulates new research in this

direction, studying the sensory challenges for animals in a rapidly

changing word.
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