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Abstract 
  
Previous empirical studies have suggested that the perceived consonance/dissonance (C/D) of a 
musical chord depends on its psychoacoustic smoothness (lack of roughness), spectral harmonicity 
(perceptual fusion), and/or musical familiarity. We tested the dependence of C/D on smoothness 
and harmonicity in a hearing experiment that included all 19 possible trichords in musical pitch-
class set theory. In each trial, a listener heard a chord (duration: 300 or 500 ms) and rated its C/D on 
an 11-point scale. Each trichord was presented 10 times: 4 times constructed from octave-complex 
tones (OCTs, sounding like an electronic organ) and 6 times from natural piano tones. Each OCT 
chord was presented in 4 different transpositions. The piano chords were in close or open position, 
and root position or 1st/2nd inversion (2 levels of spacing x 3 levels of inversion = 6 levels of 
voicing). We found no main effect of timbre (OCT versus piano) and no interaction between trichord 
and timbre. Results correlated closely with predictions of simple models of roughness and 
harmonicity. The roughness model performed better, and the predictions correlated with each other. 
A combined model was not superior to roughness alone. The results were consistent with a 
multifactorial model of the C/D of a musical chord, the main factors being roughness, harmonicity, 
and familiarity. 
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Introduction 
 

The structure of Western music depends on the consonance and dissonance 
(C/D) of its sonorities (Christensen, 2006; Parncutt & Hair, 2011), but perception of 
C/D and theories about it changed from one historical period to the next (Tenney, 
1988). Before the advent of written polyphony in the 12th century (Bevilacqua, 
2016), Western music was melodic and rhythmic, and C/D was understood to refer 
to successive tones (melodic C/D). Later and today, C/D more often referred to 
simultaneous tone combinations (harmonic C/D). 
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Intervals that are considered consonant when heard melodically are not 
necessarily consonant when heard harmonically. An octave or perfect 5th interval is 
consonant in both cases, but the major 2nd interval is melodically consonant (it is the 
most common interval between successive tones in melody; Vos & Troost, 1989) 
and harmonically dissonant (due to psychoacoustic roughness; Huron, 1994).  

The C/D of a chord of three or more simultaneous tones in music theory is not 
a simple combination of the C/D of the intervals between the chord tones. For 
example, a minor triad (e.g., CE♭G) may sound (or be considered) less consonant 
than a major triad (CEG), even though the intervals among the tones are the same (in 
both cases, there are three intervals: perfect 5th, major 3rd, minor 3rd). Similarly, a 
major-minor 7th chord (Mm7) or dominant 7th (e.g., G7, GBDF) may seem more 
consonant than a major 7th chord (e.g., Gmaj7, GBDF♯), although only the former 
contains a dissonant tritone interval (BF). In both cases, the difference (major versus 
minor, MmT versus maj7) may be due to harmonicity: the degree to which the 
chord’s spectrum resembles a harmonic series. A major triad is more similar to a 
harmonic series than a minor triad, and a major-minor 7th chord is more similar to a 
harmonic series than a major 7th chord. 
 
Modelling Roughness and Harmonicity 

 
In a previous study (Parncutt et al., 2019), we showed that the prevalence of 

trichords in a musical score database of Western polyphony from the 13th to the 19th 
century correlated with predictions of simple models of roughness and harmonicity. 
Assuming that chord prevalence depends primarily on C/D, and taking into account 
historical knowledge about how new chords were introduced to musical vocabulary, 
we concluded that C/D in polyphonic Western music depends mainly on three 
factors: roughness, harmonicity, and familiarity. That was consistent with an 
independent finding, based on a reanalysis of published consonance perception data 
and modelling of a music notation database (Harrison & Pearce, 2020), in which 
simultaneous consonance was found to depend on interference (roughness), 
periodicity/harmonicity, and cultural familiarity. 

The theory of psychoacoustic roughness was developed by Helmholtz (1863), 
and the basic ideas were repeatedly confirmed in empirical 20th-century studies (e.g., 
Plomp & Levelt, 1965). Musical sounds are subjectively rough when their amplitude 
envelope changes rapidly and periodically. Fast amplitude modulation (or beating) 
is caused by partials (pure-tone components) that are nearby in frequency (lying 
within the same auditory filter or critical band). They reinforce each other when in 
phase, and cancel when out of phase, producing beating. The sound is rough if the 
beats are too fast to hear separately (20 Hz) but not too fast that the sensation 
disappears (above about 300 Hz; Terhardt, 1968). The magnitude of the roughness 
sensation produced by two partials depends on carrier (or mean) frequency, rate of 
modulation (the difference between the two frequencies), and modulation depth.  
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Several quantitative models of roughness have been proposed (e.g., Aures, 
1985; Bigand et al., 1996; Daniel & Weber, 1997; Hutchinson & Knopoff, 1978; 
Pressnitzer et al., 2000), but none is widely accepted or has proven useful in music 
theory and analysis. Roughness can nevertheless explain the rank order of dissonance 
of harmonic (simultaneous) intervals between musical tones. According to 
Malmberg (1918), and in broad agreement with mainstream music theory, those 
intervals are perfect octave, perfect 5th, major 6th, major 3rd, perfect 4th, minor 6th, 
minor 3rd, tritone, minor 7th, major 2nd, major 7th, and minor 2nd (in order of 
increasing roughness). Consonant intervals (those near the start of this list) tend to 
have partials that exactly coincide when the interval between the two fundamental 
frequencies is tuned to a simple ratio of small integers. For example, in the interval 
of a perfect 5th, the 3rd harmonic of the lower tone coincides with the 2nd harmonic 
of the higher tone. There is also a tendency for larger intervals to be more consonant 
than smaller intervals, because their fundamentals are further apart.  

Another theory of C/D that was developed in the late 19th century is Stumpf’s 
(1883) theory of perceptual fusion or unitary hearing (Schneider, 1997). Stumpf’s 
empirical data suggested that a complex spectrum, including that of a musical chord, 
was more likely to be perceived as a fused whole if it was more similar to the 
harmonic series. Whereas Stumpf’s theory corresponds to what we are calling 
harmonicity, he opposed naturalistic explanations, preferring to focus on cultural and 
phenomenological issues.  

Existing theories and models of roughness and harmonicity may not explain all 
variations in the C/D of harmonic intervals. From a music-theoretic perspective, the 
harmonic perfect 4th and minor 6th intervals are more dissonant than might be 
expected from roughness alone. Many medieval music theorists regarded the 
harmonic perfect 4th as especially dissonant despite its simple frequency ratio, and 
in Renaissance and classical harmony, perfect 4th intervals between the bass voice 
and any other part are regarded as dissonances that require resolution (Naishtat, 1996; 
Thomson, 1996). Terhardt’s (1974) theory of chord roots offers a possible 
explanation. In the harmonic perfect 4th and minor 6th intervals, the higher tone may 
be perceptually more salient than the lower – comparable with the root of a chord 
(Parncutt, 1988). For other intervals, the lower tone tends to be more salient, which 
is perceived as more normal or consonant. The perceived harmonicity of a musical 
sound may be enhanced if the fundamental of the implied harmonic series 
corresponds to the bass voice. 

Some empirical tests of C/D did not refer directly to roughness or harmonicity. 
Roberts (1986) empirically established a rank order of consonance for four triads 
(major, minor, diminished, augmented), and demonstrated that root positions are 
more consonant than inversions, and that chords tuned to (familiar) 12-EDO are 
perceived to be more consonant than chords tuned to (unfamiliar) Just or Pythagorean 
tuning. Other studies have concluded that C/D is based on either harmonicity 
(McDermott et al., 2010) or roughness (Plomp & Levelt, 1965), but not both. 
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Eberlein (1994, p. 34) argued that roughness was more important than harmonicity 
(fusion). McDermott et al. (2010) argued the opposite – that C/D was mainly 
determined by harmonicity – but their conclusion may have been a consequence of 
their limited range of the stimuli. 
 
Music-Theoretic Foundations 
 

Many ideas in music theory, including many ideas about C/D, are octave-
generalized: they do not depend on the octave register in which the tones are played, 
but are understood to be independent of register. A pitch class is an octave-
generalized pitch, or a pitch whose octave register is not specified. For example, there 
are seven tones on the modern piano keyboard that are called “G” and hence belong 
to the pitch class “G”. There are twelve pitch classes, one for each tone in the 
chromatic scale. 

Western tonal music is based on triadic chord progressions. A triad is 
traditionally regarded as a chord comprising three pitch classes that is created by 
stacking 3rd intervals, and the tones in a triad are called root, 3rd, and 5th. For 
example, the root of a C-major triad is C, the 3rd is E, and the 5th is G. That is true 
regardless of the octave registers in which the tones appear. If the lowest tone is not 
C, the chord is inverted. 

Western tonality in the “common-practice period” (roughly 1650-1900) was 
based on four triads: major, minor, diminished, and augmented (Randel, 2003). 
Stacking a major 3rd [4 semitones] below a minor 3rd [3] creates a major triad (in 
semitones relative to the root: [047]), and reversing the order of intervals creates a 
minor triad [037]. Stacking two minor 3rds [3] creates a diminished triad [036]; two 
major 3rds [4], an augmented triad [048]. Music theory textbooks often imply that 
these four triads are the most common tone chords in Western tonal music. In fact, 
the most common simultaneities of three pitch classes in mainstream Western tonal 
music are major, minor, suspended [057], and diminished, in that order; the 
augmented triad is remarkably rare (Parncutt et al., 2019). 

In the key or tonality of C major, which is defined by the scale CDEFGAB of 
which C is the tonic or main reference pitch, there are seven diatonic triads: C major 
(comprising tones CEG), D minor (DFA), E minor (EGB), F major (FAC), G major 
(GBD), A minor (ACE), and B diminished (BDF). In the key of C (harmonic) minor, 
which is defined by the scale CDE♭FGA♭B, the 7 diatonic triads are C minor 
(CE♭G), D diminished (DFA♭), E♭ major (E♭GB♭) (not augmented, as the scale 
implies), F minor (FA♭C), G major (GBD), A♭ major (A♭CE♭), and B diminished 
(BDF). Diatonic chord progressions are confined to these chords, but even 
harmonically simple music in the keys of C major or minor often includes mixtures 
of chords from both keys and/or non-diatonic triads such as D major (DF♯A) or B♭ 



Parncutt, R., Engel, I., Radovanovic, L.: 
Consonance of Simultaneous Trichords 

17 

major (B♭DF). The same applies to any major or minor key (modal mixture: Beach 
& Schubert, 1998).  

Pitch-class set theory enumerates all possible pitch class combinations 
(regarded as mathematical sets) that are available for composition, within given 
restrictions. For example, it lists all possible combinations of three pitch classes, or 
trichords, that can be created in the chromatic scale (cf. Straus, 2005). The number 
of trichords can be reduced by grouping together those that are transpositions of each 
other. For example, D major [269] is a transposition of C major [047], both being 
major triads. After eliminating transpositions, 19 possible trichords remain, four of 
which are the triads listed above (major, minor, diminished, augmented). The number 
of possible trichords can be reduced from 19 to 12 by grouping together those that 
are intervallic inversions of each other; for example, the major and minor triads 
([047] and [037]) can be regarded as different versions of the same pitch class set. In 
the following, we will regard major and minor triads as different trichords.  

Whereas all 19 trichords appear regularly in tonal music, the most consonant 
ones appear more often than the most dissonant ones (Parncutt et al., 2019). The most 
dissonant trichord, and least often used, is the chromatic cluster [012] (e.g., C-C♯-
D); it occurs occasionally in classical music when a chromatic appoggiatura rises by 
a semitone to the root of a major-minor 7th chord (for example, when B is played 
simultaneously with a C7 chord, and the B resolves to C). 

 
Ratio Theory 
 

In ancient Greece, the Pythagoreans conceived of musical intervals as ratios of 
string lengths on a monochord (Caleon & Subramaniam, 2007), and regarded all 
musical intervals as combinations of octaves (1:2), perfect 5ths (2:3), and perfect 4ths 
(3:4). Adding intervals meant multiplying ratios. For example, a major 3rd interval 
was regarded as the sum of four perfect 5ths minus two octaves, with a ratio of 
(3/2)4/22 = 81/64. That is 4.08 semitones relative to today’s chromatic scale on a 
modern keyboard, which has twelve equal divisions of the octave (12-EDO) relative 
to the logarithm of frequency. Two millennia later, in the 16th century, music 
theorists such as Gioseffo Zarlino assigned a ratio of 4:5 to the major 3rd interval (in 
Just or pure tuning or intonation), which is 3.86 semitones. After the emergence of 
the mathematical theory of spectral analysis in the 17th century, and culminating 
with Fourier in the 18th, musical intervals were regarded not as length ratios, but 
(mathematically equivalently) as frequency ratios (Rasch, 2002), raising questions 
about how the human brain might perceive such ratios. 

Jean-Philippe Rameau (1750) and other 18th-century music theorists assigned 
numerical ratios to musical triads. In Just tuning/intonation, the major triad was 4:5:6 
and the minor was 10:12:15 (note that 10:12 = 5:6, the Just minor 3rd, and 12:15 = 
4:5, the Just major 3rd). The diminished triad could be regarded as 5:6:7 if the 
mistuning of the upper tone was ignored, which in this case is about 1/3 semitone flat 
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relative to a diminished triad in 12-EDO. But if the diminished triad was regarded as 
a stack of two equal Just minor 3rds (5:6) – a solution that corresponded more closely 
to musical practice – the ratio became more complex: 25:30:36. The augmented triad 
was 16:20:25, again assuming two stacked Just intervals. All these ratios could also 
be rendered in In Pythagorean tuning, but with larger numbers. For example, a 
Pythagorean major triad was 64:81:128. 

In historic music theory, number ratios were part of aesthetic theory, and 
seemed to explain the beauty of various arts including architecture (Christensen, 
2004). Even today, if we wish to explain the important role of the major triad in 
Western music, we cannot fail to notice that it occurs naturally among the 4th, 5th, 
and 6th harmonics of a voiced speech sound or musical instrument tone, or in 
inversion among the 3rd, 4th, and 5th.  

But results of empirical studies on intonation have repeatedly contradicted the 
idea that musical intervals are, or correspond to, simple number ratios. Ratio theory 
predicts that most intervals come in two different variants (Just and Pythagorean), 
but there is no evidence in musical composition or practice for such a separation. If 
the ratio of the diminished triad is 5:6:7, we might predict that chord to be more 
consonant than the minor triad, whose ratio has larger numbers (10:12:15), but that 
is clearly not the case. In a modern empirical-psychological or cultural-studies 
approach, musical triads, like all other familiar musical pitch combinations, are 
cultural products, and no triad is more or less “natural” than any other. Instead, triads 
vary in C/D. 

Chord roots pose additional theoretical problems. The root is the tone after 
which the chord is usually named: the root of C major (CEG) is C, and the root of F 
half-diminished (FA♭C♭E♭) is F. The root is also the tone that is usually voiced in 
the bass, and it seems to act as a reference pitch relative to which the other tones are 
heard. Ratio theory can explain why the root of a C major triad or C major-minor 7th 
is C, but it cannot easily account for the roots of chords that do not correspond clearly 
to a harmonic series.  

In an attempt to solve this problem, several 19th-century music theorists 
developed an approach called harmonic dualism (Snyder, 1980). They treated major 
and minor triads as equal but opposite, while assuming that musical intervals 
correspond to simple integer ratios. Riemann and Rameau independently entertained 
the idea that musical tones have undertones or subharmonics from which the minor 
triad could be derived, by analogy to the derivation of the major triad from overtones 
or harmonics. Both eventually realized that undertones do not physically exist and 
abandoned the idea. The failure of harmonic dualism to explain the minor triad was 
symptomatic of a broader failure of mathematical ratio theory to explain musical 
intervals and chords. If the ratio model is regarded as a research paradigm, the 
observations that contradict it can be regarded as anomalies that are sufficient to 
overthrow it (cf. Kuhn & Hawkins, 1963). 
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Harmonic dualism treated major and minor triads differently, and the minor 
triad as a special case. But a scientific model of the root and C/D of musical chords 
should treat all possible chords equally. It should be possible to input any chord to a 
quantitative model, and to test and improve the model’s predictions regarding C/D 
and possible roots by comparing predictions with empirical estimates of C/D or 
prevalence.  
 
Our Approach 
 

To empirically test the relative importance of harmonicity and roughness for the 
C/D of a typical sample of Western musical chords, we included all 19 possible 
trichords in our experiment. The chords were diverse, ranging from low to high 
harmonicity and from low to high roughness. Alongside major and minor triads, 
which have high harmonicity and low roughness, some chords in our sample had 
high harmonicity and high roughness (e.g., [024]), some had low harmonicity and 
low roughness (e.g., [048]), and others had low harmonicity and high roughness (e.g., 
[012]). 

To include musically representative variation in timbre, while at the same time 
checking whether results depended on timbre, each chord was constructed from 
either natural piano tones or octave-complex tones (OCTs) that sound like an 
electronic organ. An OCT has partials spaced at octave intervals across the audible 
spectrum, so it represents a pitch class (i.e., pitch regardless of octave register). 
Constructing chords from OCTs allows octave-generalized music theory to be tested 
by eliminating confounds based on pitch distance or pitch register from the 
experimental design. 
 
Hypotheses 
 

In a previous study (Parncutt & Radovanovic, in press), we predicted and 
confirmed that the prevalence of a trichord as it occurs in musical scores (how often 
it happens, averaged over different styles and periods) correlates with its consonance, 
as predicted using psychoacoustic models of harmonicity and roughness. Put simply, 
composers tend to use sounds that they like, and there is a general tendency to prefer 
sounds that are more harmonic and less rough. In the present study, we predicted that 
the consonance of a chord, as judged by a modern listener in a hearing experiment, 
would correlate with its predicted consonance according to the same models of 
harmonicity and roughness.  

More specifically, we hypothesized that the historical prevalence of unprepared 
trichords (trichords with simultaneous tone onsets in musical scores), as investigated 
by Parncutt and Radovanovic (in press), would correlate more strongly with 
perceived consonance in our experiment than the historical prevalence of prepared 
trichords (trichords in which one or more tone onsets are anticipated and held over 



PSYCHOLOGICAL TOPICS, 32 (2023), 1, 13-34 
 

20 

from a previous sonority). Two possible reasons arise. First, the historical prevalence 
of the unprepared chords may be distributed more normally, with unprepared chords 
being more dissonant than prepared chords. Second, participants in our experiment 
heard only unprepared chords, so we expected a closer connection to prevalence 
distributions of unprepared chords in the literature. 

Another prediction was that perceived consonance in our experiment would 
correlate more strongly with roughness than harmonicity. Roughness tends to be 
more perceptually salient for chords presented out of context than for chords 
embedded in a chord progression (Wright & Bregman, 1987), consistent with 
conventions of voice-leading in musical composition, in which dissonant tones are 
resolved by stepwise motion from dissonance to consonance (Forte, 1974, p. 125). 
Given findings in the literature about the importance of harmonicity for C/D, we 
expected that a linear combination of harmonicity and roughness would improve the 
correlation between predictions and our findings relative to roughness alone. 

We hypothesized that piano chords would be rated more consonant than OCT 
chords, because the sound of piano chords dies away quickly, reducing the chance 
that roughness will be perceived. We also hypothesized that piano chords would be 
rated more consonant when sounded in open position (with larger intervals between 
adjacent tones) than in close position. That is because larger intervals tend to produce 
less roughness than smaller intervals. For the purpose of this hypothesis, we assumed 
that the open and close voicings that we chose for the study were equally familiar to 
our participants from their passive musical experience. 

We expected an interaction between trichord and inversion, such that 
consonance would depend on inversion in a different way for each trichord. Although 
there is a general tendency for triads to appear more often in root position than 
inversion, the relationship depends on the chord: the diminished triad, for example, 
happens more often in inversion than conventional root position (Forte, 1974, p. 66). 
Parncutt and Radovanovic (in press, Figure 5) found in their sample of jazz 
arrangements that minor triads (in semitones relative to the root: [037]) happen more 
often in first inversion (as [049]) than major triads; diminished triads ([036] appear 
similarly often in all three inversions; and suspended-4th triads [057] often appear in 
inversion as [027]. 

 
 

Method 
 

Open Practices Statement 
 

The primary data from the consonance ratings, the predictors, and the 
prevalence data from Parncutt et al. (2019), as well as analysis files, are available via 
the Open Science Framework (osf.io/me7ju). We report all data exclusions and all 
relevant measures and manipulations in the study. 



Parncutt, R., Engel, I., Radovanovic, L.: 
Consonance of Simultaneous Trichords 

21 

Sample 
 
The sample consisted of 21 participants (9 female, 12 male). They had a wide 

range of experience regularly playing or performing a musical instrument, from 0 to 
32 years with a mean of 15.3 (SD = 10.5). Some participants received 10 euros for 
their participation; others were research colleagues and participated without 
compensation. To ensure that each participant had correctly understood the 
experimental instructions, we checked that her or his ratings correlated with the mean 
ratings of all participants. A post hoc power analysis using G*Power 3.1.9.7 (Faul et 
al., 2007) with N = 21 and α = .017 yielded an estimated power of 1-β = 1.000 for 
the main effect of trichord across timbre conditions.  

 
Material 
 

Chords were created digitally in Audacity software by adding OCTs or piano 
tones with simultaneous onsets. OCTs were created by adding pure tones with equal 
sound pressure level (SPL) across the audible range (from C0 = 16.35 Hz to C10 = 
16744 Hz); octaves were exactly 2:1 and phase relations were not randomized. Piano 
tones were uncompressed .WAV files of tones played at moderate dynamic level on 
a Steinway Model B grand piano, downloaded on 22 October 2021 from 
https://ivyaudio.com/Piano-in-162. The SPL of the OCT chords was informally 
adjusted for subjective equal loudness with the piano chords; after this adjustment, 
SPL was higher for piano chords than for OCT chords just after onset, after which it 
decayed rapidly. The duration of piano chords was informally adjusted for equal 
subjective duration with OCT chords; after adjustment, piano chords had duration of 
500 ms and OCT chords of 300 ms. The difference was due to the dying out of the 
piano sound, whereas the OCT sound remained constant. 

 
Design 
 

The experiment comprised 190 trials that were presented in a different random 
order for each participant. The main independent variable was Trichord, with 19 
levels corresponding to 19 Tn-sets of cardinality 3 (Rahn, 1980). In semitones 
relative to a lower reference pitch, these are 012, 013, 023, 014, 034, 015, 045, 016, 
056, 024, 025, 035, 026, 046, 027, 036, 037, 047, and 048. In tonal music theory, the 
last five in this list are called suspended, diminished, minor, major, and augmented 
respectively. 

Each trichord was presented 10 times: six from Piano tones and four from 
OCTs. In that sense, Timbre can be regarded as a second independent variable with 
two unequal levels, Piano and OCT. Within the OCT chords, there were 4 levels 
(Transpositions), in which the chord’s reference pitch class (the “0” in 012, 013 etc.) 
was transposed to C, E♭, F♯, or A. Within the Piano chords, there were 6 levels, 
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within which there were two independent variables: Spacing (2 levels) and Inversion 
(3 levels). Spacing was either close or open; to convert close to open, the middle tone 
in the chord was transposed up an octave. The three levels of Inversion were root 
position, first inversion, and second inversion. The mean pitch of the three tones in 
each Piano trial was D4 (294 Hz) plus or minus a quartertone, relative to a 
logarithmic scale of frequency. For example, the major triad in close root position 
was B♭4D4F4; in open root position, F♯3C♯4A♯4.  

 
Procedure 
 

At the beginning of the experiment, participants gave their consent to participate 
and to the processing of their data and were asked to use headphones throughout. 
They were asked to understand consonance as “how well the tones go together in a 
musical sense” and dissonance as the opposite. In each trial, they heard a chord and 
rated its C/D on a continuous 11-point scale from very dissonant on the left (0) to 
very consonant on the right (10) by mouse click. Ten of the 21 participants did the 
experiment in our lab using PsychoPy (Peirce et al., 2019); the other 11 participated 
remotely using Pavlovia (pavlovia.org), due to the COVID pandemic. The 
experiment typically took about 10 minutes.  

 
Modelling  

 
We compared the data against the same 18 predictors for the C/D of a trichord 

as were used in Parncutt et al. (2019): 6 for roughness, 7 for harmonicity, 3 for 
unevenness, and 2 for diatonicity, as follows. 
 
Roughness  

The first roughness predictor was the number of semitones in the pc-set. It 
involved multiplying the interval vector of the trichord by the interval vector 
<100000> (cf. Forte, 1973). The first position in an interval vector represents 
intervals of one semitone, the second represents intervals of two semitones, and so 
on. For example, trichord CEF has an interval vector of <100110>: it contains one 
semitone (EF), one interval of 4 semitones (CE), and one of 5 (CF). Multiplying the 
interval vector of this trichord by <100000> yields 1x1 + 0x0 + 0x0 + 0x1 + 0x1 + 
0x0 = 1. In other words, the trichord contains one semitone interval. The second 
predictor was the sum of the number of semitones and the number of tritones, 
calculated using the vector <100001>. The third also considered the number of whole 
tones (<110001>). The fourth weighted the semitone interval higher than the whole 
tone and tritone (<310001>). The fifth weighted the tritone higher than the whole 
tone, but lower than the semitone (<310002>). The sixth considered all six interval 
classes, weighting them relative to each other as proposed by Huron (1994): <−1.428, 
−0.582, +0.594, +0.386, +1.240, −0.453>.  
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Harmonicity 

The first harmonicity predictor was the number of perfect 4th intervals in the 
chord (<000010>). The second also considered the number of major 3rd intervals, 
but gave more weight to the 4ths because they occur lower in the harmonic series 
(<000120>). The third included the minor 3rd and again attempted a reasonable 
relative weighting of the three intervals (<001240>). The fourth included the major 
2nd interval (which occurs in the harmonic series between harmonics 8 and 9): 
<012360>. The last three harmonicity predictors were calculated using the chord-
root model of Parncutt (1988), with root-support intervals P8, P5, M3, m7 and M2 
and corresponding root-support weights 10, 5, 3, 2, and 1. The fifth harmonicity 
predictor was the weight of the most salient pitch class in the chord according to that 
model, the sixth was salience of the most salient pitch class, and the seventh was the 
pitch ambiguity of the chord.  
 
Unevenness 

The first unevenness predictor was the largest interval between any two of the 
chord’s pitch classes on the pitch class circle in semitones. For example, in a major 
triad, the biggest interval is 5 semitones, occurring between the chord’s fifth and its 
(higher) root. The second predictor was the difference between the largest and 
smallest  interval  in  the  chord  on  the  pitch  class  circle; for a major triad, that was 
5 - 3 = 2. The third predictor was the standard deviation of the three intervals between 
adjacent tones.  
 
Diatonicity 

The first diatonicity predictor had the value 1 if the chord was diatonic in any 
major scale and 0 if it was not. The second was the number of times the chord occurs 
in the same diatonic scale. For example, a major triad appears in a C-major scale at 
three positions: C, F and G.  
 
Statistical Analysis 
 

Due to the high correlations between the predictors, we refrained from fitting 
our data using a linear regression model. To check whether the difference between 
the two correlation coefficients was significant, we used an online calculator (Lee & 
Preacher, 2013; Steiger, 1980). In a similar way, we compared the historical 
prevalence of unprepared and prepared trichords from Parncutt et al. (2019) with 
perceived consonance in our experiment. 

We performed two repeated measures analyses of variances (ANOVA) to 
examine whether different Trichords were perceived to have different consonance or 
dissonance within each Timbre condition: once for OCT chords only (19 Trichords 
x 4 Transpositions) and once for Piano Tone chords only (19 Trichords x 2 Spacings 
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x 3 Inversions). After calculating the mean of the consonance ratings for each 
trichord across the manipulations in each condition, we used another repeated 
measures ANOVA to test our hypothesis that participants would rate chords in the 
Piano Tone condition more consonant than the OCT condition.  

For all ANOVAs, we tested the sphericity of the data using the Mauchly test. If 
the sphericity assumption was violated, we adjusted degrees of freedom according to 
Greenhouse-Geisser. We set α < .017 to account for multiple testing (three 
ANOVAs) according to Bonferroni. 
 
 

Results 
 

The mean perceived consonance for each chord in the Piano Tone and OCT 
conditions is shown in Figure 1. There was a highly significant main effect of 
Trichord, F(3.754, 360) = 94.724, p < .001, ηp² = .826, but no main effect of Timbre, 
F(1, 20) = 1.371, p = .255, ηp² = .064. There was no interaction between Timbre and 
Trichord, F(7.622, 360) = 1.123, p = .351, ηp² = .053.  
 
Figure 1 

Mean Consonance Ratings of the OCT and Piano Tone Conditions  

 

 
Note. The error bars are 95% confidence intervals. 

Correlation with Historical Prevalence of Trichords 
 

We predicted that the historical prevalence of a trichord would correlate with its 
perceived consonance. We also expected that perceived consonance would correlate 
more strongly with the prevalence of unprepared trichords than prepared trichords. 
Table 1 shows an excerpt of the correlations. As expected, the historical prevalence 
of both the unprepared trichords (Pearson’s r unprepared) and the prepared trichords 
(Pearson’s r prepared) correlated highly with perceived consonance in our 
experiment. But when comparing the correlation coefficients for unprepared and 
prepared chords from Parncutt et al. (2019) and their respective perceived 
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consonance from the present research according to the procedure suggested by 
Steiger (1980), we found mixed results. Against our hypothesis, the perceived 
consonance correlated significantly more strongly with the prevalence of prepared 
than unprepared chords for the 17th, 18th, and 19th centuries. For the 13th, 14th, 15th, 
and 16th centuries, there were no significant differences. We set α = .004 to account 
for multiple correlations and .007 for the multiple comparisons with Fisher’s z’ 
(Steiger, 1980). The full table including 95% confidence intervals for each 
correlation can be found on OSF. 

 
Table 1 

Correlation of Historical Prevalence and Perceived Consonance of Trichords 

Century Pearson’s r 
unprepared 

p 
unprepared 

Pearson’s r 
prepared p prepared Fisher’s z’ p 

Fisher’s z’ 
13th .739 < .001 .702 < .001 0.310 .756 
14th .712 < .001 .816 < .001 -1.585 .113 
15th  .677 .001 .754 < .001 -1.956 .051 
16th .671 .002 .738 < .001 -2.073 .038 
17th .666 .002 .768 < .001 -2.732 .006 
18th  .685 .001 .774 < .001 -3.321 < .001 
19th .686 .001 .738 < .001 -2.804 .005 
 
Correlation with Predicted Harmonicity and Roughness 

 
We expected the mean perceived consonance for each trichord to correlate more 

strongly with roughness than harmonicity. To examine that hypothesis, we correlated 
the predictors of Parncutt et al. (2019) with our empirical data. The table of all 
predictors as well as the full table of correlations adapted from Parncutt et al. (2019) 
can be found on OSF.  

Table 2 shows how each predictor correlated with the mean consonance rating 
for each trichord. The most successful harmonicity model was Harmonicity4 
(<012360>), according to which harmonicity is the sum of the number of major 2nd 
intervals in the trichord, the number of minor 3rds (multiplied by 2), the number of 
major 3rds (x3), and the number of perfect 4ths (x6). The most successful roughness 
model was Roughness4 (<310001>), the sum of the number of minor 2nds (x3), the 
number of major 2nds, and the number of tritones. We disregarded the high 
correlation for Unevenness2, because that predictor correlated strongly with 
Roughness4 (r = .846). The correlations for diatonicity were relatively weak. 
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Table 2  

Correlation of Predictors and Mean Consonance Ratings across 19 Trichords 

Model Vector Pearson’s r 
Roughness1 100000 -.817 
Roughness2 100001 -.647 
Roughness3 110001 -.642 
Roughness4 310001 -.898 
Roughness5 310002 -.858 
Roughness6 Huron -.894 
Harmonicity1 000010 .464 
Harmonicity2 000120 .513 
Harmonicity3 001240 .683 
Harmonicity4 012360 .724 
Harmonicity5 - .579 
Harmonicity6 - .229 
Harmonicity7 - -.479 
Unevenness1 - -.774 
Unevenness2 - -.836 
Unevenness3 - -.832 
Diatonicity1 - .595 
Diatonicity1 - .567 

Table 3 shows how Roughness4 and Harmonicity4 correlated with consonance 
ratings of trichords in more detail. We set α = .017 to account for multiple 
correlations. As shown in the table, these two predictors correlate with each other, 
making them unsuitable for fitting the data using a linear regression model (Cohen, 
1988; Poole & O’Farrell, 1971).  

Table 3 

Correlation of Harmonicity4 and Roughness4 with Perceived Consonance 

Variable Empirical Means Harmonicity4 
<012360> 

Empirical Pearson - 
Means Correlation - 
Harmonicity4 r .724 - 
<012360> p < .001 - 

Upper 95% CI .910 - 
Lower 95% CI .422 - 

Roughness4 r -.898 -.673 
<310001> p < .001 .002 

Upper 95% CI -.852 -.374 
Lower 95% CI -.956 -.862 

Note. The 95% confidence intervals (CI) are based on 1000 bootstraps.  
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Comparing the correlation coefficients for Harmonicity4 and Roughness4 from 
Table 3 according to Steiger (1980), we found a significant difference (Fisher’s z’ = 
-5.789, p < .001). That is consistent with our hypothesis that, in this kind of
experiment, perceived consonance correlates more strongly with roughness than
harmonicity.

Consonance of Chords from Octave-Complex versus Piano Tones 

A comparison of the mean consonance ratings of each chord in the OCT and 
Piano Tone conditions using a repeated measures two-way ANOVA showed no 
significant difference between the two conditions, F(1, 20) = 1.371, p = .255, ηp² = 
.064. Looking more closely at the levels within the OCT condition, the data showed 
no significant main effect of Transposition, F(2.056, 60) = 2.843, p = .068, ηp² = 
.124, and no significant interaction between Transposition and Trichord, F(54, 1080) 
= 1.087, p = .314, ηp² = .052. The significant main effect of Trichord could also be 
observed in the OCT condition alone, F(5.211, 360) = 55.200, p < .001, ηp² = .734. 

Looking at possible effects within the Piano Tone condition, we did not find 
any significant main effects of Spacing or Inversion (see Table 4) – contrary to 
expectations that open positions would be less dissonant than close positions, and 
inversions would be more dissonant than root positions. There was an interaction 
between Inversion and Trichord that we had expected based on preferences for 
specific inversions in music. There was also an interaction between Spacing and 
Trichord, and a three-way interaction between Inversion, Spacing and Trichord, as 
shown in Figure 2. These data did not, however, conform to expectations based on 
music theory. In particular, root positions of major and minor triads (047 and 037) 
were not consistently more consonant than first inversions, and first inversions were 
not consistently more consonant than second inversions. Nor was the root position 
of the diminished triad 036 consistently less consonant than its inversions, as we had 
expected. 

Table 4 

Perceived Consonance in the Piano Tone Condition 

Cases df F p η²p 
Inversion 2.000;   40.000 2.975 .062 .129 
Spacing 1.000;   20.000 1.833 .191 .084 
Trichord 5.053; 360.000 63.722 < .001 .761 
Inversion ✻ Spacing 2.000;   40.000 0.104 .901 .005 
Inversion ✻ Trichord 36.000; 720.000 3.563 < .001 .151 
Spacing ✻ Trichord 18.000; 360.000 4.029 < .001 .168 
Inversion ✻ Spacing ✻ Trichord 36.000; 720.000 3.529 < .001 .150 
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Discussion 

Our study confirms that the C/D of trichords in Western tonal music depends 
on either roughness or harmonicity or both. It also suggests that the C/D of isolated 
sonorities depends more on roughness than on harmonicity. Taken by itself, our study 
does not necessarily demonstrate that the C/D of trichords depends on both roughness 
and harmonicity. That conclusion may nevertheless be drawn from an overview of 
other empirical and theoretical literature, in which the C/D of trichords has repeatedly 
been shown to depend on either roughness or harmonicity or both. 

Although our consonance ratings correlated more strongly with roughness than 
harmonicity, we do not see that as evidence that roughness is generally more 
important than harmonicity for the harmonic vocabulary of Western tonal music, in 
which chords are not heard in isolation but in relation to preceding and following 
chords. In a musical context, the listener’s attention may be attracted away from 
roughness and toward voice-leading. That could explain the resolution effect in 
music theory, whereby harmonic dissonance is resolved by stepwise resolution to 
harmonic consonance. In medieval counterpoint, for example, a major 6th interval 
was often resolved by stepwise contrary motion to an octave. In later tonal harmony, 
a triad with a suspended 4th was typically resolved by a falling step from 4th to 3rd, 
and a dissonant 7th on a dominant chord was resolved by falling step to a 3rd above 
the tonic. 

The high negative correlation between our predictors for roughness and 
harmonicity can be explained theoretically. When a human with normal hearing 
hears a typical harmonic complex tone in speech or music, roughly ten harmonic 
partials are aurally relevant; that is, they contribute to the perception of the tone’s 
overall pitch, loudness, and timbre (Terhardt et al., 1982). In a cognitive approach, 
harmonicity involves a template-matching process, where the template represents 
memory for typical harmonic spectral-pitch patterns. In that process, the lower 
partials play a more important role than the higher ones, because lower partials are 
more often clearly audible in typical voiced speech sounds.  

Harmonics get closer together with higher harmonic number – not relative to 
absolute frequency in Hz, but relative to the logarithm of frequency (or musical pitch, 
or the piano keyboard) as well as critical bandwidth (the effective bandwidth of 
auditory filters of the inner ear). The harmonicity model, therefore, predicts that 
smaller musical intervals in the range of 1 to 5 semitones have lower harmonicity 
than larger intervals. That is almost the exact opposite of roughness: in the range of 
1 to 5 semitones, the smaller the interval, the greater the roughness (e.g., Huron, 
1994). Again, the reason has to do with critical bandwidth. Put another way, the 
reason why harmonicity only involves about ten harmonic partials is because higher 
adjacent partials (e.g., harmonics 10 and 11) fall well within one critical band and 
cannot be resolved. Pairs of partials are perceived as rough for the same reason.  
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Apart from intervals of 1 to 5 semitones, the only remaining interval class is 6 
semitones (the tritone). That interval is dissonant according to both the roughness 
and the harmonicity model. It is relatively high in roughness because the 2nd 
harmonic of the upper tone lies a semitone away from the 3rd harmonic of the lower 
tone, and relatively low in harmonicity because it lies between relatively high 
harmonics (5 and 7, or 7 and 10), one of which is often masked in the voiced sounds 
of everyday speech. 

There is a long tradition in music theory of linking the C/D of a musical interval 
to its ratio. Intervals with more complex ratios (however defined or operationalized) 
are understood to be more dissonant. Our study adds to existing evidence that the 
traditional ratio-based approach to musical C/D is incorrect or misleading. Musical 
intervals are not ratios, nor do they (or should they) correspond exactly to ratios. 
They are culturally learned pitch distances, and their C/D depends on the ability of 
the inner ear to separate nearby frequencies (roughness, reflecting its inability to do 
that for small intervals) and the ability of the auditory cortex to recognize either 
periodicity in the time domain or (equivalently) harmonicity in the frequency 
domain.  

C/D also depends on musical familiarity, such that more common sounds are 
perceived to be more consonant. The cultural contingencies within which music 
develops influences C/D. Our experiment did not investigate this factor; instead, we 
assumed it from the literature. Since more common sounds tend to be more harmonic 
and less rough, it is difficult to establish whether the C/D of a specific sound, as 
perceived by a specific person on a specific occasion, is mainly or primarily due to 
“nature” (roughness or harmonicity) or “nurture” (familiarity). Since all three 
components of C/D – roughness, harmonicity, and familiarity – correlate with each 
other, it is difficult to compare their relative importance. 

Future work could investigate individual differences. Participants may respond 
differently depending on cultural background (e.g., Indian versus Western) or, within 
Western culture, depending on musical experience. Among musicians, there may be 
differences depending on the instrument. However, it is difficult to formulate specific 
hypotheses in advance. We can hardly test whether harmonicity is more important 
for one group and roughness for another if the two measures correlate with each 
other, but the two predictors could perhaps be separated by manipulation of the 
spectrum.  

Our results on the dependence of consonance on spacing and inversion were 
inconclusive (but see Parncutt & Radovanovic, in press). Whereas the interactions 
were significant, we were unable to account for the details. To address this question, 
a design with more statistical power would be necessary. 
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Conclusion 
 

Our findings were consistent with our initial expectation, based on the existing 
empirical literature, that the perceived consonance of familiar musical chords 
depends on three main factors: smoothness (lack of psychoacoustic roughness), 
harmonicity, and familiarity. We did not test the effect of familiarity, and we were 
unable to confirm from our data that both smoothness and harmonicity play a role, 
due to the correlation between the corresponding predictors. Instead, a comparison 
of correlation coefficients suggested that smoothness played a more important role 
than harmonicity in this kind of experiment. It is possible that the relationship 
between smoothness and harmonicity is different when sounds are heard in a musical 
context. Results also correlated with the prevalence of simultaneities in a historical 
music database; contrary to our expectation the correlation was stronger if the tone 
onsets in the musical score were not simultaneous (“prepared” chords) for music 
composed in the 17th-19th centuries. 
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