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ABSTRACT

The performance of speech-processing models is heavily influenced by
the speech corpus that is used for training and evaluation. In this study,
we propose BAlanced Script PROducer (BASPRO) system, which can
automatically construct a phonetically balanced and rich set of Chinese
sentences for collecting Mandarin Chinese speech data. First, we used
pretrained natural language processing systems to extract ten-character
candidate sentences from a large corpus of Chinese news texts. Then,
we applied a genetic algorithm-based method to select 20 phonetically
balanced sentence sets, each containing 20 sentences, from the candidate
sentences. Using BASPRO, we obtained a recording script called TM-
News, which contains 400 ten-character sentences. TMNews covers 84%
of the syllables used in the real world. Moreover, the syllable distribution
has 0.96 cosine similarity to the real-world syllable distribution. We con-
verted the script into a speech corpus using two text-to-speech systems.
Using the designed speech corpus, we tested the performances of speech
enhancement (SE) and automatic speech recognition (ASR), which are
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one of the most important regression- and classification-based speech
processing tasks, respectively. The experimental results show that the
SE and ASR models trained on the designed speech corpus outperform
their counterparts trained on a randomly composed speech corpus.

Keywords: Corpus design, Mandarin Chinese speech corpus, phonetically bal-
anced and rich corpus, recording script design, genetic algorithm.

1 Introduction

Speech corpus plays a crucial role in the performance of speech-processing
models. The speech corpus that is used to train and evaluate these models
significantly affects their performance in real-world environments. Recently,
massive amounts of data have been generated and collected. Therefore, models
are often trained using a large amount of data to achieve better performance.
However, not all research institutions can support such computing resources.
Furthermore, the use of large amounts of data in listening tests to evaluate
models is expensive and time consuming. Moreover, for personalizing models,
the amount of data that can be collected from new users is often limited.
Therefore, a representative speech corpus is essential for training and testing.

Active learning [4, 16] is a popular strategy used for training data sampling
and selection. Active learning algorithm dynamically selects a subset of samples
with labels that are most beneficial to improving the model during training. In
this study, however, we focus on an algorithm that finds a fixed representative
training and testing speech corpus for general speech-processing models. That
is, active learning selects a corpus for a specific model to optimize it, whereas
the proposed algorithm creates a model-independent corpus. The proposed
algorithm can cooperate with active learning. Specifically, the model can be
initially trained using the proposed representative corpus, followed by active
learning to select the most beneficial samples for further training.

A representative speech corpus is often referred to as a phonetically balanced
or rich corpus. Phonetic balance means that the frequencies of phonemes in
the corpus are distributed as close as possible to the frequencies in real-world
conditions, and a phonetically rich corpus implies that the dataset should
cover as many allowed phonemes as possible. In previous studies, researchers
have developed corpora of this type for multiple languages, such as Amharic
[1], Arabic [2], Bangla [3], Urdu [22], Thai [33], Turkish [5], Mexican Spanish
[28], Romanian [24] and Chinese [15, 30, 35].

Previously, phonetically balanced and rich corpora were designed by experts
with linguistic backgrounds [12, 13, 37]. The experts manually wrote or chose
sentences that could form a phonetically balanced corpus. However, creating
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a phonetically balanced and rich corpus in this manner is time-consuming and
difficult. In addition, sentences written by the same person tend to be similar
and lack variation. Moreover, this method cannot be used to generate corpora
for specific knowledge domains.

Automatic methods have also been proposed, in addition to manual devel-
opment. Automatic methods usually begin with a large collection of sentences.
An algorithm then selects sentences from the collection to form a corpus that
meets these requirements. Selecting the desired set of sentences is an NP-hard
set-covering optimization problem. In other words, evaluating all possible sets
of sentences is computationally too complex to be solved within an acceptable
time. To automatically compose a phonetically balanced corpus, [19, 24]
proposed random sampling and evaluating sentence groups and chose the one
that best meets the requirements. [1] and [30] proposed two-stage methods.
The first stage selects important sentences that contain as many syllables as
possible or consist of units that appear less frequently in the corpus. The
second stage involves selecting sentences that can achieve the desired statistical
distribution. Additionally, [29] used the perplexity of each sentence as an
indicator to generate a corpus. Most automatic methods are based on greedy
algorithms [3, 5, 15, 22, 35]. Genetic algorithms (GA), a well-known approach
for solving NP-hard problems, on the other hand, have not received much
attention in speech corpus development.

In [27], the authors proposed a GA-based method to automatically form
a phonetically balanced Chinese word list; nevertheless, this study focused
on word lists rather than sentence lists. Only a few previous studies have
used GA to automatically select sentence sets [17, 18]. Moreover, these GA-
based methods focus on phonetic and prosodic enrichment rather than phonetic
balance and enrichment. The development of GA-based Chinese speech corpora
has not yet been thoroughly investigated.

Mandarin Chinese is a tonal syllabic language with five different tones,
including four main tones and a neutral tone. Syllables that do not consider
tone are denoted as base syllables. On the other hand, syllables that consider
the tonal information are referred to as tonal syllables. Each syllable comprises
an INITIAL (consonant) and a FINAL (vowel) and is represented by the pinyin
system. The INITIAL and FINAL can be further decomposed into smaller
acoustic units such as phonemes. Compared to phonemes, syllables are more
intuitive to Mandarin Chinese speakers and are used more frequently. Therefore,
we developed a tonal syllable-balanced and -rich (hereafter referred to as
syllable-balanced) corpus to represent a phonetically balanced and rich corpus.

In this study, we propose an automatic method called BAlanced Script
PROducer (BASPRO)1 to compose a syllable-balanced Mandarin Chinese
speech corpus. First, BASPRO uses pretrained natural language processing

1The toolkit is available via: https://github.com/yuwchen/BASPRO

https://github.com/yuwchen/BASPRO
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(NLP) systems to extract candidate sentences from a huge Chinese news text
corpus. Subsequently, a syllable-balanced recording script is generated using a
GA-based method. Finally, the script is converted into a speech corpus using
two text-to-speech (TTS) systems. The syllable-balanced recording script
developed in this study is called TMNews2 because the sentences in the script
are collected from Mandarin Chinese news articles collected in Taiwan.

The contributions of this study are as follows.

• We propose BASPRO, which uses machine-learning-based NLP tools
to process and extract candidate sentences from a collection of news
articles.

• BASPRO employs a GA-based method to form a syllable-balanced
recording script from candidate sentences. Experimental results show
that the proposed BASPRO system can effectively select sentences
according to the designed optimization criteria.

• The proposed BASPRO system is flexible in terms of language, data
domain, and script size. In addition, it allows the generated script to
have multiple sets, each satisfying the desired requirements. For example,
in this work, each of the 20 sets is syllable-balanced, and the sentences
do not overlap between sets.

• We analyze the performance of speech processing models trained on
syllable-balanced (produced by BASPRO) and randomly composed
speech corpora. Experimental results show that the speech process-
ing models trained on the syllable-balanced corpus perform better than
those trained on the randomly composed corpus.

2 The Proposed BASPRO System

The proposed BASPRO system consists of three main phases: data processing,
script-composing, and postprocessing. The input is articles crawled from the
Internet, and the output is a syllable-balanced recording script. Speech corpora
can be generated from recording scripts using TTS systems or by asking people
to make recordings. Figure 1 shows a schematic of the BASPRO system. First,
the data processing phase extracts candidate sentences from the collected news
articles. Simultaneously, the syllable distribution of the collected articles was
calculated, which is denoted as real-world syllable distribution. The script-
composing phase then generates a temporary syllable-balanced script from
the candidate sentences. Finally, the postprocessing phase replaces unwanted
sentences in the temporary script and produces the final script.

2The script is available via: https://github.com/yuwchen/BASPRO/tree/main/TMNews

https://github.com/yuwchen/BASPRO/tree/main/TMNews
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Figure 1: Schematic diagram of the proposed BASPRO system. In the data processing
phase, candidate sentences were extracted from the collected articles. The script-composing
phase uses real-world syllable distribution to compose a syllable-balanced script from the
candidate sentences. Finally, the postprocessing phase replaces unwanted sentences in the
script and produces the final script.

2.1 Data Processing

In the data processing phase, the input is news articles crawled from the
Internet, and the output is candidate sentences. All sentences in the recording
script were selected from the candidate sentences. We used five filters in the
data processing phase to extract candidate sentences: (1) general, (2) sensitive
word, (3) part-of-speech (POS), (4) perplexity, and (5) intelligibility filters.
The general filter removes sentences with non-Chinese characters and keeps
sentences with exactly ten characters. The sensitive filter then removes the
sentences containing sensitive words. In this study, we let the sentences have a
fixed length and excluded sentences containing sensitive words, as these settings
are often required for listening tests. In addition, we designed a POS filter,
perplexity filter, and intelligibility filter to filter out incomprehensible sentences.
Because the resulting corpus will be used for listening tasks, we do not want any
sentences to be difficult to understand and thus affect the evaluation results.

The POS is a category of lexical items with similar grammatical properties.
Words assigned to the same POS often play similar roles in the grammatical
structure of a sentence. We used POS as an indicator to exclude sentences that
may not be suitable for listening tests. For example, a sentence containing
a proper noun may be difficult to understand for someone who has never
heard the word before, leading to a personal bias in listening tests. Meanwhile,
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sentences that start with a preposition, particle, or conjunction, and sentences
that end with a preposition or conjunction are also inappropriate because they
are usually not complete sentences. Therefore, we used two pretrained POS
tagging systems to tag candidate sentences and remove sentences that met the
above POS-based removal criteria.

Perplexity is defined as the model’s uncertainty regarding a sentence.
Higher perplexity indicates that a sentence may be more difficult to under-
stand. In this study, we used pre-trained BERT[7], a neural-network-based
model trained with a masked language modeling objective, to compute the
perplexity of each sentence. Given a sentence W = (w1, . . . , wi, . . . , w|W |),
wi is the i-th character in W . To calculate W ’s perplexity, wi is replaced
with the [MASK] token and predicted using all other characters in W , that
is, W\i = (w1, . . . , wi−1, wi+1, . . . , w|W |). PBERT (wi|W\i) is the probability
of wi given its context calculated by BERT. Then, the perplexity of sentence
W is defined as:

Perplexity(W ) = 2−
1

|W |
∑|W |

i=1 log2 PBERT (wi|W\i) (1)

A high Perplexity(W ) indicates that W contains characters that are difficult
to predict from their context, suggesting that W can be difficult to understand.
In this study, we keep Perplexity(W ) in the log space for ease of presentation.
That is, we use PPL = − 1

|W |
∑|W |

i=1 logPBERT (wi|W\i) to represent the per-
plexity of sentence W . We computed the PPL for each sentence and analyzed
the distribution of PPL across all sentences to determine a threshold. The
perplexity filter then removes sentences whose PPL is above the threshold.

The last is the intelligibility filter, which removes sentences with low
intelligibility scores. Figure 2 illustrates the calculation of the intelligibility
score for a sentence. First, a TTS system was used to convert a sentence into a
corresponding speech utterance. Subsequently, a pretrained automatic speech

Figure 2: Illustration of the intelligibility score calculation. First, a sentence is converted
into an utterance using a TTS system. Then, an ASR system is used to predict the content
of the utterance. The distance between the sentence and ASR prediction is used to calculate
the intelligibility score.
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recognition (ASR) system is used to predict the content of the utterance.
Finally, the Levenshtein distance between the sentence and the ASR prediction
is used to measure the intelligibility of the sentence. If a sentence is difficult
to understand, the TTS system may not be able to generate a correctly
pronounced utterance because some characters have multiple pronunciations.
In addition, previous research [6] showed that ASR predictions are highly
correlated with human perception of intelligibility. In other words, if a sentence
is confusing, the ASR system may fail to correctly recognize the corresponding
speech utterance. Therefore, the distance between ASR prediction and the
original sentence reflects the intelligibility of the sentence. The intelligibility
score is defined as one minus the distance of the sentence divided by the
length of the sentence. Therefore, a perfect ASR prediction will lead to an
intelligibility score of 1.

2.2 Script-Composing

In the script-composing phase, we used the GA to select sentences, from the
candidate sentences, to form a syllable-balanced recording script. The script
consisted of several sets, each containing a fixed number of sentences, and the
sentences did not overlap between sets. First, we introduce the basic concept
of the GA. Then, we present the proposed GA-based script-composing method.

2.2.1 Genetic Algorithm (GA)

The GA is inspired by natural selection—a process of eliminating the weak
and leaving only the strong. In the GA, the population is a series of possible
solutions named chromosomes. Chromosomes are composed of genes that
represent specific items. A fitness function is used to evaluate each chromosome.
The fitness score reflects how well a chromosome “fits” the problem; a higher
fitness score indicates that the chromosome is a better solution.

The GA comprises five steps: (1) initialization, (2) fitness calculation, (3)
selection, (4) crossover, and (5) mutation. The initialization step creates the
initial population and the fitness calculation step calculates the fitness score
of each chromosome in the population. In the selection step, chromosomes
with higher fitness scores have higher probabilities of leaving their offspring
in the next generation. In the crossover step, a pair of selected chromosomes
exchanges genes to form a new pair of chromosomes. Take one-point crossover
as an example, a point called “crossover point” on both parents’ chromosomes
is randomly chosen. Then, the genes to the right of the crossover point are
swapped between the parent chromosomes, producing two new chromosomes
that carry genetic information from both parents. Lastly, genes in chromosomes
may change randomly during the mutation step.
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2.2.2 The GA-Based Script-Composing Phase

Figure 3 shows the GA terms and the corresponding definitions in this study.
The population comprises a collection of scripts. Each chromosome is a script
and the best chromosome in the population is the target syllable-balanced
script. A gene is a sentence that is swapped between chromosomes.

Figure 3: GA terms and their corresponding definitions. The population is a collection of
scripts, each chromosome is a script, each gene is a sentence, and np, ns, and n denote the
number of scripts in the population, number of sets in a script, and number of sentences in
a set, respectively. Sentencei denotes the i-th sentences in the candidate sentence set. The
sentences were randomly sampled from the candidate sentence set during initialization, and
there were no duplicate sentences in each script.

Figure 4 illustrates the GA process. The initial population step generated
multiple scripts, each consisting of random sentences. The fitness calculation
step then calculates the fitness score of each script in the population. The
selection step replaces scripts with lower scores with scripts with higher fitness
scores. The crossover step exchanges sentences between the scripts. This
process stops when the population is dominated by one script and the maximum
fitness score no longer increases. We skip the mutation step because it increases
the complexity without improving the performance of our test.

2.2.3 Fitness Calculation

The fitness calculation step evaluates how well a script satisfies the requirements.
Specifically, a script with a higher fitness score is considered a better choice.
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Figure 4: Schematic diagram of GA. The termination condition occurs when the maximum
fitness score no longer increases after several generations.

In this study, the fitness score is defined as follows:

Fitness_score = w1 × script_syllable_distribution

+ w2 × script_syllable_coverage

w3 × set_syllable_distribution,

(2)

where w1, w2, and w3 are the weights.
Let Dscript be the syllable distribution of a script and Dreal be the real-

world syllable distribution, Dscript ∈ Rs, Dreal ∈ Rs, and s be the number of
distinct syllables in Mandarin Chinese. The script_syllable_distribution is
the cosine similarity between Dscript and Dreal.

script_syllable_distribution =
Dscript ·Dreal

∥Dscript∥ ∥Dreal∥
. (3)

Similarly, the set_syllable_distribution is the average cosine similarity
between the real-world syllable distribution and each set in the script.

set_syllable_distribution =
1

ns

ns∑
i=1

Di
set ·Dreal∥∥Di
set

∥∥ ∥Dreal∥
, (4)

where Di
set is the syllable distribution of the i-th set in the script, and ns is the

number of sets in the script. We include the set_syllable_distribution in the
fitness score such that each set is representative and can be used individually.
For example, each set can be used as a validation set in the training of a speech-
processing model and as an indicator for selecting the best model. Additionally,
each set can be used for model training when only a small amount of data is
required.
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Script_syllable_coverage is the fraction of all possible syllables covered
in a script. For example, assuming that the number of distinct syllables in
Mandarin Chinese is 1300, the script_syllable_coverage score of a script that
contains 130 distinct syllables is 0.1 (i.e., 130/1300). Note that in this study,
we consider tonal syllables instead of base syllables. In other words, the fitness
function calculates the distribution and coverage of the tonal syllables.

2.2.4 Selection

The selection step realizes the “survival of the fittest.” In other words, scripts
with higher fitness scores are retained and replicated, whereas scripts with
lower fitness scores are eliminated. In this study, the truncation selection
method was used. Scripts were sorted by their fitness scores, and 50% of the
fittest scripts were selected and replicated twice. Figure 5 shows the selection
process.

Figure 5: Illustration of the truncation-selection process. The scripts are sorted by their
fitness scores, and then 50% of the fittest scripts are selected and replicated twice.

2.2.5 Crossover

The crossover step aims to combine the information of the two scripts and then
generates new scripts. In this study, we used sets as crossover units, instead of
complete scripts. This is because if we use scripts as crossover units, only one
set in each script exchanges the information at every iteration when using the
one-point crossover. However, if we use sets as crossover units, every set in the
script participates in crossover at every iteration. Figure 6 shows an example
of a crossover pair and Figure 7 illustrates the crossover step. As shown in
Figure 7, to avoid duplicate sentences in one script, sentences present in the
other script are held and not swapped in the crossover step. If the number
of duplicate sentences in the paired sets is not the same, we randomly select
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Figure 6: Illustration of the crossover pairs. The crossover step exchanges sentences between
two sets with the same index.

sentences such that the number of held sentences is the same in both sets.
Finally, we apply a one-point crossover to the two sets. Note that holding the
same number of sentences in both sets ensures that the two new sets have the
same number of sentences after crossover.

2.3 Postprocessing

After the script-composing phase, we obtained a syllable-balanced script.
However, we may still want to replace some sentences in the script because the
data-processing phase does not ensure that all candidate sentences are suitable.
For example, the sensitive word filter cannot remove newly invented sensitive
words that are not included in a sensitive word list. In addition, POS tagging
systems may give incorrect POS tags because even the best POS tagging
system cannot guarantee 100% accuracy. Therefore, sentences that meet POS
removal criteria may not be removed as expected. Moreover, sentences with
low PPLs and high intelligibility scores are not necessarily logical from the
human perspective.

Therefore, in the postprocessing phase, we still need to manually label
inappropriate sentences to be replaced with more appropriate sentences. The
script generated in the script-composing phase is denoted as a temporary
script. We propose two methods to replace unwanted sentences in a temporary
script: (1) GA-based method and (2) greedy-based method.

The GA-based method is similar to the GA in the script-composing phase.
The only difference is the generation of scripts in the initial population. In
postprocessing, all scripts in the initial population are initialized based on the
temporary script, with unwanted sentences replaced with sentences randomly
sampled from the candidate sentences. The rest of the GA steps were the
same as those in the script-composing phase. For the greedy-based method,
unwanted sentences are replaced one by one with sentences from the candidate
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Figure 7: (1) The original sets before crossover. Seni denotes the i-th sentence in the
candidate sentence set. (2) Holding duplicate sentences. In this example, Sen23 and Sen2

are held because they exist in a set in Script B. Similarly, Sen43 is held because it already
exists a set in Script A. These sentences are not exchanged during the crossover process to
avoid duplicate sentences in the script. If Sen23 and Sen2 are exchanged to Script B, there
will be two Sen23 and two Sen2 in Script B. (3) Making the length the same. Because the
number of duplicate sentences in Set 1 of Script A and Set 1 of Script B are not the same
(i.e., two sentences in Set 1 of Script A and one sentence in Set 1 of Script B), we randomly
hold one more sentence (Sen9) in Set 1 of Script B. (4) Applying the one-point crossover.
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sentences that can achieve the highest fitness score. According to our empirical
results, the greedy-based method is more suitable when there are only a few
unwanted sentences in the temporary script, whereas the GA-based method is
more suitable when there are many unwanted sentences in the script.

3 Experiments

In this section, we first present a statistical analysis of Mandarin speech
units based on Chinese news articles collected from five major news media
outlets in Taiwan in 2021. We then show that the proposed BASPRO system
can effectively select sentences based on a specially designed fitness function
to form a syllable-balanced script for collecting speech data. Finally, we
demonstrate that speech processing models trained on a TTS-synthesized
syllable-balanced speech corpus based on the syllable-balanced script can
achieve better performance than their counterparts trained on a randomly
composed speech corpus. Note that the “syllable distribution and coverage” in
the experiments represent “tonal syllable distribution and coverage”.

3.1 Analysis of News Articles in Taiwan in 2021

We crawled news articles from five major news media sources in Taiwan in
2021, with a total Chinese character count of around 182,583,000. We used
the Pypinyin tool [20] to identify the syllables of each character. See Figure 13
and Table 14 in Appendix for the list of INITIAL and FINAL in the Pypinyin
tool, and the INITIAL, FINAL, and tone distribution in these news articles.
There are 404 distinct base syllables and 1259 distinct tonal syllables, which
are close to the number of distinct base syllables and tonal syllables reported
in other studies [30, 31]. Note that there is no consensus on the exact number
of base and tonal syllables in Mandarin Chinese. For example, the number of
base and tonal syllables in [30] are 416 and 1345, respectively, while in [31]
they are 407 and 1333, respectively.

3.2 Data Processing Experiment

3.2.1 Experimental Settings of Data Processing

The general filter kept only ten-character sentences. The POS tagging filter
removes sentences that satisfy the POS-based removal criteria using CkipTag-
ger[14] or DDParser[36]. The removal criteria when using the CkipTagger
and DDParser are listed in Table 1. The perplexity filter removes sentences
with PPLs higher than 4.0. In intelligibility filter, only sentences with an
intelligibility score of 1.0 were kept. After the data-processing phase, the total
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Table 1: The POS-based Removal Criteria. Descriptions of POS tags can be found in [14]
and [36].

Toolkit Include Start End
CkipTagger[14] ‘Nb’,‘Nc’,‘FW’ ‘DE’,‘SHI’,‘T’ ‘Caa’,‘Cab’,‘Cba’,

‘Cbb’,‘P’,‘T’
DDParser[36] ‘LOC’,‘ORG’,‘TIME’, ‘p’,‘u’,‘c’ ‘xc’,‘u’

‘PER’,‘w’,‘nz’

Table 2: Data processing toolkits used in this study.

POS Perplexity Intelligibility Syllable
filter filter filter calculation
CkipTagger [14] Hugging Face [32] Google-TTS [8] Pypinyin [20]DDParser [36] (bert-base-chinese) Google-ASR [34]

number of candidate sentences was around 167,000. Table 2 lists the toolkits
used in each data-processing phase.

3.2.2 Experimental Results of Data Processing

Table 3 lists several examples of sentences and their corresponding PPLs.
The experimental results showed that PPL can reflect human perception to
a certain extent. Specifically, sentences 1-1, 2-1, and 3-1 are literally similar
to sentences 1-2, 2-2, and 3-2, respectively. Only a few characters in each
sentence pair were different, and the pronunciations of the different characters
were similar. However, sentences 1-1, 2-1, 3-1 are considered natural, while
sentences 1-2, 2-2, 3-2 contain typos or are illogical. According to the results
in Table 3, sentences 1-2, 2-2, 3-2 have higher PPL, while sentences 1-1, 2-1,
3-1 have lower PPL. Figure 8 shows the PPL distribution for ten-character
sentences in Mandarin Chinese news texts. The distribution of PPL was
right-skewed, with a mean of 2.336. According to Figure 8, we chose 4.0 as
the PPL threshold, which is approximately 1.5 standard deviations from the
mean of PPL for all ten-character sentences. However, sometimes the PPL
does not correctly reflect whether a sentence is understandable. For example,
sentence 4 in Table 3 is difficult to understand but has the lowest PPL among
the examples.

Table 4 lists examples of sentences and their corresponding intelligibility
scores. “Ori” is the original input sentence, and “Pred” is the corresponding
ASR prediction. The first and second examples show that the intelligibility
filter can identify sentences with words that are not easy to understand. To
avoid the need to replace many sentences in the postprocessing phase, the
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Table 3: Examples of sentence PPL assessment.

Figure 8: PPL distribution for ten-character sentences in Mandarin Chinese news texts.
The red dotted line represents the threshold used for the perplexity filter.

intelligibility filter removes all sentences with an intelligibility score lower than
1.0. In other words, the intelligibility filter only retained sentences with perfect
ASR test results. However, like PPL, sometimes, the intelligibility score does
not perfectly reflect human perception. For example, the third sentence is
not intuitive but has the intelligibility score of 1.0. As shown in Tables 3
and 4, perplexity and intelligibility filters cannot remove all illogical sentences.
Therefore, manual labeling is required during the postprocessing phase.

3.3 GA-Based Script-Composing Experiment

In this section, we demonstrate that the BASPRO system can effectively
select sentences to form a recording script according to the designed fitness
function. We set the number of sets in the script and the number of sen-
tences in each set to 20. Thus, the length of the chromosomes was 400.
The weight of script_syllable_coverage (w2 in Equation 2) was set to two,
whereas the weights of the script_syllable_distribution (w1 in Equation 2)
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Table 4: Examples of sentence intelligibility assessment.

and set_syllable_distribution (w3 in Equation 2) was set to 1. The population
size was set to 25,000 and the GA was stopped until the maximum fitness score
converged. Figure 9 shows the training curve of GA. The maximum fitness
score drops for some generations because scripts are split and remixed in the
crossover step, which may lower the fitness score. However, overall, the fitness
score increases with the number of generations and eventually converges.

Figure 9: Training curve of the GA. Overall, the fitness score increases with the number of
generations and then eventually converges.

Figure 10 shows the distribution of syllables in the best scripts of the
first and final generations, and in real-world texts. The results showed that
the syllable distribution of the best script in the final generation was much
closer to the real-world syllable distribution than the syllable distribution of
the best script in the first generation. The red region in Figure 10 indicates
the effect of script_syllable_coverage score on the fitness function. In the
real world, the ratio of the frequency of syllables with indices 800 to 1200
to the frequency of all syllables is close to 0; therefore, when considering
only script_syllable_distribution and set_syllable_distribution in the fitness
function, most syllables in this rare region will not be present in the best
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Figure 10: Distribution of syllables in the best scripts of the first and final generations
and in real-world texts. The results show that the best script in the final generation has a
syllable distribution that is closer to real-world syllable distribution than the best script in
the first generation. The red region reveals the effect of script_syllable_coverage; that is,
more rare syllables are covered in the best script in the final generation.

script in the final generation. However, because the fitness function includes
script_syllable_coverage, more rare syllables are covered in the best script in
the final generation, making the distribution of syllables indexed from 800 to
1200 in (b) and (c) significantly different.

Table 5 compares the values of script_syllable_distribution, set_syllable_
distribution, and script_syllable_coverage for the best scripts in the first and
final generations. Note that because there were 20 sets in a script, for the
set_syllable_distribution, the mean and standard deviation of the 20 sets were
calculated. Clearly, all values increase with generation. As shown in the abla-
tion study in Table 6, there is a tradeoff between script_syllable_distribution,
set_syllable_distribution, and syllable_coverage. For example, if the fitness
function only considers the script_syllable_distribution, the best final script
can achieve a script_syllable_distribution value of 0.997. However, in this
case, the script_syllable_coverage and set_syllable_distribution can only
reach 579 and 0.702, respectively.

Next, we compare the greedy and GA-based replacement methods in the
postprocessing phase. Figure 11 shows the fitness scores of the resulting scripts
for different replacement percentages. Specifically, 80% means that 320 (i.e.,
400 × 80%) sentences in the script have been replaced with new sentences.
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Table 5: Statistics of the best scripts in the first and final generations.

Syllable distributionGeneration Syllable coverage Script Set
First 668 0.894 0.622 (std: 0.033)
Final 1120 0.964 0.751 (std: 0.019)

Table 6: Ablation study of the fitness function.

Syllable distributionFitness function Syllable coverage Script Set
All 1120 0.964 0.751(std:0.019)

Syllable coverage 1122 0.827 0.494(std:0.035)
Script distribution 579 0.997 0.702(std:0.042)
Set distribution 343 0.943 0.889(std:0.003)

Figure 11: Comparison between the GA- and greedy-based replacement methods in the
postprocessing phase. The greedy-based method outperforms the GA-based method when
the replacement percentage is lower than 10%; however, as the replacement percentage
increases, the GA-based method outperforms the greedy-based method.

The results show that if a large portion of sentences needs to be replaced, the
GA-based method performs better than the greedy-based method. Conversely,
if only a few sentences must be replaced, the greedy method outperforms the
GA-based method.

Finally, Figure 12 compares the statistics of a script produced by the
BASPRO system and the TMHINT Mandarin Chinese recording script [12]
used in many previous studies. For a fair comparison, the number of sets and
sentences in each set was set to 32 and 10, respectively, following the TMHINT
script. The top two panels of Figure 12 show that the BASPRO-produced
script covers more syllables, while the bottom two panels of Figure 12 show
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Figure 12: Comparison between the script produced by the BASPRO system and TMHINT
script. The maximum base syllable and (tonal) syllable coverage were 404 and 1259,
respectively. The maximum script and set syllable distribution scores are 1.

that the syllable distribution of the BASPRO-produced script is closer to the
real-world syllable distribution.

3.4 Experiment on Speech-Processing Tasks

In this section, we investigate whether speech-processing models trained on the
syllable-balanced TMNews corpus can outperform their counterparts trained
on a randomly composed corpus. We experiment on two common speech
processing tasks, including speech enhancement (SE) and ASR.

3.4.1 Experimental Settings for Both Tasks

To verify the usefulness of the proposed BASPRO system, we compared the
performances of speech-processing models trained on syllable-balanced and
randomly selected corpora. In the following experiments, CorpusBAL referred
to a syllable-balanced corpus, whereas CorpusRAN represented a randomly
composed corpus. CorpusBAL was formed based on a syllable-balanced
script, TMNews. CorpusRAN was formed using randomly selected sentences.
Both CorpusBAL and CorpusRAN have large and small versions, denoted by
Corpus(BAL,RAN)_Large and Corpus(BAL,RAN)_Small, respectively. The
large and small corpora contained 20 and 5 sets, respectively, with 20 sentences
in each set. That is, 400 sentences form a large corpus and 100 sentences form
a small corpus.
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Table 7: Statistics of the speech corpora.

Base Script Set
syllable Syllable syllable syllable

Corpus coverage coverage distribution distribution
CorpusBAL_Large 392 1061 0.970 0.743

(TMNews_L) (std: 0.020)
CorpusBAL_Small 333 629 0.934 0.701

(TMNews_S) (std: 0.10)
CorpusRAN_Large 319 609 0.869 0.603

(std: 0.365)
CorpusRAN_Small 241 387 0.818 0.637

(std: 0.015)

For each sentence in the script, we used two TTS systems, GoogleTTS
[8] and TTSkit [26], to generate corresponding utterances. The utterances
generated by GoogleTTS were female voices, while the utterances generated
by TTSkit were male voices. As a result, the Corpus(BAL,RAN)_Large corpus
contains 800 utterances, and the Corpus(BAL,RAN)_Small corpus contains
200 utterances.

Table 7 lists the statistics of each speech corpus. The syllable distribution
of CorpusBAL was closer to the real-world syllable distribution than that of
CorpusRAN. In addition, CorpusBAL_Small had better syllable coverage than
CorpusRAN_Large, although the number of sentences in CorpusBAL_Small
was only a quarter of that in CorpusRAN_Large.

Experimental Settings for the SE Task. We trained the SE model on
small corpora, and tested it on large corpora. In practical applications, the
test data are also larger than the training data. Therefore, we believe that the
experimental results under this setting can better reflect performance in a real
environment.

For the training data, each clean utterance was contaminated with 25
noises randomly selected from 100 noises [11] at −1, 1, 3, and 5 SNR levels.
The training data contained 20,000 utterances (100 (sentences) × 2 (voice
types) × 25 (noise types) × 4 (SNR levels)). The training data were divided
into training and validation datasets. The validation set contained 20% of the
training data and was used to select the best model for training. Therefore, in
our experiments, using this training–validation setup, we trained five models
with a training corpus and reported the mean and standard deviation of the
results evaluated on the testing corpus. For the test set, each clean utterance
was contaminated with three noise types (white, street, and babble) at 2 and 4
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SNR levels. The test set contains 4800 utterances (400 (sentences) × 2 (voice
types) × 3 (noise types) × 2 (SNR levels)).

The corpora were evaluated using MetricGAN+[9, 10], a state-of-the-art
SE model. Because the input of MetricGAN+ is a spectrogram, the input
signal was transformed into a spectrogram using a short-time Fourier transform
(STFT) with a window length of 512 and hop length of 256. In addition, the
batch size was 32, the loss function used was L1 loss, and the optimizer was
Adam with a learning rate of 0.001. The perceptual evaluation of speech
quality (PESQ) [23] and short-time objective intelligibility (STOI) [25] are
used as objective evaluation metrics.

Experimental Settings for the ASR Task. In the ASR experiments, we
downloaded the pretrained transformer-based ASR model from SpeechBrain
[21], and then fine-tuned the ASR model using the speech corpora collected
in this study. The pre-trained ASR model was trained on the AISHELL
dataset, which is also a Mandarin speech corpus. We fine-tuned a pre-trained
model because our training speech was not sufficient to train the ASR model
from scratch. In addition, this setup simulates the personalization of an ASR
system, that is, fine-tuning an ASR system with a few recordings of a new user.
Similar to the 80% training-20% validation setting in the SE task, given a
training corpus, we obtained five models and reported the means and standard
deviations of the evaluation results. For each training and validation split,
we fine-tuned the model for 50 epochs and selected the best model using a
validation set.

We used the pinyin error rate (PER), character error rate (CER), and
sentence error rate (SER) to evaluate ASR performance. PER calculates the
difference between the predicted and ground-truth syllable sequences. Note
that Pypinyin [20] was used to convert characters to tonal syllables before
calculating PER. PER and CER were calculated using Levenshtein distance.
In SER, a predicted sentence is considered to be incorrect if any character is
wrong.

3.4.2 Experimental Results for SE

Table 8 compares the performances of the SE models trained on Corpus-
BAL_Small and CorpusRAN_Small. The results show that the SE model
trained on CorpusBAL_Small outperformed the SE model trained on Corpus-
RAN_Small in terms of both PESQ and STOI under all testing conditions.
In addition, both models performed worse when tested on CorpusBAL_Large
than on CorpusRAN_Large. This may be because CorpusBAL_Large covers
more syllables than CorpusRAN_Large, thus making it a more challenging
test corpus. Table 9 presents the corresponding t-test results. The p-values of
the STOI results on both CorpusBAL_Large and CorpusRAN_Large testing
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Table 8: Performance of the SE models trained on CorpusBAL and CorpusRAN.

Testing
Training CorpusBAL_Small CorpusRAN_Small

STOI PESQ STOI PESQ

CorpusBAL_Large
0.832

(std: 0.0149)
1.792

(std: 0.1154)
0.793

(std: 0.0426)
1.744

(std: 0.1068)

CorpusRAN_Large
0.832

(std: 0.0133)
1.804

(std: 0.1182)
0.796

(std: 0.0426)
1.755

(std: 0.1101)

Table 9: T-test of the CorpusBAL_Small and CorpusRAN_Small SE results.

p-value
Testing data STOI PESQ

CorpusBAL_Large 0.10028 0.51936
CorpusRAN_Large 0.10524 0.46861

data are about 0.1, while the p-values of the PESQ results are about 0.5.
That is, the improvement in the SE performance on STOI is more statistically
significant than that on PESQ. This result may be because syllable coverage
and distribution have a greater impact on intelligibility (STOI) than on quality
(PESQ).

The fitness function contains the set_syllable_distribution score, because
we want each set to be representative. We argue that the model selected
by a small syllable-balanced validation set is more robust than the model
selected by a small randomly selected validation set. Table 10 compares the
performances of the SE models selected with different validation sets. The SE
model was trained on CorpusBAL_Small and tested on CorpusBAL_Large and
CorpusRAN_Large. In Table 10, valid:bal indicates that the validation set is a
syllable-balanced set in CorpusBAL_Small, whereas valid:ran indicates that
the validation set is randomly selected sentences from CorpusBAL_Small. The
results show that the average performance of the SE models selected with a
syllable-balanced validation set is better than that of the SE models selected
with a randomly selected validation set.

Table 10: SE performance using different validation sets.

Testing
Training CorpusBAL_Small

(valid:bal)
CorpusBAL_Small

(valid:ran)
STOI PESQ STOI PESQ

CorpusBAL_Large
0.832

(std: 0.0149)
1.792

(std: 0.1154)
0.814

(std: 0.0266)
1.790

(std: 0.0655)

CorpusRAN_Large
0.832

(std: 0.0133)
1.804

(std: 0.1182)
0.816

(std: 0.0265)
1.802

(std: 0.0694)
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3.4.3 Experimental Results for ASR

Table 11 shows the performance of the ASR models fine-tuned using Cor-
pusBAL and CorpusRAN. First, the results reveal that fine-tuning an ASR
model always improves ASR performance. In addition, the ASR models fine-
tuned on CorpusBAL generally performed better than their corresponding
models fine-tuned on CorpusRAN. This is because the CorpusBAL_Large and
CorpusBAL_Small corpora cover relatively complete and rich pronunciations;
thus, the ASR model can be fine-tuned comprehensively. However, we also
see that when tested on CorpusRAN_Small, the ASR model fine-tuned on
CorpusBAL_Large performs slightly worse than the ASR model fine-tuned on
CorpusRAN_Large. One possible explanation is that both CorpusBAL_Large
and CorpusRAN_Large cover more syllables than CorpusRAN_Small, as shown
in Table 7. Therefore, fine-tuning the model with either corpus did not make a
significant difference when testing on a small test set. However, such a biased
small test set could mislead the model. When using a small corpus as a test
set, more consideration should be given to the pronunciation balance and
coverage. Finally, the ASR performance tested on CorpusRAN is better than
the ASR performance tested on CorpusBAL, which is consistent with the SE
experiments. This is because CorpusBAL covers more rare syllables and is,
therefore, more challenging than CorpusRAN.

Table 11: Performance of ASR models trained on CorpusBAL and CorpusRAN.

Testing data Training data PER CER SER
w/o fine-tuned 14.94 19.73 74.88

CorpusBAL_Small
9.658

(std: 0.259)
15.544

(std: 0.212)
67.648

(std: 0.957)CorpusBAL_Large
CorpusRAN_Small

10.738
(std: 0.277)

16.696
(std: 0.264)

70.324
(std: 1.311)

w/o fine-tuned 8.78 11.69 55.62

CorpusBAL_Small
4.885

(std: 0.062)
9.244

(std: 0.141)
47.922

(std: 0.518)CorpusRAN_Large
CorpusRAN_Small

5.063
(std: 0.034)

9.094
(std: 0.186)

49.126
(std: 0.905)

w/o fine-tuned 14.30 17.75 70.00

CorpusBAL_Large
6.61

(std: 0.163)
11.84

(std: 0.397)
56.70

(std: 1.823)CorpusBAL_Small
CorpusRAN_Large

7.91
(std: 0.357)

13.08
(std: 0.529)

61.30
(std: 3.114)

w/o fine-tuned 8.55 12.30 53.50

CorpusBAL_Large
3.24

(std: 0.221)
7.89

(std: 0.433)
42.20

(std: 1.483)CorpusRAN_Small
CorpusRAN_Large

3.02
(std: 0.103)

7.41
(std: 0.379)

44.20
(std: 1.483)
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Table 12 presents the corresponding t-test results. This evaluation shows
that the performance of the two ASR models using corpora of different
scripts across all evaluation metrics is significantly different on the Corpus-
BAL_Large and CorpusBAL_Small testing data (p-value≪ 0.05). On the
CorpusRAN_Large testing data, the p-value for CER is 0.18967, which means
that the performance difference is not significant. Note that the CER is the
only case in which CorpusRAN_Small performs better than CorpusBAL_Small
on CorpusRAN_Large in Table 11. On the CorpusRAN_Small testing data,
the performance differences in PER, CER, and SER are not significant (p-
value>0.05). The experimental results show that syllable coverage and distri-
bution should be considered for both training data and testing data, especially
when the amount of data is small.

Table 12: T-test of the CorpusBAL and CorpusRAN ASR results.

p-value
Testing data PER CER SER

CorpusBAL_Large 0.00022 0.00006 0.00617
CorpusRAN_Large 0.00051 0.18967 0.03256
CorpusBAL_Small 0.00008 0.00305 0.02148
CorpusRAN_Small 0.07949 0.09961 0.06559

Table 13 compares the performance of best model selection using different
validation sets. The ASR model was fine-tuned on CorpusBAL_Small and
tested on CorpusBAL_Large and CorpusRAN_Large. The best model was
selected using a syllable-balanced set (cf. valid:bal in Table 13) or a randomly
selected sentences set (cf. valid:ran in Table 13). The results show that the
ASR model selected by a syllable-balanced validation set yields lower CER
and SER than the ASR model selected by a randomly selected validation set.

Table 13: ASR performance using different validation sets.

Testing data Training data PER CER SER
CorpusBAL_Small

(valid:bal)
9.658

(std: 0.259)
15.544

(std: 0.212)
67.648

(std: 0.957)
CorpusBAL_Large CorpusBAL_Small

(valid:ran)
9.630

(std: 0.263)
15.622

(std: 0.274)
67.898

(std: 0.672)
CorpusBAL_Small

(valid:bal)
4.885

(std: 0.062)
9.244

(std: 0.141)
47.922

(std: 0.518)
CorpusRAN_Large CorpusBAL_Small

(valid:ran)
4.870

(std: 0.132)
9.250

(std: 0.168)
47.976

(std: 0.445)
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4 Conclusion

In this paper, we first present a statistical analysis of Mandarin Chinese
acoustic units based on a large corpus of news texts collected from the internet.
We then proposed the BASPRO system that selects sentences from a large text
corpus to compose a syllable-balanced recording script with similar statistics.
The experimental results showed that the BASPRO system can effectively
produce a syllable-balanced script based on the designed fitness function. Using
BASPRO, we obtained a recording script called TMNews. Subsequently, we
used TTS systems to convert sentences in the TMNews script into utterances
to form a speech corpus. Through SE and ASR experiments evaluated on
speech corpora based on different recording scripts, we confirmed that SE
and ASR models trained on a syllable-balanced speech corpus based on the
TMNews script outperformed those trained on a randomly formed speech
corpus. In this study, we primarily focused on the design of audio-recording
scripts rather than the audio recordings. There are too many variations in the
recorded utterances, such as the recording device and the gender, age, and
accent of the speaker. Therefore, the recording setting is beyond the scope of
this study, and we used synthetic speech with relatively simple characteristics
for the SE and ASR evaluation experiments. Furthermore, the data-processing
phase does not ensure that every candidate sentence is logical and appropriate
from a human perspective. Therefore, manual screening is required during
the postprocessing phase. In the future, we hope to develop a method that
better reflects human understanding of sentence semantics and reduces human
involvement in corpus design.

Appendix

Table 14: The INITIAL and FINAL list in the Pypinyin tool.
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Figure 13: The INITIAL, FINAL, and tone distribution in news articles crawled from five
major news media in Taiwan in 2021. “ ” in (a) refers to the syllable pronunciation without
INITIAL.
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