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Centro de Docencia en Ciencias
Básicas para Ingenierı́a
Universidad Austral de Chile
danielsanch@gmail.com

Estevão Esmi
Instituto de Matemática, Estatı́stica
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Abstract
The memory effect is an interesting tool that can be seen in
fractional differential equations. To show this clearly, in this
paper we prove that the Caputo derivative of a function 𝑓 , as
well as the Riemann-Liouville integral and derivative, are pro-
portional to a weighted average of the historical values of 𝑓

or 𝑓 ′. For this, we use the statistical expectation of functions,
whose random variable follows a beta distribution. Moreover,
through the respective probability density functions, for each
operator we specify the weight of the historical values of the
function to determine its current value, according to the values
of the fractional order of the derivative. Furthermore, to prove
the effectiveness of the memory effect to describe real phenom-
ena, we compared a classic model with its fractional version to
model COVID-19 in Brazil.
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1 Introduction
Fractional calculus is an area that has attracted more and more researchers, as it generalizes the

classical calculus, of integer order. Fractional differential equations have been shown to be very
efficient in the mathematical modeling of real phenomena, presenting an interesting feature: the
memory effect (BARROS et al., 2021; DIETHELM, 2010; LOPES; SANTOS, 2019; SAEEDIAN
et al., 2017).

Among several definitions for fractional operators, the Riemann-Liouville integral and derivative
and the Caputo derivative stand out (CAMARGO; OLIVEIRA, 2015). There are a few approaches
to showing the memory effect coming from these operators. For example, let 𝑓 be a real function
defined on [0, 𝑡] and 𝑡1, 𝑡2 ∈ [0, 𝑡] such that 𝑡1 < 𝑡2. Thus, if 𝐻 = (𝐽𝛼 𝑓 ) (𝑡2) − (𝐽𝛼 𝑓 ) (𝑡1), where 𝐽

represents the fractional integral operator, in (BARROS et al., 2021) it is shown that

𝐻 =
1

Γ(𝛼)

[∫ 𝑡2

𝑡1

(𝑡2 − 𝑠)𝛼−1 𝑓 (𝑠)𝑑𝑠 +
∫ 𝑡1

0

[
(𝑡2 − 𝑠)𝛼−1 − (𝑡1 − 𝑠)𝛼−1] 𝑓 (𝑠)𝑑𝑠

]
, for 𝛼 ∈ (0, 1),

and
𝐻 =

1
Γ(𝛼)

∫ 𝑡2

𝑡1

(𝑡2 − 𝑠)𝛼−1 𝑓 (𝑠)𝑑𝑠 =
∫ 𝑡2

𝑡1

𝑓 (𝑠)𝑑𝑠, for 𝛼 = 1.

That is, when 𝛼 = 1 (classic case), 𝐻 depends only on what happens in the range [𝑡1, 𝑡2]. By the
other side, when 𝛼 ∈ (0, 1), 𝐻 depends on what happens in the entire interval [0, 𝑡2], that is, it
depends on all historical values, characterizing the effect of memory.

On the other hand, in this paper a statistical approach is used to detect the memory effect on
fractional operators, where mathematical expectation is used. More specifically, a weighted average,
to explicitly show the memory effect. Moreover, as we indicate in (BARROS et al., 2021), such an
effect is characteristic of what is called the phenomenon of hysteresis. This paper was first published
in (BARROS et al., 2021) by Springer Nature, but with application made to other countries. Here,
we use the SIR epidemiological model to study the spread of COVID-19 in Brazil and use a different
approach to determine the recovery rate.

This paper is organized as follows. In Section 2 we present some definitions for a better
understanding of the content of this article. The main results are in Section 3 and the application to
COVID-19 in Section 4.

2 Preliminary
In this section we present the main concepts of fractional calculus and statistics, for a better

understanding of this article.

Definition 1 (Fractional Integral of Riemann-Liouville) (TEODORO; OLIVEIRA; OLIVEIRA,
2018) Let 𝛼 ∈ R+, 𝑏 > 0 and 𝑓 ∈ 𝐿𝑝 ( [0, 𝑏] : R𝑚), with 1 ≤ 𝑝 ≤ ∞. The fractional integral of
Riemann-Liouville, for 𝑡 ∈ [0, 𝑏], of order 𝛼, is given by

𝐽𝛼𝑡 𝑓 (𝑡) = 1
Γ(𝛼)

∫ 𝑡

0
(𝑡 − 𝑠)𝛼−1 𝑓 (𝑠)𝑑𝑠. (1)

When 𝛼 ∈ N, we have Γ(𝛼) = 𝛼! In this case, Equation (1) becomes the Cauchy formula for
iterated integrals, which is the motivation for this definition. Furthermore, for 𝛼 > 0 the integral
exists for almost every 𝑡 in [0, 𝑏].
LOPES, M. M. et. al. Fractional derivatives as weighted average of historical values: an application to COVID-19 in Brazil. C.Q.D. – Revista
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We denote by 𝐴𝐶𝑛 [0, 𝑏] the set of functions in which the order derivative 𝑛 − 1 is absolutely
continuous in [0, 𝑏] (DIETHELM, 2010).

Definition 2 (Fractional Derivative of Riemann-Liouville ) (TEODORO; OLIVEIRA; OLIVEIRA,
2018) Let 𝛼 ∈ R+, 𝑏 > 0, 𝑓 ∈ 𝐴𝐶𝑛 [0, 𝑏] and 𝑛 = ⌊𝛼⌋. The fractional derivative of Riemann-
Liouville of order 𝛼 is given by

𝐷𝛼
𝑡 𝑓 (𝑡) = 𝐷𝑛

𝑡 𝐽
𝑛−𝛼
𝑡 𝑓 (𝑡) = 𝑑𝑛

𝑑𝑡𝑛

(
1

Γ(𝑛 − 𝛼)

∫ 𝑡

0
(𝑡 − 𝑠)𝑛−𝛼−1 𝑓 (𝑠)𝑑𝑠

)
. (2)

Definition 3 (Fractional Derivative of Caputo) (LOPES; SANTOS, 2019; TEODORO; OLIVEIRA;
OLIVEIRA, 2018) Let 𝛼 ∈ R+, 𝑏 > 0 and 𝑓 ∈ 𝐴𝐶𝑛 [0, 𝑏]. For 𝑡 ∈ [0, 𝑏], the fractional derivative
of Caputo of order 𝛼 is given by

𝑐𝐷𝛼
𝑡 𝑓 (𝑡) = 𝐷𝛼

𝑡 ( 𝑓 (𝑡) − 𝑓 (0)). (3)

For 𝛼 ∈ (0, 1), one can show that

𝑐𝐷𝛼
𝑡 𝑓 (𝑡) = 𝐽1−𝛼

𝑡 𝑓 ′(𝑡). (4)

Definition 4 (Beta function) (LOPES; SANTOS, 2019) The beta function is defined by the integral

𝐵(𝑝, 𝑞) =
∫ 1

0
𝑥𝑝−1(1 − 𝑥)𝑞−1𝑑𝑥, where 𝑝, 𝑞 > 0. (5)

Next, we present some important statistics concepts for the development of the work.

Definition 5 (Beta Distribution) (MOOD; GRAYBILL; BOES, 1950) A random variable 𝑋 fol-
lows the beta distribution if its probability density function is given by:

𝑓𝑋 (𝑥) = 𝑓𝑋 (𝑥; 𝑝, 𝑞) = 1
𝐵(𝑝, 𝑞) 𝑥

𝑝−1(1 − 𝑥)𝑞−1𝐼(0,1) (𝑥), (6)

where 𝑝, 𝑞 > 0 and 𝐼(0,1) is the indicator function of interval (0, 1), that is,

𝐼(0,1) (𝑥) =
{

1, if 𝑥 ∈ (0, 1)
0, if 𝑥 ∉ (0, 1) .

Definition 6 (Uniform Distribution) (MOOD; GRAYBILL; BOES, 1950) A random variable 𝑋

follows the uniform distribution over the interval [𝑎, 𝑏] if its probability density function is given
by:

𝑓𝑋 (𝑥) = 𝑓𝑋 (𝑥; 𝑎, 𝑏) = 1
𝑏 − 𝑎

𝐼[𝑎,𝑏] (𝑥), (7)

for 𝑎, 𝑏 ∈ R and 𝐼(0,1) is the indicator function of interval [𝑎, 𝑏].

Remark 1 When 𝑝 = 𝑞 = 1 in (6), the beta distribution coincides with the uniform distribution in
the interval (0, 1), that is, when 𝑎 = 0 and 𝑏 = 1 in (7).

The expectation or expected value represents the mean of random variable 𝑋 . Below, we present
the definition of this concept for continuous random variable.
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Definition 7 (MOOD; GRAYBILL; BOES, 1950) Let 𝑋 be a continuous random variable with the
probability density function 𝑓𝑋 (·). The expectation or expected value of 𝑋 is given by

𝐸 [𝑋] =
∫ ∞

−∞
𝑥 𝑓𝑋 (𝑥)𝑑𝑥. (8)

Proposition 1 (MOOD; GRAYBILL; BOES, 1950) Let 𝑔 : R→ R and 𝑋 be a continuous random
variable with the probability density function 𝑓𝑋 (·). The expectation or expected value of 𝑔(𝑋) is
given by

𝐸 [𝑔(𝑋)] =
∫ ∞

−∞
𝑔(𝑥) 𝑓𝑋 (𝑥)𝑑𝑥. (9)

In the following section, we propose a proposition with the objective of showing, with a statistical
approach, how the memory effect is present in the operators: integral and derivative of Riemann-
Liouville and derivative of Caputo.

3 Results on fractional operators
In this section we show that fractional operators applied to a function 𝑓 can be interpreted as a

mathematical expectation of 𝑓 and/or 𝑓 ′, weighted by beta distributions to parameters depending on
the order of the derivative. Objectively, this result is illustrated in the following proposition, whose
proof can be found in (BARROS et al., 2021).

Proposition 2 Let 𝛼 ∈ R+ and 𝑓 ∈ 𝐴𝐶 [0, 𝑏]. Under these conditions, we have

𝐽𝛼𝑡 𝑓 (𝑡) =
𝑡𝛼

Γ(𝛼 + 1)𝐸 [ 𝑓 (𝑡𝑈)]; (10)

𝐷𝛼
𝑡 𝑓 (𝑡) =

𝑡−𝛼

Γ(1 − 𝛼)𝐸 [ 𝑓 (𝑡𝑊)] + 𝑡1−𝛼

Γ(3 − 𝛼)𝐸 [ 𝑓 ′(𝑡𝑉)] , if 0 < 𝛼 < 1; (11)

𝑐𝐷𝛼
𝑡 𝑓 (𝑡) =

𝑡1−𝛼

Γ(2 − 𝛼)𝐸 [ 𝑓 ′(𝑡𝑊)] , if 0 < 𝛼 < 1, (12)

where 𝑈,𝑉 and 𝑊 are random variables with the distributions 𝑈 ∼ 𝐵(1, 𝛼), 𝑉 ∼ 𝐵(2, 1 − 𝛼) and
𝑊 ∼ 𝐵(1, 1 − 𝛼).

Remark 2 When 𝛼 = 1 we have𝑈 ∼ 𝐵(1, 1), that is, in the classic case𝑈 has a uniform distribution.

Remark 3 By applying Definition 3 and (4) to equation (11), we get

𝑐𝐷𝛼
𝑡 𝑓 (𝑡) =

𝑡−𝛼

Γ(1 − 𝛼)𝐸 [ 𝑓 (𝑡𝑊) − 𝑓 (0)] + 𝑡1−𝛼

Γ(3 − 𝛼)𝐸 [ 𝑓 ′(𝑡𝑉)] , (13)

which coincides with equation (12).

Remark 4 (BARROS et al., 2021) Note that, for 0 < 𝛼 < 1, 𝑐𝐷𝛼 𝑓 (𝑡𝛼) = 0 does not imply 𝑡𝛼 is a
maximum (or minimum) point of 𝑓 . In fact, suppose that 𝑓 has just only local maximum in 𝑡∗. In
this case, we have 𝑓 ′(𝑠) > 0 for all 𝑠 < 𝑡∗. This implies that 𝐸 [ 𝑓 ′(𝑡𝑊)] > 0 for all 𝑡 ≤ 𝑡∗. Thus, by
(12), if 𝑐𝐷𝛼 𝑓 (𝑡𝛼) = 0 then 𝑡𝛼 > 𝑡∗. That is, 𝑐𝐷𝛼 𝑓 (𝑡𝛼) = 0 but 𝑡𝛼 is not the maximum point of 𝑓 .
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Next, we provide some examples of Riemann-Liouville and Caputo fractional derivatives using
the formulas (11) and (12), for the case 𝛼 = 1

2 .

Example 1 If 𝑓 (𝑡) = 1, we have 𝐸 [ 𝑓 (𝑡𝑊)] = 1 and 𝐸 [ 𝑓 ′(𝑡𝑉)] = 𝐸 [ 𝑓 ′(𝑡𝑊)] = 𝐸 [0] = 0. Thus,

from (11) we have 𝐷
1
2
𝑡 𝑓 (𝑡) =

𝑡−
1
2

Γ( 1
2 )

=
𝑡−

1
2

√
𝜋

, and from (12) we have 𝑐𝐷
1
2
𝑡 𝑓 (𝑡) = 0.

For the following example it is worth noting that Γ(0, 5) =
√
𝜋, Γ(1, 5) =

√
𝜋

2 , Γ(2, 5) = 3
√
𝜋

4 and
𝐵

(
2, 1

2

)
= 4

3 .

Example 2 If 𝑓 (𝑡) = 𝑡, we have

𝐸 [ 𝑓 (𝑡𝑊)] =

∫ 1

0

(1 − 𝑤)−𝛼
𝐵(1, 1 − 𝛼) 𝑡𝑤𝑑𝑤

= 𝑡𝑎(1 − 𝛼)
∫ 1

0
(1 − 𝑤)−𝛼𝑤𝑑𝑤

= 𝑡 (1 − 𝛼)𝐵(2, 1 − 𝛼).
For 𝛼 = 1

2 ,

𝐸 [ 𝑓 (𝑡𝑊)] = 2𝑡
3
. (14)

Also,

𝐸 [ 𝑓 ′(𝑡𝑉)] =

∫ 1

0

(1 − 𝑣)−𝛼𝑣
𝐵(2, 1 − 𝛼) 𝑑𝑣

=
1

𝐵(2, 1 − 𝛼)

∫ 1

0
(1 − 𝑣)−𝛼𝑣𝑑𝑣

=
1

𝐵(2, 1 − 𝛼) 𝐵(2, 1 − 𝛼)

= 1.

Finally,

𝐸 [ 𝑓 ′(𝑡𝑊)] =

∫ 1

0

(1 − 𝑤)−𝛼
𝐵(1, 1 − 𝛼) 𝑑𝑤

=
1

𝐵(1, 1 − 𝛼)

∫ 1

0
(1 − 𝑤)−𝛼𝑑𝑤

=
1

𝐵(1, 1 − 𝛼) 𝐵(1, 1 − 𝛼)

= 1

From (11), we have

𝐷
1
2
𝑡 𝑓 (𝑡) =

2𝑡1− 1
2

3Γ
(

1
2

) + 𝑡
1
2

Γ(3 − 1
2 )

=
2𝑡 1

2

3
√
𝜋
+ 4𝑡 1

2

3
√
𝜋

=
2𝑡 1

2
√
𝜋
. (15)
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From (12), we obtain

𝑐𝐷
1
2
𝑡 𝑓 (𝑡) =

𝑡
1
2

Γ(2 − 1
2 )

=
2𝑡 1

2
√
𝜋
. (16)

The results of Examples 1 and 2 coincide with those presented in the literature, showing that
the equations (11) and (12) can be used instead of the traditional approach to fractional calculus.
Moreover, in Example 2, the equations (15) and (16) are the same, which is correct since 𝐷𝛼

𝑡 𝑓 (𝑡) =
𝑐𝐷𝛼

𝑡 𝑓 (𝑡) for 𝑓 (0) = 0 and for all 𝛼 ∈ (0, 1) (see Equation (13)).
We saw in (10)-(12) that such operators are proportional to the weighted average of 𝑓 and/or

𝑓 ′, through statistical expectation. The random variables involved follow the beta distribution for
different parameters, showing that the values of each one have different weights in the weighted
average in question. In the next section we see more details about these weights.

3.1 The weight in each weighted average
In this section we analyze the behavior of the probability density functions of the random variables

involved in the equations (10)-(12), for some values of 𝛼. As 𝑈 ∼ 𝐵(1, 𝛼), 𝑉 ∼ 𝐵(2, 1 − 𝛼) and
𝑊 ∼ 𝐵(1, 1 − 𝛼), then the respective probability density functions are given by

𝑓𝑈 (𝑢) =
(1 − 𝑢)𝛼−1

𝐵(1, 𝛼) , 𝑓𝑉 (𝑣) =
𝑣 (1 − 𝑣)−𝛼

𝐵(2, 1 − 𝛼) and 𝑓𝑊 (𝑤) = (1 − 𝑤)−𝛼
𝐵(1, 1 − 𝛼) . (17)

When 𝛼 > 1, the function 𝑓𝑈 is decreasing. For 0 < 𝛼 < 1, the functions 𝑓𝑈 , 𝑓𝑉 and 𝑓𝑊 are all
increasing. Note that we can not analyze the functions 𝑓𝑉 and 𝑓𝑊 for 𝛼 > 1, since they are only valid
for 0 < 𝛼 < 1. In Figure 1 we see the behavior of these functions for the values 𝛼 = 0.2, 𝛼 = 0.5
and 𝛼 = 0.8.

The fact that these probability density functions are increasing indicates that, in the weighted
averages analyzed, the greatest weight is in the historical values closer to 𝑡 (when 𝑢 ≃ 1). Then, all
the values 𝑠 ≤ 𝑡 contribute to define 𝐽𝛼𝑡 𝑓 (𝑡), 𝐷𝛼

𝑡 𝑓 (𝑡) and 𝑐𝐷𝛼
𝑡 𝑓 (𝑡), especially the most recent ones.

This is according to what is expected of an evolutionary epidemiological system.
Although recent values always have a greater weight than remote values, we see in the graph

of 𝑓𝑈 that this difference becomes smaller when 𝛼 approaches 1. That is, the greater the value of
𝛼 ∈ (0, 1), the more uniform is the contribution of historical values. On the other hand, in the
graphics of 𝑓𝑉 and 𝑓𝑊 the opposite happens: the contribution becomes more uniform the smaller
the value of 𝛼 ∈ (0, 1) is. In fact, we see that the density function 𝑓𝑈 , for the parameter 𝛼, coincides
with 𝑓𝑉 for the parameter 1 − 𝛼.

Next, in order to illustrate the effectiveness of a fractional system and the memory effect, we
present an application with an epidemiological model, using the Caputo derivative, to model the
propagation of COVID-19 in Brazil.

4 A model with memory to study COVID-19 in Brazil
In order to testify the importance of the memory effect in modeling real phenomena, in this

section we study the curve of active cases of COVID-19 from Brazil using the epidemiological SIR
model, in its classic version and in the fractional version (with memory).
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Eletrônica Paulista de Matemática, Bauru, v. 22, n. 2, p. 275–284, set. 2022. Edição BSFC - Brazilian Symposium on Fractional Calculus.
DOI: 10.21167/cqdv22n22022275284 Disponı́vel em: www.fc.unesp.br/departamentos/matematica/revista-cqd

280



Figure 1: Density functions 𝑓𝑈 , 𝑓𝑊 and 𝑓𝑉 , for parameters 𝛼 = 0.2, 𝛼 = 0.5 and 𝛼 = 0.8. a) shows
the distribution of historical weights for fractional integral; b) illustrates the distribution of historical
weights for the Caputo and Riemann-Liouville derivatives; c) shows the distribution that, combined
with 𝑓𝑊 , defines the historical weights for the Riemann-Liouville derivative.

The SIR model was proposed by Kermack and McKendrick in 1927 (KERMACK; MCK-
ENDRICK, 1927) and presents the following formulation:

𝑆′(𝑡) = −𝛽𝑆(𝑡)𝐼 (𝑡)
𝐼′(𝑡) = 𝛽𝑆(𝑡)𝐼 (𝑡) − 𝛾𝐼 (𝑡)
𝑅′(𝑡) = 𝛾𝐼 (𝑡)

, (18)

where 𝑆(𝑡), 𝐼 (𝑡) and 𝑅(𝑡) are the number of susceptible, infected and recovered individuals at instant
𝑡, respectively. The parameter 𝛽 > 0 is the transmission rate and 𝛾 > 0 is the recovery rate
(EDELSTEIN-KESHET, 2005; KERMACK; MCKENDRICK, 1927).

In this paper, we used the fractional versions of the SIR model, given by (DIETHELM, 2013),
as follows: 

𝑐𝐷𝛼
𝑡 𝑆(𝑡) = −𝛽𝛼𝑆(𝑡)𝐼 (𝑡)

𝑐𝐷𝛼
𝑡 𝐼 (𝑡) = 𝛽𝛼𝑆(𝑡)𝐼 (𝑡) − 𝛾𝛼 𝐼 (𝑡)

𝑐𝐷𝛼
𝑡 𝑅(𝑡) = 𝛾𝛼 𝐼 (𝑡)

, (19)
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where 𝑐𝐷𝛼
𝑡 is the fractional derivative of Caputo of order 𝛼 ∈ (0, 1).

In order to compare (18) and (19), we performed data fit using the least squares method, with
data from active cases of COVID-19 in Brazil, obtained in (WORLDOMETERS WEBSITE, 2021).
The initial condition is given by 𝑅0 = 0, 𝐼0 being the first value observed in the data and 𝑆0 = 1− 𝐼0,
since we consider 𝑆, 𝐼, 𝑅 ∈ [0, 1].

For data normalization, we divided their values by 𝑁 , the total number of individuals exposed to
the disease. Note that, due to the control measures adopted by the countries, part of the population
is not exposed to the propagation of the coronavirus. However, this is not considered in the SIR
model. Then, if we consider 𝑁 the total number of inhabitants in the country, the SIR model is not
effective to fit the COVID-19 data. Therefore, we look for a new (smaller) value for this parameter
to obtain good results in the fit data process. Thus, 𝑁 becomes the number of individuals involved
in the dynamic.

In addition to looking for the best data fit result, to determine the value of 𝑁 we also consider
another important factor: the gamma value being in the range [0.07, 0.14]. In the SIR model we
know that 1

𝛾
indicates the average time that a person remains infected. For COVID-19 we know that

this time varies from 7-14 days on average and, therefore, we consider that 𝛾 ∈ [0.07, 0.14].
Figure 2 shows the results obtained for the first “wave” of Brazil, where the blue dotted line

represents the actual data, the red dashed line represents the fractional model solution (ie, with
memory), and the black solid line represents the classic model solution. The value obtained for the
number of individuals exposed to the disease is 𝑁 = 6 · 106.
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Figure 2: Solutions of the (18) and (19) to describe the spread of COVID-19 in the first “wave” of Brazil.
For the model (18), 𝛽 = 0.1718 and 𝛾 = 0.0808. For the model (19), 𝛽 = 0.5341, 𝛾 = 0.1045 and 𝛼 = 0.4458.

We see that the model (19) presents the best data fit in the first “wave” and we can confirm this
in Table 1, which shows the mean squared error value obtained by each model. Furthermore, using
the model (19) we can analyze the degree of memory effect in the country, in the period referring
to the first “wave”, using the parameter 𝛼. We have seen that the smaller the value of 𝛼, the greater
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the influence of all historical values of 𝐼′ (𝐼′(𝑠),∀𝑠 ≤ 𝑡) to determine the current variation given by
𝑐𝐷𝛼

𝑡 𝐼 (𝑡).
For the second “wave” in Brazil the models (18) and (19) are equally effective, the fractional

model being little better, as we see in the Table 1. We also prove this fact in Figure 3, where the blue
dotted line represents the actual data, the red dashed line represents the fractional model solution (ie,
with memory), and the black solid line represents the classic model solution. The value obtained for
the number of individuals exposed to the disease is 𝑁 = 250 · 106.
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Figure 3: Solutions of the (18) and (19) to describe the spread of COVID-19 in the second “wave” of Brazil.
For the model (18), 𝛽 = 0.1435 and 𝛾 = 0.129. For the model (19), 𝛽 = 0.1427, 𝛾 = 0.130 and 𝛼 = 0.9999.

Classic SIR model Fractional SIR model
First “wave” 0.3732 0.0376

Second “wave” 8.3957 ·10−5 8.3945 ·10−5

Table 1: Mean squared error values.

5 Conclusion
In this paper we propose a new approach to manage the memory effect in fractional calculus.

More specifically, we check the memory effect on the Caputo derivative and integral and Riemann-
Liouville derivative of a function 𝑓 . We show that these operators are proportional to a weighted
average of 𝑓 and/or 𝑓 ′. Also, we analyzed the contribution of historical values and concluded that
to determine the operators at the current moment, recent values have greater weight than remote
values.
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Moreover, the formulas we propose here allow the exploration of new concepts and interesting
interpretations. For example, through them it is easy to see that when the fractional derivative
vanishes at a point 𝑡∗, then the local maximum/minimum point occurs at 𝑡 < 𝑡∗.

Finally, we compare a model with fractional differential equations, using Caputo derivative,
with a classic model of ordinary differential equations, and show that the fractional model allows
advantages such as better fitting the data and analyzing the degree of memory effect present in the
dynamics. Furthermore, this model well described the propagation of COVID-19 in Brazil.
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Califórnia: McGraw-Hill, 1950.

SAEEDIAN, M. et al. Memory effects on epidemic evolution: the susceptible-infected-recovered
epidemic model. Physical Review E, New York, v. 95, n. 2, p. 022409, 2017.

TEODORO, G. S.; OLIVEIRA, D. S.; OLIVEIRA, E. C. Sobre derivadas fracionárias. Revista
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