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In this paper, we obtain the best possible value of the absolute constant C such 
that for every isotropic convex body K ⊆ Rn the following inequality (which was 
proved by Klartag and reduces the hyperplane conjecture to centrally symmetric 
convex bodies) is satisfied:

LK ≤ CLKn+2(gK).

Here LK denotes the isotropic constant of K, gK its covariogram function, which 
is log-concave, and, for any log-concave function g, Kn+2(g) is a convex body 
associated to the log-concave function g, which belongs to a uniparametric family 
introduced by Ball. In order to obtain this inequality, sharp inclusion results between 
the convex bodies in this family are obtained whenever g satisfies a better type of 
concavity than the log-concavity, as gK is, indeed 1

n
-concave.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC-ND license (http://

creativecommons .org /licenses /by -nc -nd /4 .0/).

1. Introduction and notation

A convex body K ⊆ Rn (i.e., a compact convex set with non-empty interior) is called isotropic if it has 
volume (Lebesgue measure), which we will denote by |K|, equal to 1, its barycenter is at the origin, and 
there exists LK > 0, known as the isotropic constant of K, such that for every θ ∈ Sn−1, the Euclidean 
unit sphere,

∫
K

〈x, θ〉2dx = L2
K ,
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where 〈·, ·〉 denotes the standard scalar product of two vectors.
It is well known that for every convex body K ⊆ Rn, there exists a unique (up to orthogonal maps) affine 

map a + T , with a ∈ Rn and T ∈ GL(n), the set of non-degenerate n × n linear maps, such that a + TK

is isotropic and then one can define the isotropic constant for every non-necessarily isotropic convex body 
as the isotropic constant of its isotropic images. It is also well known (see, for instance, [22, Lemma 4.1]) 
that, among all the n-dimensional convex bodies, the Euclidean ball Bn

2 := {x ∈ Rn : ‖x‖2 ≤ 2}, where 
‖ · ‖2 denotes the Euclidean norm in Rn, is the one with the smallest isotropic constant and that its value is 
bounded below by a positive absolute constant, independent of K and the dimension n. We call a constant 
absolute whenever it is independent of every other parameter involved.

However, it is still an open problem, known as the slicing problem, whether there exists an absolute 
constant bounding from above the isotropic constant of every isotropic convex body in every dimension. 
This question was posed by Bourgain, who proved in [8] the following dimension-dependent upper bound for 
the isotropic constant of any convex body K ⊆ Rn: LK ≤ Cn1/4 logn, where C is an absolute constant. This 
upper bound was improved by Klartag [16], removing the logarithm in Bourgain’s upper bound. It was only 
recently when a major breakthrough occurred and an upper bound of an order smaller than any positive 
power of n has been obtained. Such a result is deduced from Chen’s estimate of the best constant in the 
Kannan-Lovász-Simonovits spectral gap conjecture [11] and the known relation between both conjectures 
(see [12]). This result has been improved by Klartag and Lehec [18], and Jambulapati, Lee and Vempala 
[14], which provided polylogarithmic in the dimension upper bounds for the isotropic constant of convex 
bodies.

This conjecture has been verified for several classes of convex bodies such us 1-unconditional convex 
bodies, (see [7] or [22]), duals to zonoids (see [5] or [21]), bodies with a bounded outer volume ratio [22], 
random bodies [17], unit balls of Schatten norms [19], or polytopes with a small number of vertices [1], and 
several reductions of the problem have been proved like a reduction to convex bodies with small diameter 
[8] (see also [10, Proposition 3.3.3]), or a reduction to convex bodies with finite volume ratio [9].

In this paper we are going to focus on the reduction to centrally symmetric convex bodies, which was 
proved by Klartag in [15, Lemma 2.3] (see also [10, Proposition 2.5.10]). A particular case of this result 
states the following:

Given an isotropic convex body K ⊆ Rn, there exists another isotropic centrally symmetric convex body 
T ⊆ Rn and an absolute constant C > 0 such that

LK ≤ CLT . (1.1)

Therefore, if the hyperplane conjecture is verified by centrally symmetric convex bodies, it is verified by 
every convex body. When examining the proof of this result, one observes the following three things:

1) This result is proved in the more general setting of log-concave functions (i.e., functions whose logarithm 
is concave), which is the context in which the hyperplane conjecture and other important conjectures are 
studied, stating that there exists an absolute constant C > 0 such that if f : Rn → [0, ∞) is an integrable 

isotropic log-concave function (i.e., with 
∫
Rn

f(x)dx = 1, 
∫
Rn

xf(x)dx = 0, and 
∫
Rn

〈x, θ〉2f(x)dx = 1 for 

every θ ∈ Sn−1) there exists a centrally symmetric convex body T ⊆ Rn such that

Lf :=
(

sup
x∈Rn

f(x)
) 1

n

≤ CLT . (1.2)

2) The convex body T appears as the convex body Kn+2(gf ) where gf denotes the function gf (x) =∫
f(y)f(y − x)dy and, for a given log-concave function g, (Kp(g))p>0 denotes a uniparametric family 
Rn
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of convex bodies associated to g, which was introduced by Ball in [4], and which is defined, for g : Rn →
[0, ∞) a log-concave function with g(0) > 0, and p > 0, as

Kp(g) :=

⎧⎨
⎩x ∈ Rn :

∞∫
0

ptp−1g(tx)dt ≥ g(0)

⎫⎬
⎭ .

3) The constant C of formula (1.1) appears as an upper bound of the ratio of the volume of the convex 
body Kn+2(gf ) and the volume of Kn(gf ), which is obtained by a general inclusion relation between 
the convex bodies (Kp(g))p>0 for a general log-concave function g.

In this paper we will focus in the more restricted setting of convex bodies, which are included in the 
setting of log-concave functions by identifying a convex body K with its characteristic function χK . In such 
case the function gf mentioned above corresponds to the covariogram function of K, which we will denote 
gK . We will obtain the value of the best possible constant in relation (1.1) when one considers such relation 
in the setting of convex bodies instead of the absolute constant that appears in the more general setting of 
log-concave functions stated in equation (1.2) and then the inclusion relation between the family of convex 
bodies mentioned in 3) restricts to an inclusion relation between convex bodies in the family (Kp(gK))p>0
for a convex body K. More precisely, we prove the following

Theorem 1.1. Let, for every n ∈ N, Dn = 1√
2
(2n

n )
1
2 + 1

n

(2n+2
n )

1
2

. Then, for every isotropic convex body K ⊆ Rn

LK ≤ DnLKn+2(gK).

Furthermore, there is equality if and only if K is a regular simplex. Moreover, supn∈N Dn =
√

2.

In order to prove this theorem, we obtain a sharp inclusion relation between the convex bodies in the 
family (Kp(g))p>0, whenever g is an α-concave function for some α > 0 (i.e., gα is concave on its support), 
instead of log-concave, as when K ⊆ Rn is a convex body, the covariogram function gK is 1

n -concave rather 
than log-concave. Let us point out that, while the natural setting to study many problems in convexity is 
the setting of log-concave functions, many sharp well-known inequalities in convex geometry appear as a 
consequence of some functions satisfying a better type of concavity (recall that any α-concave function with 
α > 0 is, in particular, log-concave). Let us mention, for instance, Rogers-Shephard inequality or Zhang’s 
inequality, which can be obtained from the 1

n -concavity of the covariogram function (see [23], [26], [13], or 
[2]). Therefore, we believe that having sharp inclusion relations between the convex bodies in this family, 
which have typically been considered in the log-concave setting, for α-concave functions might be interesting 
in itself. We state the relation in the following theorem (see notation below):

Theorem 1.2. Let g : Rn → [0, ∞) be a continuous integrable α-concave function such that g(0) > 0. For 
any 0 < p < q, we have that

( 1
α + q

1
α

)1/q

Kq(g) ⊆
( 1

α + p
1
α

)1/p

Kp(g).

Besides, if there exist 0 < p < q such that this inclusion is an equality, then ‖g‖∞ = g(0) and

g(x)
g(0) = (1 − ‖x‖L)1/αχL(x),

where L = suppg.
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We use the following notation: For any convex body K containing the origin in its interior, χK will 
denote its characteristic function, ‖ · ‖K will denote its Minkowski functional, defined as ‖x‖K = inf{λ >
0 : x ∈ λK} for every x ∈ Rn and ρK will denote its radial function, which is defined for every u ∈ Sn−1, 
as ρK(u) := max{λ > 0 : λu ∈ K} and is extended homogeneously to Rn. Let us recall that ρK(x) = 1

‖x‖K

for every x ∈ Rn \ {0} and that for any two convex bodies K, L containing the origin in their interiors and 
any λ > 0, ρλK(x) = λρK(x) for every x ∈ Rn and K ⊆ L if and only if ρK(x) ≤ ρL(x) for every x ∈ Rn. dσ
will denote the uniform probability measure on Sn−1 and, given a function g : Rn → R, suppg will denote 
the support of g and ‖g‖∞ will stand for the �∞-norm, or the supremum norm. For any x, y > 0, we recall 
the definition of generalized binomial coefficients in terms of Gamma functions as(

x

y

)
:= Γ(1 + x)

Γ(1 + y)Γ(1 + x− y) .

The paper is structured as follows. In Section 2 we will introduce some preliminary known results that we 
will use in order to prove Theorem 1.1 and Theorem 1.2. In Section 3 we will prove the inclusion relations 
given by Theorem 1.2. Finally, in Section 4, we will prove Theorem 1.1.

2. Preliminaries

In this section we will introduce the necessary concepts and already known results that we need in our 
proofs.

2.1. Covariogram function

Given a convex body K ⊂ Rn, its covariogram function is the function defined as

gK(x) = |K ∩ (x + K)| =
∫
Rn

χK(y)χx+K(y)dy.

It is easy to check that ‖gK‖∞ = gK(0) = |K|, that the support of gK is the difference body

K −K = {x− y ∈ Rn : x− y ∈ K},

and that ∫
Rn

gK(x)dx =
∫
Rn

∫
Rn

χK(y)χx+K(y)dydx =
∫
Rn

∫
Rn

χK(y)χy−K(x)dxdy = |K|2.

Therefore, if |K| = 1 then gK is a probability density. Besides, for any convex body K ⊆ Rn, gK is an even 
function: For every x ∈ Rn we have

gK(−x) = |K ∩ (−x + K)| = |(x + K) ∩ (x− x + K)| = |(x + K) ∩K| = gK(x).

Moreover, as a consequence of Brunn-Minkowski inequality (see, for instance, [24, Theorem 7.1.1]) gK is a 
1
n -concave function. We will make use of the following lemma, which is a simplified version of [2, Proposition 
2.10]:

Lemma 2.1. Let K ⊆ Rn be a convex body. Then K is an n-dimensional simplex if and only if for every 
θ ∈ [0, 1]

(1 − θ1/n)(K −K) = {x ∈ K −K : gK(x) ≥ θ|K|}.
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The following lemma is also well known (see [10, Proposition 2.5.10]). Nevertheless, since it is one of the 
key steps in the proof of inequality (1.1) and in the proof of Theorem 1.1, we will give its proof for the sake 
of completeness.

Lemma 2.2. Let K ⊂ Rn be a centered convex body with |K| = 1. Let gK(x) = |K ∩ (x + K)| be the 
covariogram function. Then, ∀θ ∈ Sn−1,

∫
Rn

〈x, θ〉2gK(x)dx = 2
∫
K

〈x, θ〉2dx.

Proof. From the definition of gK we have
∫
Rn

〈x, θ〉2gK(x)dx =
∫
Rn

∫
Rn

〈x, θ〉2χK(y)χx+K(y)dxdy.

Note that y ∈ x + K ⇔ x ∈ y −K. Also, using Fubini’s theorem, we have that
∫
Rn

〈x, θ〉2gK(x)dx =
∫
Rn

∫
Rn

〈x, θ〉2χK(y)χy−K(x)dxdy

=
∫
Rn

∫
Rn

〈y + (x− y), θ〉2χK(y)χy−K(x)dxdy

=
∫
Rn

∫
Rn

(
〈y, θ〉2 + 2〈y, θ〉〈x− y, θ〉 + 〈x− y, θ〉2

)
χK(y)χy−K(x)dxdy.

Splitting the latter integral in three integrals, and taking into account that |K| = 1, we obtain
∫
Rn

〈x, θ〉2gK(x)dx =
∫
Rn

〈y, θ〉2χK(y)dy|K|

+ 2
∫
Rn

∫
Rn

〈y, θ〉〈x− y, θ〉χK(y)χy−K(x)dxdy

+
∫
Rn

∫
Rn

〈x− y, θ〉2χK(y)χy−K(x)dxdy.

Finally, with the change of variables x −y = z and taking into account that |K| = 1 and that K is centered, 
we have that ∫

Rn

〈x, θ〉2gK(x)dx =
∫
K

〈y, θ〉2dy + 2
∫
K

∫
−K

〈y, θ〉〈z, θ〉dzdy +
∫
K

∫
−K

〈z, θ〉2dzdy

=
∫
K

〈y, θ〉2dy + 0 +
∫
K

〈z, θ〉2dz = 2
∫
K

〈x, θ〉2dx. �

2.2. Ball’s bodies

Given a log-concave function g : Rn → [0, ∞) with g(0) > 0 and p > 0, we consider the following convex 
body, introduced by Ball in [4], where he also proved their convexity:
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Kp(g) :=

⎧⎨
⎩x ∈ Rn :

∞∫
0

ptp−1g(tx)dt ≥ g(0)

⎫⎬
⎭ .

It is not difficult to see that their radial function is defined as

ρKp(g)(u) =

⎛
⎝ 1
g(0)

∞∫
0

ptp−1g(tu)dt

⎞
⎠

1/p

, u ∈ Sn−1.

This family of convex bodies play an important role in the study of log-concave functions, as they allow us to 
construct convex bodies associated to log-concave functions preserving some of its properties. One can verify 
that if g is an even function then, for every p > 0 and every u ∈ Sn−1 ρKp(g)(−u) = ρKp(g)(u). Therefore, if 
g is an even log-concave function Kp(g) is a centrally symmetric convex body for every p > 0. The following 
lemma is also well known (see [10, Proposition 2.5.3]). We include the proof here, as it provides another key 
step in the proof of (1.1) and Theorem 1.1.

Lemma 2.3. Let g : Rn → [0, ∞) be a measurable function. Then, for every θ ∈ Sn−1 and p ≥ 0 we have 
that ∫

Kn+p(g)

|〈x, θ〉|p dx = 1
g(0)

∫
Rn

|〈x, θ〉|p g(x)dx.

Proof. By integrating in polar coordinates, we have that for any p ≥ 0 and any θ ∈ Sn−1,

∫
Kn+p(g)

|〈x, θ〉|p dx = n|Bn
2 |

∫
Sn−1

ρKn+p(g)(u)∫
0

|〈ru, θ〉|p rn−1drdσ(u)

= n|Bn
2 |

∫
Sn−1

|〈u, θ〉|p
ρKn+p(g)(u)∫

0

rn+p−1drdσ(u)

= n|Bn
2 |

∫
Sn−1

|〈u, θ〉|p
(
ρKn+p(g)(u)

)n+p

n + p
dσ(u).

Using the expression of the radial function of Kn+p(g) and integration in polar coordinates again we obtain

∫
Kn+p(g)

|〈x, θ〉|p dx = n|Bn
2 |

∫
Sn−1

|〈u, θ〉|p 1
g(0)

∞∫
0

sn+p−1g(su)dsdσ(u)

= n
|Bn

2 |
g(0)

∫
Sn−1

∞∫
0

sn−1 |〈su, θ〉|p g(su)dsdσ(u)

= 1
g(0)

∫
Rn

|〈x, θ〉|p g(x)dx. �

Finally, the following inclusion relation between different convex bodies in the family (Kp(g))p>0 is also 
known (see [10, Proposition 2.5.7]). If g : Rn → [0, ∞) is a log-concave function with g(0) = ‖g‖∞ and 
0 < p < q, then
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Γ(1 + p)1/p

Γ(1 + q)1/q
Kq(g) ⊆ Kp(g) ⊆ Kq(g). (2.1)

Let us point out that the first inclusion, which is the one used in the proof of (1.1), does not need the 
assumption g(0) = ‖g‖∞. Theorem 1.2, which will be proved in the next section, will improve the first 
inclusion relation whenever g is α-concave for some α > 0, leading to the obtention of the constant Dn in 
Theorem 1.1.

3. Inclusion relations between Ball bodies

In this section we are going to prove Theorem 1.2. It will be a direct consequence of the following lemma:

Lemma 3.1. Let g : [0, ∞) → [0, ∞) be an integrable α-concave function, with g(0) > 0. Then, the function

Gg(p) =

⎛
⎝( 1

α + p
1
α

)
1

g(0)

∞∫
0

ptp−1g(t)dt

⎞
⎠

1/p

is decreasing in p ∈ (0, ∞). Furthermore, if there exist 0 < p < q such that Gg(p) = Gg(q) then there exists 
M > 0 such that

g(t)
g(0) =

⎧⎪⎪⎨
⎪⎪⎩
(
1 − t

M

)1/α
, if t ∈ [0,M ]

0 , if t ∈ (M,+∞)

Remark 3.1. The proof of this lemma follows the idea of the proof of Berwald’s inequality (see [6], and also [3]
for an English translation). However, in the proof of Berwald’s inequality, only the 1

n -concave function given 
by the super-level sets of a concave function was considered. In this lemma we consider any 1-dimensional 
α-concave function with α > 0. This will allow us to prove the aforementioned inclusion relation between 
Ball bodies.

Proof. Without loss of generality, we can assume that g(0) = 1. If g(0) is not 1, we apply the same argument 
with g1 = g

g(0) , which satisfies that g1(0) = 1 and is also integrable and α-concave.
By definition, as g is an α-concave function, it follows that gα is a concave function on its support, which 

is the same as the support of g. Besides, since g is integrable and α-concave, it has compact support. We 
define

M = sup {t ∈ [0,∞) ; g(t) �= 0} .

Then, it is clear that for every p > 0

Gg(p) =

⎛
⎝( 1

α + p
1
α

) ∞∫
0

ptp−1g(t)dt

⎞
⎠

1/p

=

⎛
⎝( 1

α + p
1
α

) M∫
0

ptp−1g(t)dt

⎞
⎠

1/p

.

Given a constant M1 > 0, we define h(t) as

h(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − t

M1

)1/α
, if t ∈ [0,M1]

0 , if t ∈ (M1,+∞)
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Note that hα(t) is affine on its support, so it is also concave. Then, h is an α-concave function. Changing 
variables t = M1x, it follows that

Gh(p)p =
( 1

α + p
1
α

) ∞∫
0

ptp−1h(t)dt =
( 1

α + p
1
α

) M1∫
0

ptp−1
(

1 − t

M1

)1/α

dt

=
( 1

α + p
1
α

)
1

M
1/α
1

M1∫
0

ptp−1 (M1 − t)1/α dt

=
( 1

α + p
1
α

)
1

M
1/α
1

1∫
0

p(M1x)p−1 (M1 −M1x)1/α dxM1

=
( 1

α + p
1
α

)
Mp

1 p

1∫
0

xp−1 (1 − x)1/α dx

=
( 1

α + p
1
α

)
Mp

1 p

(
Γ(p)Γ(1/α + 1)
Γ(p + 1/α + 1)

)

=
(

Γ(p + 1/α + 1)
Γ(1/α + 1)Γ(p + 1)

)
Mp

1 p

(
Γ(p)Γ(1/α + 1)
Γ(p + 1/α + 1)

)

= Mp
1 .

Then, it is clear that Gh(p) = M1 for every p > 0. Let us now take 0 < p < q and fix

M1 = Gg(p).

The equality Gh(p) = M1 = Gg(p) means that

⎛
⎝( 1

α + p
1
α

) ∞∫
0

ptp−1g(t)dt

⎞
⎠

1/p

=

⎛
⎝( 1

α + p
1
α

) ∞∫
0

ptp−1h(t)dt

⎞
⎠

1/p

.

Equivalently,

∞∫
0

ptp−1g(t)dt =
∞∫
0

ptp−1h(t)dt. (3.1)

Notice that necessarily M ≤ M1. Otherwise, if M > M1, we would have that since gα is concave on 
[0, M ] with g(0) = 1, for every t ∈ (0, M ]

hα(t) <
(

1 − t

M

)
≤ gα(t)

and then

Mp
1 = Gg(p)p =

( 1
α + p

1
α

) M∫
ptp−1g(t)dt >

( 1
α + p

1
α

) M1∫
ptp−1h(t)dt = Mp

1 ,
0 0
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which is a contradiction. Moreover, since the two integrals in (3.1) are equal and g(0) = h(0) = 1, it cannot 
happen that h(t) < g(t) for every t ∈ (0, +∞). Thus, there exists some t ∈ (0, +∞) for which h(t) ≥ g(t). 
Then, the set {t > 0 : h(t) ≥ g(t)} is non-empty. We take the infimum of this set

t0 = inf
{
t > 0 :

(
1 − t

M1

)1/α

≥ g(t)
}
.

By definition of t0, it is clear that

h(t) < g(t), ∀t ∈ (0, t0).

Let us see that h(t) ≥ g(t) for every t > t0. On the one hand, it is clear that for every t > M we have 
that h(t) ≥ g(t) = 0. On the other hand, if t0 < M then for any t0 < y ≤ M , we take λ > 0 such that 
t0 = λ0 + (1 − λ)y. Then, as gα is concave on [0, M ] and hα is affine on [0, M1], we have that

gα(t0) = gα(λ0 + (1 − λ)y) ≥ λgα(0) + (1 − λ)gα(y)

hα(t0) = hα(λ0 + (1 − λ)y) = λhα(0) + (1 − λ)hα(y).

From the definition of t0 and the continuity of g and h, since concave functions are continuous on the interior 
of their supports, g(t0) = h(t0). Then, it follows that

λhα(0) + (1 − λ)hα(y) ≥ λgα(0) + (1 − λ)gα(y).

As g(0) = h(0) = 1,

h(y) ≥ g(y).

Then, for every y ∈ (t0, M) we have that h(y) ≥ g(y).
Rewriting equality (3.1), we have that

1( 1
α+p

1
α

) (Gg(p)p −Gh(p)p) =
∞∫
0

ptp−1(g(t) − h(t))dt = 0.

Thus, it follows that

t0∫
0

ptp−1(g(t) − h(t))dt−
∞∫

t0

ptp−1(h(t) − g(t))dt = 0. (3.2)

Then, for every q > p we have that

Gg(q)q −Gh(q)q( 1
α+q

1
α

) =
∞∫
0

qtq−1(g(t) − h(t))dt

=
t0∫

0

qtq−1(g(t) − h(t))dt−
∞∫

t0

qtq−1(h(t) − g(t))dt

= q

p

⎛
⎝ t0∫

ptp−1tq−p(g(t) − h(t))dt−
∞∫
ptp−1tq−p(h(t) − g(t))dt

⎞
⎠

0 t0
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≤ q

p
tq−p
0

⎛
⎝ t0∫

0

ptp−1(g(t) − h(t))dt−
∞∫

t0

ptp−1(h(t) − g(t))dt

⎞
⎠ .

Using equality (3.2), it is clear that

Gg(q)q −Gh(q)q( 1
α+q

1
α

) ≤ q

p
tq−p
0

⎛
⎝ t0∫

0

ptp−1(g(t) − h(t))dt−
∞∫

t0

ptp−1(h(t) − g(t))dt

⎞
⎠

= q

p
tq−p
0 · 0 = 0.

So, we have that for every 0 < p < q,

Gg(q) −Gh(q) ≤ 0.

From the definition of h, it satisfies that Gh(q) = Gh(p) = Gg(p). So, we can conclude that for every 
0 < p < q,

Gg(q) −Gg(p) ≤ 0,

and its proved that the function Gg(p) is decreasing in p ∈ (0, ∞).
Besides, if there exist 0 < p < q such that Gg(p) = Gg(q), then, defining h as before, we have that 

necessarily g(t) = h(t) for every t > 0. �
We can obtain now the proof of Theorem 1.2.

Proof of Theorem 1.2. Let g : Rn → [0, ∞) be a continuous integrable α-concave function with g(0) > 0
and let u ∈ Sn−1. Calling gu : [0, ∞) → [0, ∞) the integrable α-concave function gu(t) = g(tu) we obtain 
that for every p > 0

( 1
α + p

1
α

)1/p

ρKp(g)(u) =

⎛
⎝( 1

α + p
1
α

)
1

g(0)

∞∫
0

ptp−1g(tu)dt

⎞
⎠

1/p

= Ggu(p),

where Ggu(p) is defined, as in the previous lemma, as

Ggu(p) =

⎛
⎝( 1

α + p
1
α

)
1

gu(0)

∞∫
0

ptp−1gu(t)dt

⎞
⎠

1/p

.

Since, by Lemma 3.1, Ggu(p) is decreasing in p ∈ (0, ∞) we have that for every 0 < p < q and for every 
u ∈ Sn−1

( 1
α + q

1
α

)1/q

ρKq(g)(u) = Ggu(q) ≤ Ggu(p) =
( 1

α + p
1
α

)1/p

ρKp(g)(u).

Therefore,

( 1
α + q

1

)1/q

Kq(g) ⊆
( 1

α + p
1

)1/p

Kp(g),

α α
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which proves the inclusion. Assume now that there exist 0 < p < q such that the above inclusion is an 
equality. Then, for every u ∈ Sn−1 we have that

Ggu(q) = Ggu(p)

and, by the equality case in Lemma 3.1, we have that for every u ∈ Sn−1 there exists Mu > 0 such that

gu(t)
g(0) = gu(t)

gu(0) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1 − t

Mu

)1/α
, if t ∈ [0,Mu]

0 , if t ∈ (Mu,+∞)

Then, necessarily, if L = suppg, we have that Mu = ρL(u) = 1
‖u‖L

and then for every u ∈ Sn−1 and every 
t ∈ [0, ∞)

g(tu)
g(0) =

⎧⎪⎪⎨
⎪⎪⎩

(1 − ‖tu‖L)1/α , if tu ∈ L

0 , if tu /∈ L

Equivalently, g(x)
g(0) = (1 − ‖x‖L)1/αχL(x) for every x ∈ Rn. �

4. Proof of the main result

In this section we are going to prove Theorem 1.1. For that matter, we take K ⊆ Rn an isotropic convex 
body and we proceed as in the proof of inequality (1.1): We consider the Ball body Kn+2(gK), where gK
denotes the covariogram function, and observe that T := |Kn+2(gK)|−1/nKn+2(gK) has volume 1, it is 
centrally symmetric, as gK is an even function, and by Lemma 2.3 with p = 2 and Lemma 2.2, for every 
θ ∈ Sn−1

∫
T

〈x, θ〉2dx = 1
|Kn+2(gK)|1+2/n

∫
Kn+2(gK)

〈x, θ〉2dx = 1
|Kn+2(gK)|1+2/n

∫
Rn

〈x, θ〉2gK(x)dx

= 2
|Kn+2(gK)|1+2/n

∫
K

〈x, θ〉2dx = 2L2
K

|Kn+2(gK)|1+2/n .

Therefore, T is isotropic with

L2
Kn+2(gK) = L2

T = 2L2
K

|Kn+2(gK)|1+2/n (4.1)

Observing now that gK is a 1
n -concave function, we have, by Theorem 1.2, that

(
2n + 2

n

)1/(n+2)

Kn+2(gK) ⊆
(

2n
n

)1/n

Kn(gK) (4.2)

and, taking volumes and taking into account that by Lemma 2.3 with p = 0 we have that |Kn(gK)| =∫
Rn gK(x)dx = 1 we obtain that

|Kn+2(gK)| ≤
(2n
n

)
(2n+2)n/(n+2) ,
n
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which, together with (4.1), yields

L2
Kn+2

(gK) ≥ 2
(2n+2

n

)
(2n
n

)1+2/nL
2
K = L2

K

D2
n

,

which is the inequality in Theorem 1.1. If there is equality in the above inequality we have that (4.2) is an 
equality. Therefore, by the characterization of the equality in Theorem 1.2, we have that

gK(x) = (1 − ‖x‖K−K)nχK−K(x) ∀x ∈ Rn.

Therefore, for every θ ∈ [0, 1] we have that

(1 − θ1/n)(K −K) = {x ∈ K −K : gK(x) ≥ θ|K|},

and, by Lemma 2.1, K is an n-dimensional simplex. Since we are assuming that K is isotropic, then K is 
the n-dimensional regular simplex with volume 1.

Finally, let us prove that sup
n∈N

Dn =
√

2 or, equivalently, that

inf
{

2
(2n+2

n

)
(2n
n

)1+2/n : n ∈ N

}
= 1

2 . (4.3)

Using Stirling’s formula, one can check that

lim
n→∞

2
(2n+2

n

)
(2n
n

)1+2/n = lim
n→∞

2 Γ(2n + 3)
Γ(n + 3)Γ(n + 1) ·

(
Γ(n + 1)Γ(n + 1)

Γ(2n + 1)

)1+2/n

= 1
2 .

Therefore, in order to prove (4.3), it is enough to prove that for every n ≥ 1

2
(2n+2

n

)
(2n
n

)1+2/n ≥ 1
2 . (4.4)

We will prove (4.4) by induction. In order to prove the induction step, we will split the proof in two 
lemmas. In the first lemma we will prove an auxiliary inequality that we will need in order to prove the 
induction step. In the second lemma we will actually prove the induction step:

Lemma 4.1. For every n ∈ N,

4n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1
n2

(2n− 1)2 ≥ 1

Proof. Notice that for every n ∈ N

4n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1
n2

(2n− 1)2 ≥ 1

⇔
(

n(n + 1)
(n− 1)(n + 2)

)n−1

≥ (2n− 1)2

n2
(n + 2)

4n

⇔
(

1 + 2
2

)n−1

≥ 1 + 4n2 − 7n + 2
3
n + n− 2 4n
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⇔ (n− 1) log
(

1 + 2
n2 + n− 2

)
≥ log

(
1 + 4n2 − 7n + 2

4n3

)
.

Since for every x > −1,

log(1 + x) ≥ x

1 + x
,

we obtain that

(n− 1) log
(

1 + 2
n2 + n− 2

)
≥ (n− 1)

2
n2+n−2

1 + 2
n2+n−2

= 2(n− 1)
n(n + 1) .

Also, notice that

2(n− 1)
n(n + 1) ≥ 4n2 − 7n + 2

4n3 ⇔ 8n3(n− 1) ≥ n(n + 1)(4n2 − 7n + 2)

⇔ 4n4 − 5n3 + 5n2 − 2n ≥ 0

⇔ 4n3 − 5n2 + 5n− 2 ≥ 0.

As g(t) = 4t3 − 5t2 + 5t − 2 is an increasing function on the interval [0, ∞) and g(1) = 2, it is clear that 
4n3 − 5n2 + 5n − 2 ≥ 0 for every n ≥ 1. So, using that

x ≥ log(1 + x)

for every x > −1, it follows that

(n− 1) log
(

1 + 2
n2 + n− 2

)
≥ 2(n− 1)

n(n + 1) ≥ 4n2 − 7n + 2
4n3

≥ log
(

1 + 4n2 − 7n + 2
4n3

)
. �

Now let us prove that equation (4.4) is true. In order to slightly ease the notation, we will make use of 
Catalan numbers. These numbers have been widely studied in the literature (see, for instance [20] or [25]). 
They are defined in the following way: for each n ∈ N, the n-th Catalan number is defined as

Cn = 1
n + 1

(
2n
n

)
.

It is easy to check that for every n ∈ N, Catalan numbers satisfy that

Cn+1 = 2(2n + 1)
n + 2 Cn.

Lemma 4.2. For every n ≥ 1,

2
(2n+2

n

)
(2n
n

)1+2/n ≥ 1
2 .

Proof. Note that(
2n + 2

n

)
= (2n + 2)!

n!(n + 2)! = (2n + 2)!(n + 1)
(n + 1)!(n + 1)!(n + 2) = 1

n + 2

(
2n + 2
n + 1

)
(n + 1) = Cn+1(n + 1).
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Then, using the properties of Catalan numbers, it follows that

2
(2n+2

n

)
(2n
n

)1+2/n = 2 Cn+1
1

(n+1)
(2n
n

)(2n
n

)2/n = 2 Cn+1

Cn

(2n
n

)2/n = 22(2n + 1)
(n + 2)

(
2n
n

)−2/n

.

Thus, for every n ≥ 1,

2
(2n+2

n

)
(2n
n

)1+2/n ≥ 1
2 ⇔ 22(2n + 1)

(n + 2)

(
2n
n

)−2/n

≥ 1
2

⇔ 2n + 1
n + 2 ≥ 1

8

(
2n
n

)2/n

⇔
(

2n + 1
n + 2

)n

≥ 1
8n

(
2n
n

)2

Using the fact that 
(

2n + 1
n + 2

)n

≥
(

2n
n + 2

)n

for every n ≥ 1, and 
(

2n
n

)
= (n + 1)Cn, for proving this 

lemma it is enough to prove that

(
16n
n + 2

)n

≥ (n + 1)2C2
n, (4.5)

for every n ≥ 1. We will prove (4.5) by induction.
For n = 1, using that C1 = 1, the inequality is trivially satisfied:

(
16 · 1
1 + 2

)1

= 16
3 ≥ 4 = (1 + 1)2C1.

For n ≥ 1, assume that (4.5) is true for every k ≤ n − 1. Then,

(
16n
n + 2

)n

= 16n
n + 2

(
16n
n + 2

)n−1

= 16n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1 (16(n− 1)
n + 1

)n−1

≥ 16n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1

n2C2
n−1

= 16n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1
n2

(n + 1)2
C2

n−1
C2

n

(n + 1)2C2
n.

Note that for every n ∈ N,

Cn = 2(2n− 1)
n + 1 Cn−1.

Equivalently,

C2
n−1
C2

n

= (n + 1)2

22(2n− 1)2 .

Then
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(
16n
n + 2

)n

≥ 16n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1
n2

(n + 1)2
C2

n−1
C2

n

(n + 1)2C2
n

= 16n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1
n2

(n + 1)2
(n + 1)2

22(2n− 1)2 (n + 1)2C2
n

= 4n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1
n2

(2n− 1)2 (n + 1)2C2
n.

By using Proposition 4.1, we have that

(
16n
n + 2

)n

≥ 4n
n + 2

(
n(n + 1)

(n− 1)(n + 2)

)n−1
n2

(2n− 1)2 (n + 1)2C2
n ≥ (n + 1)2C2

n. �
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