Exercise variables and pain threshold reporting for strength training 1 protocols in people with haemophilia: A systematic review of clinical 2 trials 3 4 Carlos Cruz-Montecinos^{1,2,3}, Rodrigo Núñez-Cortés^{1,2,*}, Ana Chimeno-Hernández². 5 Rubén López-Bueno^{4,5,6}, Lars Louis Andersen⁵, Guillermo Mendez-Rebolledo⁷, Sofía 6 Pérez-Alenda². Joaquín Calatavud^{5,6} 7 8 9 ¹ Department of Physical Therapy, Faculty of Medicine, University of Chile, Santiago, 10 Chile. 11 ² Department of Physiotherapy, Physiotherapy in Motion Multispeciality Research Group (PTinMOTION), University of Valencia, Valencia, Spain. 12 ³ Section of research, innovation and development in kinesiology, Kinesiology unit, 13 San José Hospital, Santiago, Chile. 14 ⁴ Department of Physical Medicine and Nursing, University of Zaragoza, Spain. 15 ⁵ National Research Centre for the Working Environment, Copenhagen, Denmark 16 17 ⁶ Exercise Intervention for Health Research Group (EXINH-RG), Department of, 18 Physiotherapy, University of Valencia, Valencia, Spain 19 ⁷ Laboratorio de Investigación Somatosensorial y Motora, Escuela de Kinesiología, 20 Facultad de Salud, Universidad Santo Tomás, Chile 21 22 * Corresponding author: Rodrigo Núñez-Cortés. Faculty of Medicine, University of 23 Chile. Avenida Independencia 1027, Postal Code: 8380286, Santiago, Chile. E-mail: 24 r nunez@uchile.cl 25

26 Abstract

Introduction: Although strength exercise is often prescribed for people with
haemophilia (PWH), it remains unknown how exercise variables and pain thresholds
are used to prescribe strength training in PWH.

Aim: To analyse how strength exercise variables and pain thresholds have been used
to prescribe strength training in PWH.

Methods: A systematic search was conducted in PubMed, Embase, Web of Science, CENTRAL and CINAHL databases from inception to September 7, 2022. Studies whose intervention included strengthening training in adults with haemophilia were included. Two independent reviewers were involved in study selection, data extraction and risk of bias assessment.

37 **Results:** Eighteen studies were included. The least reported variables among the studies were: prophylactic factor coverage (11.1%), pain threshold/tolerability (5.6%), 38 intensity (50%), total or partial range of motion (27.8%), time under tension (27.8%), 39 40 attentional focus modality (0%), therapist experience in PWH (33.3%) and adherence assessment (50%). In contrast, weekly frequency (94.4%), duration (weeks) (100%), 41 number of sets/repetitions (88.9%), repetitions to failure/not to failure (77.8%), types 42 of contraction (77.8%), rest duration (55.6%), progression (55.6%), supervision 43 44 (77.8%), exercise equipment (72.2%) and adverse event record (77.8%) had a higher 45 percentage of reported (>50% of studies).

Conclusion: Future research on strength training for PWH should improve information
on pain threshold and other important variables such as prophylactic factor coverage,
intensity, range of motion, time under tension, attentional focus modality, therapist
experience in PWH and adherence assessment. This could improve clinical practice
and comparison of different protocols.

51 **Keywords:** Hemophilia, therapeutic exercises, pain, resistance, training

52

53 Introduction

In people with haemophilia (PWH) the musculoskeletal system is frequently affected due to repeated joint bleeds. Repeated intra-articular haemorrhages lead to irreversible change in the cartilage and bone tissue,¹ resulting in motor impairment (i.e., reduced muscle strength and exercise capacity) and pain.^{2–4} A recent systematic review has reported that the prevalence the chronic pain in PWH is 46%,⁵ which can interfere with daily activities and affect the quality of life.⁶

Although strength exercise is often prescribed for PWH, it remains unknown how 60 61 individual pain thresholds and exercise variables are used to prescribe strength training in PWH. Strength training is usually prescribed for PWH to prevent joint 62 disease, increase motor function and relieve pain.^{7,8} With adequate prophylaxis of 63 clotting factor concentrate, this type of exercise seems safe and effective for PWH.^{8,9} 64 Pain is a central issue in the lives of PWH, posing a significant challenge for clinicians 65 and researchers.⁵ In people with chronic pain (e.g., fibromyalgia), the perception of 66 pain may interfere with exercise adherence and progression.¹⁰ In addition, the 67 perception of pain during exercise may limit the ability to apply maximal voluntary 68 contraction torgue and thus the underestimation of strength capacity by clinicians and 69 70 patients.¹¹ Although strength training is known to be safe and beneficial for people with chronic pain.^{7,8} The effect of strength exercises in which pain is allowed (e.g., using a 71 threshold) compared with non-painful exercises on clinical outcomes in PWH is 72 unknown. A systematic review in chronic musculoskeletal pain (e.g., low back pain, 73 shoulder pain) reported that painful exercises offer a small but significant benefit 74 compared with pain-free exercises in the short-term.¹¹ However, it is unknown whether 75

76 clinicians and researchers indicate painful exercise (threshold or tolerability), or painfree exercises in PWH. Likewise, other exercise variables for strength training 77 prescription are critical to increase adherence, induce neural and structural 78 adaptations, and progress towards a more functional state.^{12–14} However, variables for 79 prescribing strength training are rarely described in full, making protocol comparison 80 difficult¹⁵ and, more importantly, hampering clinical practice. For instance, traditional 81 reports of strength training protocols often describe intensity and number of repetitions 82 or sets, but lack information on many others aspects, such as range of movement 83 84 (ROM), time under tension, performing concentric- or eccentric-only or concentriceccentric phase, rest between sets, and cognitive modality such as attentional focus, 85 and whether the exercise is performed to failure.¹⁵ Other variables such as exercise 86 87 equipment, supervision during protocols and therapist experience in PWH are also important for adherence of exercise programs.¹⁶ 88

The aim of this systematic review was to analyse how strength exercise variables and pain thresholds have been used to prescribe strength training in PWH. Knowledge of how research prescribes strength training may help clinicians and researchers for improving the quality of future research and clinical practice in PWH.

93

94 Methods

This systematic review was performed following the recommendations of the PRISMA
2020.¹⁷ The protocol was previously registered in the PROSPERO
(CRD42022304487) on February 18, 2022.

98

99

100

101 Inclusion and exclusion criteria

102 This review includes studies in English applying the PIOs (participants/population; 103 intervention; outcome; study design) approach. Studies were included according to 104 the following inclusion criteria; i) participants/population: studies with adults (+18 years) with a clinical diagnosis of haemophilia according to international guidelines 105 106 (mild, moderate or severe haemophilia A or B); ii) intervention: studies including muscle strengthening exercises as part of a stand-alone intervention or as part of a 107 108 combined programme with other exercise or rehabilitation modalities: iii) outcome: 109 pain threshold and exercise variables used to prescribe strength training; iv) study 110 design: randomised controlled trials (RCTs), controlled intervention studies and before 111 and after (pre-post) studies. All editorials, letters, review articles, systematic reviews 112 and meta-analyses, as well as in vivo and in vitro studies were excluded.

113

114 Information sources and search strategy

115 PubMed/MEDLINE, Embase, Web of Science, Cochrane Library and CINAHL databases were searched from inception to 7 September 2022 using the following 116 terms: I) For the condition: hemophilia OR haemophilia OR haemophilic arthropathy; 117 118 II) For the main intervention: resistance exercise OR strength exercise OR strength 119 training OR resistance OR endurance exercise OR endurance training; III) For 120 participants/population: adults OR elderly. The selected terms were combined using 121 Boolean logical operators (OR, AND, NOT). In addition, a manual search of references included in previous systematic reviews was performed.^{8,18} All references were 122 analysed in Rayyan software (http://rayyan.gcri.org). Duplicate records were 123 eliminated. 124

125

127 Selection process

First, the titles and abstracts of all articles were independently reviewed by two researchers (C.C-M and A.C-H) according to predefined eligibility criteria. Irrelevant references were removed and discrepancies were resolved by a third reviewer (R.N-C). The full-text articles were then independently reviewed for eligibility by two reviewers (R.N-C and A.C-H). Any discrepancies were resolved by consensus with a third reviewer (C.C-M).

134

135 Data collection process and data items

136 Data extraction was performed independently by two authors (R.NC., B.CA.) using a 137 standardised extraction table. The following variables were collected for each study: author. year of publication, country, study design, number of participants, mean age, 138 139 type of haemophilia, severity, hemostatic treatment regimen (prophylaxis/ on-140 demand), type of exercise, and the following eighteen exercise prescription variables according to international guidelines for the management of haemophilia,⁹ the 141 Consensus on Exercise Reporting Template (CERT),¹⁶ and recommendations from 142 143 previous studies¹⁵: i) prophylactic factor coverage, ii) pain threshold/tolerability; iii) 144 frequency; iv) duration; v) intensity; vi) number of sets and repetitions; vii) repetitions 145 to failure/not to failure; viii) full or partial ROM; ix) type of muscle contraction; x) time time under tension; xi) internal or external focus; xii) time of rest between sets; xiii) 146 exercise progression; xiv) supervised or unsupervised; xv) exercise equipment; xvi) 147 therapist experience in PWH; xvii) measurement of exercise adherence; xviii) 148 assessment of adverse events. We established that adequate reporting of the variable 149 was when it was reported in the majority of studies (i.e., >50%). 150

152 Study Risk of Bias Assessment

The risk of bias of the included studies was assessed with the Cochrane Risk of Bias (RoB) tool for RCTs and ROBINS-I for non-randomized clinical trials.¹⁹ Studies were scored independently by two reviewers (R.N-C and A.C-H). Then, the score was compared and discrepancies were classified by a third reviewer (C.C-M).

157

158 **Results**

159 Study selection

A total of 478 potentially eligible records were identified through initial database searches. A total of 111 duplicate studies were then eliminated. After screening articles by title and abstract, 30 studies were potentially eligible for inclusion. Finally, full-text articles were retrieved and, after applying the eligibility criteria, 18 studies remained to be included in this systematic review (Figure 1).^{20–37}

165

166 Study characteristics

The included articles were published between 2003 and 2022, of which 11 were RCTs, five Before-After studies and two non-randomized clinical trials. Of the total number of articles selected, 12 were from Europe, five from Asia and one from Oceania (Table 1). Only four studies evaluated the effect of isolated strength training,^{27,33,34,37} while the rest of the interventions combined muscle strengthening with other modalities such as manual therapy,^{24,26,31,32,35} balance training,^{20,21,25} coordination and mobility,^{23,28–30} flexibility,^{25,26,31,32} psychological intervention³⁶ and aerobic exercise.²² 174 Participants

In total, 561 PWH were enrolled in the included studies. In terms of severity, 68.5% had severe haemophilia, 28.1% had moderate haemophilia and 3.4% had mild haemophilia. Three studies did not report the level of severity. Sample size ranged from 9 to 64 participants, and mean age ranged from 24 ± 9 to 46.8 ± 4.4 years.

179

180 *Hemostatic treatment*

Most studies (15/18, 77.8%) reported the treatment regimen (prophylaxis or ondemand) of the enrolled patients. However, only 2/18 studies (11.1%)^{34,35} reported information regarding whether exercise coincided with the day they received factor treatment (e.g., within 24 hours of prophylaxis administration).

185

186 Pain threshold or tolerability

None of the included studies reported the use of a specific pain threshold for the
prescription of strength training. One study 1/18 (5.6 %) specified that exercise was
performed within the limits of tolerated mobility and pain (Table 2).³⁵

190

191 Other exercise variables

The exercise variables in the strength training protocols are presented in table 2. Weekly exercise frequency was reported by 17/18 (94.4%), which varied within protocols from once a week to 7 days a week. The duration of strength training was reported by 18/18 (100%), which ranged from 5 weeks to 12 months. Exercise intensity was reported in 9/18 (50%) of the studies. Four studies used repetition maximum (RM) to prescribe intensity and five used perceived exertion. The number of repetitions and sets per muscle was reported by 16/18 (88.9%) of the studies. A total of 14/18 (77.8%) 199 studies reported repetitions to failure/not to failure or this was deductible according to 200 intensity. None of the studies prescribed exercise to failure. Five studies (27.8%) 201 reported whether the strength training was performed with full or partial ROM (full 202 ROM: three studies; partial ROM: two studies). The type of muscle contraction was reported or inferred in 14/18 (77.8%) studies. Most studies prescribed dynamic 203 204 exercises (13/18), while five studies prescribed isometric exercises. Time under tension was reported in 5/18 (27.8%) of the studies, ranging from 1 to 20 seconds. 205 206 None of the studies (0/18) detail the cognitive modality used to prescribe exercise, 207 such as attentional focus (internal or external). Rest duration between sets was 208 reported in 10/18 (55.6%) studies, which was generally 5-10 seconds between 209 repetitions and 1 minute between each exercise. Regarding exercise progression, 210 10/18 (55.6%) studies performed progressive strength training, while the rest did not provide details. The supervision modality was reported in 14/18 (77.8%) studies. Ten 211 212 studies performed supervised exercise, one unsupervised and three hybrids. Exercise 213 equipment was reported in 13/18 (72.2%) studies. Five studies used elastic resistance 214 bands, three studies used exercise machines and six studies used dumbbells, barbells, hydrobells or similar. Therapist experience in PWH was reported in 6 studies 215 216 (33.3%). On the other hand, 50% of the studies reported the adherence assessments 217 used (e.g., exercise diary, percentage of attendance, other), while the other half did 218 not provide any information. Finally, regarding adverse events, 14/18 (77.8%) studies evaluated the frequency of bleeding during strength training. The rest of the studies 219 did not report information. 220

222 Overall, these results indicate that 10/18 (56%) of the variables studied for strength 223 exercise prescription in PWH are correctly described in the studies (i.e. >50% of 224 studies report this) (Figure 2).

225 Study Risk of Bias Assessment

Eleven RCTs were assessed with the RoB tool. In the domain of random sequence 226 227 generation, 7/11 (63.6%) studies had a low risk of bias and 4/11 (36.4%) had an uncertain risk of bias. In the domain of allocation concealment, 4/11(36.4%) studies 228 229 had a low risk of bias and 7/11 (63.6%) had an unclear risk of bias. Five studies 230 (45.5%) scored high risk in the domain of blinding of participants and personnel, while 1/11 (9.1%) studies had a low risk of bias and 5/11(45.5%) had an unclear risk of bias. 231 232 Two studies (18.2%) had a high risk of bias in the outcome assessment domain, while 233 5/11(45.5%) studies had a low risk of bias and 4/11(36.4%) had an unclear risk of bias. 234 Two studies (18.2%) had a high risk of bias due to incomplete outcome data, the 235 remaining studies (9/11, 81.8%) had a low risk of bias. In the domain of selective 236 reporting, 6/11 (54.5%) studies had a low risk of bias and 5/11 (45.5%) had an unclear 237 risk of bias. Finally, none of the studies had a high risk of bias due to other sources of 238 bias. Details of the risk of bias for each study are presented in Figure 3. Six studies were evaluated using the ROBINS-I tool. The results are presented in Table S1 239 240 (Supplementary Material).

241

242 Discussion

The present systematic review clearly shows that prophylactic factor coverage and the pain threshold is under-reported in the prescription of strength training in PWH, along with intensity, full or partial ROM, time under tension, attentional focus modality, therapist experience in PWH and adherence assessment. While the strength training

247 prescription variables such as weekly frequency, duration (weeks), number of 248 repetitions, repetitions to failure/not to failure, types of contraction, rest duration 249 between series, progression, supervision, exercise equipment and recording of 250 adverse events were well reported across studies (i.e., >50 %).

251

252 Pain intensity during strength training

Only one study specified that exercise was performed within the limits of tolerability. 253 254 In chronic musculoskeletal pain, painful exercises have been reported to offer a small but significant benefit over pain-free exercises in the short term.¹¹ Chronic 255 256 musculoskeletal pain may does not correlate with the level of tissue damage, including 257 in PWH.^{38,39} Catastrophizing and fear avoidance behaviours may play an important role in pain responses and exercise tolerability.⁴⁰ However, literature on behavioural 258 259 pain coping strategies and associated factors in PWH are still scarce and poorly understood.⁴¹ Considering that the prevalence of the chronic pain in PWH is 46%,⁵ 260 261 future studies should consider reporting whether prescription is based on painful exercise (threshold or tolerability), or pain-free exercises in PWH, and the association 262 263 of behavioural coping strategies with tolerability response to exercises modalities.

264

265 Others strength training prescription variables

Exercise intensity, full or partial ROM, time under tension, modalities of attentional focus, therapist experience in PWH and adherence assessment lacked information across studies in PWH. In a systematic review in healthy individuals, gains in 1RM (repetition maximum) strength were significantly greater with of high (>60% 1RM) - vs. low-intensity (≤60% 1RM) training, while no significant differences were found for isometric strength between conditions, and muscle hypertrophy.⁴² However, in people

272 with arthropathy, such as knee osteoarthritis, there is insufficient evidence to 273 determine the efficacy of high-intensity strength exercise over low-intensity strength exercise.⁴³ The ROM during strength exercise and time under tension may also play 274 275 an important role in maximising muscle strength. Since ROM may be restricted in PWH, especially at the elbows, knees and ankles, studies should better report ROM 276 277 during strength exercise (i.e., full or partial ROM). In this review, only five of the included studies that reported on this variable were identified. A systematic review in 278 healthy individuals informed that full ROM is more effective than partial ROM in 279 maximising muscle strength, muscle hypertrophy, and functional performance.⁴⁴ Time 280 281 under tension may also be a relevant variable when clinicians prescribe strength 282 exercises in PWH. This review identified that time under tension was reported in less 283 than one-third of the included studies. Time under tension plays an important role in 284 improving strength and muscle morphology in healthy individuals, where 6 s per repetition has been shown to produce the largest effect size among older adults.⁴⁵ 285 286 However, it is unknown the efficacy of different strength training modalities in PWH. All of the above variables (exercise intensity, total or partial ROM, duration under 287 stress) should be better described in future studies, as well as compared in strength 288 programs to better understand the physiological and clinical effects of strength 289 290 exercise on PWH.

Other variables, such cognitive attentional focus, were not reported in PWH. In healthy individual, the internal focus (also called mind-muscle connection) may increase muscle activity, especially at low-moderate intensities.⁴⁶ In addition, focusing on maximal contraction of a muscle group (e.g., internal focus) during strength exercise has been reported to be superior to increase muscle thickness than external focus (or simply moving the load during strength exercise).⁴⁷ In contrast, external focus or

distraction manoeuvres using dual tasks have been reported to improve muscular
 endurance.^{48–50} Future studies are needed to investigate the effects of these cognitive
 variables on muscle strength and PWH functionality.

300 Weekly frequency, duration (weeks), number of repetitions and sets, repetitions to failure/not to failure, contraction types and rest duration between sets were well 301 302 reported in all studies. In PWH the weekly frequency varied within protocols from once a week to seven days a week and the duration of strength training was reported by 303 304 18/18 (100%), which ranged from 5 weeks to 12 months. In healthy adults, the weekly 305 frequency of resistance training has been reported to have no significant impact on 306 muscle hypertrophy when volume is matched.⁵¹ In adults over 55 years of age, longer 307 duration training (>8 weeks) had a greater effect on strength gains compared to shorter 308 duration protocols.⁵² Regarding the sets per muscles in PWH, sets per exercise group vary between 1 and 3. Sets per exercise have also been shown to be relevant for 309 310 muscle hypertrophy, where 3-4 sets per exercise have been shown to be greater than single-set training.⁵³ In PWH almost all studies do not reach task failure. In healthy 311 312 adults, it has been shown that repetitions to failure are not superior to repetitions below not failure in muscle hypertrophy and muscle strength using equal exercise volume.⁵⁴ 313 314 The type of contraction and rest time between sets may also be relevant for clinical 315 outcomes. In our systematic review, the most frequently prescribed type of 316 strengthening exercise in PWH was dynamic exercise, while isometrics were 317 prescribed by a few studies. Isometric exercise may help in the early phases of 318 recovery from acute events in PWH. However, the main limitation of isometric exercise 319 is the intensity dosing. To control the intensity the, which is usually controlled by subjective scales can be use (e.g. Borg).⁵⁵ The force and electromyography 320 biofeedback system are other ways for an effective pain control and for improving 321

guadriceps strength and function with isometrics after orthopaedic knee surgeries.⁵⁶ 322 In PWH, electromyography biofeedback may be an alternative to prescribe and 323 324 control the progression of strength during the isometric exercise programmes in PWH, 325 in spite of its difficult applicability during clinical practice. Another important variable to consider during strength exercise prescription is rest between exercises, especially 326 because it can affect exercise volume and intensity and thus, adaptations.⁵⁷ In PWH, 327 the rest interval used in studies is usually 5-10 seconds between repetitions and 1 328 329 minute between sets. Rest intervals between sets of 3-5 minutes may be safer and more reliable. However, a short rest interval (30-60 seconds),⁵⁷ in combination with 330 331 moderate intensity is usually recommended when the goal is muscle hypertrophy 332 because of its greater acute effect on growth hormone levels than >3 minutes of rest.⁵⁷ 333 The therapist experience was scarcely mentioned in the studies selected. Therapist 334 experience, patient preferences, and education are also critical aspects to consider in 335 clinical practice in PWH. If patients feel that the prescribed exercise is not acceptable 336 or safe, clinical benefit or adherence to strength exercise may be limited.

Furthermore, assessment of adherence was under-reported in included studies. Recording exercise adherence through book events or digital systems, plus the inclusion of feedback (graphic, visual or verbal cues) on progression,¹⁶ may help clinicians and researchers encourage PWH to complete programs and compare the adherence of different strength protocols in future studies.

342

All the above mentioned strength variables need to be further reported in order to be
able to compare different exercise programmes in future systematic reviews and metaanalyses.

346

348 Recommendations for future studies and clinical practice in PWH

Only four studies evaluated the effect of isolated strength training ^{27,33,34,37} and thus most of the studies combined strength training with other modalities or treatments (e.g., manual therapy).^{24,26,31,32,35} Understanding the physiological and functional effects of individual and combined strength variables may help to improve exercise protocols and maximise the effectiveness of strength training in PWH.

354 The perception of pain during exercise is relevant for the safety and adherence to 355 strength exercises in PWH. While exercises are relevant for PWH, barriers remain regarding the perception of overall safety and effectiveness.⁵⁸ PWH may consider 356 357 exercise therapy part of a pain management strategy if it is individualized.⁵⁸ The 358 recommendation for musculoskeletal rehabilitation (e.g., osteoarthritis) is to use safety thresholds based on the visual analog scale (VAS).^{16,59} Pain perception up to 2/10 is 359 360 considered "safe" (green zone), pain up to a level of 5/10 is considered "acceptable" 361 (vellow zone), and pain above 5/10 is considered "high risk" (red zone) (see figure 4).^{16,59} Considering that there is no consensus on how pain perception during strength 362 exercises should be used in PWH, the safety thresholds based on the VAS (0-10) may 363 be an alternative for future studies and clinical practice. The pain-free or safe zone 364 365 (VAS 0-2) may be helpful to prevent adverse events (joint and muscle bleeding), 366 mainly in those PWH without access to prophylaxis treatment and severe haemophilia. The acceptable zone (VAS 3-5) may be individualised based on haemophilia severity 367 (e.g., moderate and mild), access to prophylaxis treatment, joint damage severity, the 368 369 experience of PWH with strength training and the experience of the therapist in haemophilia care. However, future studies are needed to find a consensus about 370 371 selecting pain-free exercises or pain zones to prescribe strength training in PWH.

372 Another key issue in prescribing strength exercise in PWH is prophylactic factor coverage during and after exercise, especially in those with a severe deficit in clotting 373 374 factor level (i.e., <1%). Information on how studies have prescribed factor replacement 375 (e.g., within 24 hours of exercise or 24-48 hours) may help future studies aimed at restoring muscle strength in PWH. In our systematic review, only two studies ^{34,35} 376 377 reported whether exercise coincided with the day on which prophylactic treatment was performed. It is relevant to take into account the weekly frequency of exercise in PWH, 378 379 especially due to the limitation of homeostatic coverage that is usually prescribed two 380 or three times per week. Adequate prophylactic treatment is essential to ensure a safe 381 exercise program and improve exercise adherence in PWH. In the included studies, 382 the assessment of adverse events during training was considered in most of the 383 studies (77.8%) and bleeding was only reported in isolated cases without major 384 complications. The recommendation is to encourage patients to inform the medical 385 and clinical team of adverse events (joint or muscle bleeding) in order to study possible 386 changes in training variables and/or prophylactic treatment. Future studies in PWH 387 need to improve information on the treatment regimen, especially how prophylaxis is 388 coordinated with the strength training day in PWH. Regarding supervision, this variable 389 was well reported among the studies, and the most common modality was supervised 390 exercise. Hybrid and unsupervised modalities are potential modalities to be included 391 in clinical practice. For example, home exercises and telerehabilitation was perceived by PWH as a safe and effective intervention to improve physical condition.^{31,60} 392 However, more literature is needed to know the effectiveness of supervised modalities. 393

394

Finally, we recommend a checklist of the variables considered in this systematic review (Figure 5). This checklist may assist clinicians and researchers seeking to

develop programmes to improve muscle strength in PWH. We encourage cliniciansand investigators to report strength exercise variables in future RCTs in PWH.

399

400 *Limitations*

The sample size of the included studies was relatively small. Additionally, most of the studies were at high or uncertain risk of bias in some of the domains assessed, with the most critical being allocation concealment, blinding of participants and personnel, blinding of outcome assessment and incomplete outcome data. Also, we did not contact the authors of the studies to request additional information, we assumed that the information appearing in the studies on exercise protocols was reliable and our objective was to analyse compliance with the exercise variables as published.

408

409 Conclusion

410 Future research on strength training for PWH should improve information on pain 411 threshold and other important variables such as prophylactic factor coverage, intensity, range of motion, time under tension, cognitive focus of attention and therapist 412 experience in PWH and adherence assessment. These variables are relevant for 413 414 improving muscle strength, structural adaptations and physical function. In contrast, 415 strength training prescription variables such as weekly frequency, duration (weeks), 416 number of repetitions, repetitions to failure/not to failure, types of contraction, rest 417 duration between sets, supervision, exercise equipment and adverse event recording were reported to a greater extent in the included studies. However, all these variables 418 419 should be further reported to improve clinical practice and comparison of different protocols in future systematic reviews and meta-analyses in PWH. 420

421

422 FUNDING INFORMATION

423 This research received no external funding.

424

425 **DISCLOSURES**

- The authors state that they have no interests which might be perceived as posing a conflict or bias.
- 428

429 AUTHOR CONTRIBUTION

- 430 Concept and design: C.C-M, R.N-C, J.C; Writing: C.C-M, R.N-C, A.C-H, R.L-B, LL.A,
- 431 G.M-R, S.P-A, J.C; Data analysis: C.C-M, R.N-C, A.C-H; Consultation: C.C-M, R.N-C,
- 432 A.C-H, R.L-B, LL.A, G.M-R, S.P-A, J.C. All authors approved the final version of the

433 manuscript.

434

435 DATA AVAILABILITY STATEMENT

- 436 Data sharing is not applicable to this article as no new data were created or analysed in
- 437 this study.
- 438
- 439 **ORCID**
- 440 Carlos Cruz-Montecinos: ID https://orcid.org/0000-0002-3835-3368
- 441 Rodrigo Núñez-Cortés: ID https://orcid.org/0000-0002-4068-9338
- 442 Ana Chimeno-Hernández https://orcid.org/0000-0002-4449-0174
- 443 Rubén López-Bueno: ID <u>https://orcid.org/0000-0002-7865-3429</u>
- 444 Lars Louis Andersen: ID <u>https://orcid.org/0000-0003-2777-8085</u>
- 445 Guillermo Méndez-Rebolledo: ID https://orcid.org/0000-0001-7948-3807

- 446 Sofía Pérez-Alenda: ID https://orcid.org/0000-0002-0841-5767
- 447 Joaquín Calatayud: ID https://orcid.org/0000-0002-8670-8346
- 448

449 **References**

- 450 1. van Vulpen LFD, Holstein K, Martinoli C. Joint disease in haemophilia:
 451 Pathophysiology, pain and imaging.*Haemophilia*. 2018;24 Suppl 6:44-49.
- 452 2. Cruz-Montecinos C, Núñez-Cortés R, Vasconcello-Castillo L, et al. Exercise
 453 capacity in people with haemophilia: A systematic review.*Haemophilia*. July 2022.
- 454 3. Fouasson-Chailloux A, Maugars Y, Trossaert M, et al. Isokinetic knee strength 455 deficit in patients with moderate haemophilia.*Haemophilia*. 2021;27(4):634-40.
- 456 4. Hilberg T, Herbsleb M, Gabriel HH, et al. Proprioception and isometric muscular
 457 strength in haemophilic subjects.*Haemophilia*. 2001;7(6):582-88.
- 458 5. Paredes AC, Teixeira P, Almeida A, et al. Prevalence and Interference of Chronic
 459 Pain Among People With Hemophilia: A Systematic Review and Meta-Analysis.*J*460 Pain. 2021;22(10):1134-45.
- Ucero-Lozano R, López-Pina JA, Ortiz-Pérez A, et al. The relationship between
 chronic pain and psychosocial aspects in patients with haemophilic arthropathy.
 A cross-sectional study.*Haemophilia*. 2022;28(1):176-82.
- 464 7. Strike K, Mulder K, Michael R. Exercise for haemophilia.*Cochrane Database Syst*465 *Rev.* 2016;12:CD011180.
- 466 8. Wagner B, Krüger S, Hilberg T, et al. The effect of resistance exercise on strength

- 467 and safety outcome for people with haemophilia: A systematic
 468 review.*Haemophilia*. 2020;26(2):200-215.
- 469 9. Srivastava A, Santagostino E, Dougall A, et al. WFH Guidelines for the
 470 Management of Hemophilia, 3rd edition.*Haemophilia*. 2020;26 Suppl 6:1-158.
- 471 10. Umeda M, Corbin LW, Maluf KS. Pain mediates the association between physical
 472 activity and the impact of fibromyalgia on daily function.*Clin Rheumatol*.
 473 2015;34(1):143-49.
- 474 11. Smith BE, Hendrick P, Smith TO, et al. Should exercises be painful in the
 475 management of chronic musculoskeletal pain? A systematic review and meta476 analysis.*Br J Sports Med*. 2017;51(23):1679-87.
- 477 12. Suchomel TJ, Nimphius S, Bellon CR, et al. The Importance of Muscular Strength:
 478 Training Considerations. *Sports Med*. 2018;48(4):765-85.
- 479 13. Duchateau J, Stragier S, Baudry S, et al. Strength Training: In Search of Optimal
 480 Strategies to Maximize Neuromuscular Performance.*Exerc Sport Sci Rev.*481 2021;49(1):2-14.
- 482 14. Joanisse S, Lim C, McKendry J, et al. Recent advances in understanding
 483 resistance exercise training-induced skeletal muscle hypertrophy in
 484 humans.*F1000Res*. 2020;9.
- 485 15. Coratella G. Appropriate Reporting of Exercise Variables in Resistance Training
 486 Protocols: Much more than Load and Number of Repetitions. *Sports Med Open*.
 487 2022;8(1):99.
- 488 16. Slade SC, Dionne CE, Underwood M, et al. Consensus on Exercise Reporting

- 489 Template (CERT): Explanation and Elaboration Statement.*Br J Sports Med*.
 490 2016;50(23):1428-37.
- 491 17. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an
 492 updated guideline for reporting systematic reviews.*Rev Esp Cardiol*.
 493 2021;74(9):790-99.
- 18. Chimeno-Hernández A, Querol-Giner F, Pérez-Alenda S, et al. Effectiveness of
 physical exercise on postural balance in patients with haemophilia: A systematic
 review.*Haemophilia*. 2022;28(3):409-21.
- 497 19. Higgins JPT, Thomas J. Cochrane Handbook for Systematic Reviews of
 498 Interventions. John Wiley & Sons; 2019.
- 499 20. Hilberg T, Herbsleb M, Puta C, et al. Physical training increases isometric
 500 muscular strength and proprioceptive performance in haemophilic
 501 subjects.*Haemophilia*. 2003;9(1):86-93.
- 502 21. Hill K, Fearn M, Williams S, et al. Effectiveness of a balance training home
 503 exercise programme for adults with haemophilia: a pilot study.*Haemophilia*.
 504 2010;16(1):162-69.
- 505 22. Vallejo L, Pardo A, Gomis M, et al. Influence of aquatic training on the motor
 506 performance of patients with haemophilic arthropathy.*Haemophilia*.
 507 2010;16(1):155-61.
- 508 23. Von Mackensen S, Eifrig B, Zäch D, et al. The impact of a specific aqua-training
 509 for adult haemophilic patients--results of the WATERCISE study (WAT510 QoL).*Haemophilia*. 2012;18(5):714-21.

511 24. Czepa D, von Mackensen S, Hilberg T. Haemophilia & Exercise Project (HEP):
512 the impact of 1-year sports therapy programme on physical performance in adult
513 haemophilia patients.*Haemophilia*. 2013;19(2):194-99.

514 25. Goto M, Takedani H, Haga N, et al. Self-monitoring has potential for home
515 exercise programmes in patients with haemophilia.*Haemophilia*.
516 2014;20(2):e121-27.

- 517 26. Cuesta-Barriuso R, Gómez-Conesa A, López-Pina J-A. Effectiveness of two 518 modalities of physiotherapy in the treatment of haemophilic arthropathy of the 519 ankle: a randomized pilot study.*Haemophilia*. 2014;20(1):e71-78.
- 520 27. Parhampour B, Torkaman G, Hoorfar H, et al. Effects of short-term resistance
 521 training and pulsed electromagnetic fields on bone metabolism and joint function
 522 in severe haemophilia A patients with osteoporosis: a randomized controlled
 523 trial.*Clin Rehabil.* 2014;28(5):440-50.

28. Runkel B, Czepa D, Hilberg T. RCT of a 6-month programmed sports therapy
(PST) in patients with haemophilia - Improvement of physical fitness.*Haemophilia*.
2016;22(5):765-71.

S27 29. Runkel B, Von Mackensen S, Hilberg T. RCT - subjective physical performance
and quality of life after a 6-month programmed sports therapy (PST) in patients
with haemophilia.*Haemophilia*. 2017;23(1):144-51.

30. Runkel B, Hilberg T. Follow-up of a 6-month Programmed Sports Therapy (PST)
in patients with haemophilia.*Hamostaseologie*. 2017;37(S 01):S9-14.

532 31. Cuesta-Barriuso R, Torres-Ortuño A, Nieto-Munuera J, et al. Effectiveness of an

- Educational Physiotherapy and Therapeutic Exercise Program in Adult Patients
 With Hemophilia: A Randomized Controlled Trial.*Arch Phys Med Rehabil*.
 2017;98(5):841-48.
- 536 32. Cuesta-Barriuso R, Gómez-Conesa A, López-Pina J-A. Manual and educational
 537 therapy in the treatment of hemophilic arthropathy of the elbow: a randomized
 538 pilot study.*Orphanet J Rare Dis.* 2018;13(1):151.
- 33. Parhampour B, Dadgoo M, Vasaghi-Gharamaleki B, et al. The effects of six-week
 resistance, aerobic and combined exercises on the pro-inflammatory and antiinflammatory markers in overweight patients with moderate haemophilia A: A
 randomized controlled trial.*Haemophilia*. 2019;25(4):e257-66.
- 34. Calatayud J, Pérez-Alenda S, Carrasco JJ, et al. Safety and Effectiveness of
 Progressive Moderate-to-Vigorous Intensity Elastic Resistance Training on
 Physical Function and Pain in People With Hemophilia.*Phys Ther.*2020;100(9):1632-44.
- 547 35. Tat AM, Can F, Tat NM, et al. The effects of manual therapy and exercises on
 548 pain, muscle strength, joint health, functionality and quality of life in haemophilic
 549 arthropathy of the elbow joint: A randomized controlled pilot study.*Haemophilia*.
 550 2021;27(3):e376-84.
- 551 36. García-Dasí M, Pérez-Alenda S, Carrasco JJ, et al. Effects of a non-552 pharmacological approach for chronic pain management in patients with 553 haemophilia: efficacy of cognitive-behavioural therapy associated with 554 physiotherapy.*Haemophilia*. 2021;27(3):e357-67.
- 555 37. Parhampour B, Alizadeh V, Torkaman G, et al. Muscle thickness and pennation

angle in overweight persons with moderate haemophilia A after resistance and
combined training: A randomized controlled trial.*Haemophilia*. 2022;28(3):505-14.

- 38. Moseley GL, Lorimer Moseley G. Reconceptualising pain according to modern
 pain science.*Physical Therapy Reviews*. 2007;12(3):169-78.
- 39. Roussel NA, Chantrain V-A, Foubert A, et al. Gaining more insight into ankle pain
 in haemophilia: A study exploring pain, structural and functional evaluation of the
 ankle joint.*Haemophilia*. 2022;28(3):480-90.
- 40. Lazaridou A, Martel MO, Cornelius M, et al. The Association Between Daily
 Physical Activity and Pain Among Patients with Knee Osteoarthritis: The
 Moderating Role of Pain Catastrophizing. *Pain Med*. 2019;20(5):916-24.
- 566 41. Foubert A, Roussel N, Chantrain V-A, et al. Pain coping behaviour strategies in
 567 people with haemophilia: A systematic literature review.*Haemophilia*. July 2022.
- 568 42. Schoenfeld BJ, Grgic J, Ogborn D, et al. Strength and Hypertrophy Adaptations
 569 Between Low- vs. High-Load Resistance Training: A Systematic Review and
 570 Meta-analysis. *J Strength Cond Res.* 2017;31(12):3508-23.
- 43. Regnaux J-P, Lefevre-Colau M-M, Trinquart L, et al. High-intensity versus lowintensity physical activity or exercise in people with hip or knee
 osteoarthritis.*Cochrane Database of Systematic Reviews*. 2015;2015(10).
- 44. Pallarés JG, Hernández-Belmonte A, Martínez-Cava A, et al. Effects of range of
 motion on resistance training adaptations: A systematic review and metaanalysis. *Scand J Med Sci Sports*. 2021;31(10):1866-81.
- 577 45. Borde R, Hortobágyi T, Granacher U. Dose-Response Relationships of

- 578 Resistance Training in Healthy Old Adults: A Systematic Review and Meta-579 Analysis.*Sports Med.* 2015;45(12):1693-1720.
- 580 46. Calatayud J, Vinstrup J, Jakobsen MD, et al. Importance of mind-muscle
 581 connection during progressive resistance training.*Eur J Appl Physiol*.
 582 2016;116(3):527-33.
- 583 47. Schoenfeld BJ, Vigotsky A, Contreras B, et al. Differential effects of attentional 584 focus strategies during long-term resistance training.*EJSS* . 2018;18(5):705-12.
- 585 48. Cruz-Montecinos C, Calatayud J, Iturriaga C, et al. Influence of a self-regulated
 586 cognitive dual task on time to failure and complexity of submaximal isometric force
 587 control.*Eur J Appl Physiol.* 2018;118(9):2021-27.
- 49. Cruz-Montecinos C, Núñez-Cortés R, Guzmán-González B, et al. The Relevance
 of Dual Tasking for Improving Trunk Muscle Endurance After Back Surgery. *Arch Phys Med Rehabil*. 2021;102(3):463-69.
- 50. Grgic J, Mikulic P. Effects of Attentional Focus on Muscular Endurance: A MetaAnalysis.*Int J Environ Res Public Health*. 2021;19(1).
- 593 51. Schoenfeld BJ, Grgic J, Krieger J. How many times per week should a muscle be
 594 trained to maximize muscle hypertrophy? A systematic review and meta-analysis
 595 of studies examining the effects of resistance training frequency.*J Sports Sci.*596 2019;37(11):1286-95.
- 597 52. Silva NL, Oliveira RB, Fleck SJ, et al. Influence of strength training variables on
 598 strength gains in adults over 55 years-old: A meta-analysis of dose–response
 599 relationships.*Journal of Science and Medicine in Sport*. 2014;17(3):337-44.

- 53. Krieger JW. Single vs. multiple sets of resistance exercise for muscle hypertrophy:
 a meta-analysis. *J Strength Cond Res.* 2010;24(4):1150-59.
- 54. Vieira JG, Sardeli AV, Dias MR, et al. Effects of Resistance Training to Muscle
 Failure on Acute Fatigue: A Systematic Review and Meta-Analysis.*Sports Med*.
 2022;52(5):1103-25.
- 55. Lea JWD, O'Driscoll JM, Coleman DA, et al. Validity and reliability of the
 "Isometric Exercise Scale" (IES) for measuring ratings of perceived exertion
 during continuous isometric exercise. *Sci Rep.* 2021;11(1):5334.
- 56. Karaborklu Argut S, Celik D, Yasacı Z. Effectiveness of therapeutic
 electromyographic biofeedback after orthopedic knee surgeries: a systematic
 review.*Disabil Rehabil*. 2022;44(14):3364-72.
- 57. Freitas de Salles B, Simão R, Miranda F, et al. Rest Interval between Sets in
 Strength Training.*Sports Med.* 2012;39(9):765-77.
- 58. McLaughlin P, Hurley M, Chowdary P, et al. The experiences and beliefs of people
 with severe haemophilia and healthcare professionals on pain management, and
 their views of using exercise as an aspect of intervention: a qualitative
 study.*Disabil Rehabil*. December 2021;1-9.
- 59. Ageberg E, Link A, Roos EM. Feasibility of neuromuscular training in patients with
 severe hip or knee OA: the individualized goal-based NEMEX-TJR training
 program.*BMC Musculoskelet Disord*. 2010;11:126.
- 620 60. Aliaga-Castillo V, Horment-Lara G, Contreras-Sepúlveda F, et al. Safety and 621 effectiveness of telerehabilitation program in people with severe haemophilia in

622	Chile. A qualitative study. <i>Musculoskelet Sci Pract</i> . 2022;60:102565.
623	
624	
625	
626	
627	
628	
629	
630	
631	
632	
633	
634	
635	
636	
637	
638	
639	

Figure 1. Study selection process.

Figure 2. Main results of the strength prescription variables among the included
studies. The dashed black line indicates the 50% threshold value. Black bars indicate
underreported strength prescription variables.

Figure 3. Risk of bias assessment.

Figure 4. Recommendation for safety thresholds based on the visual analog scale
(VAS). Pain perception up to 2/10 is considered "safe" (green zone), pain up to a level
of 5/10 is considered "acceptable" (yellow zone), and pain above 5/10 is considered
"high risk" (red zone).

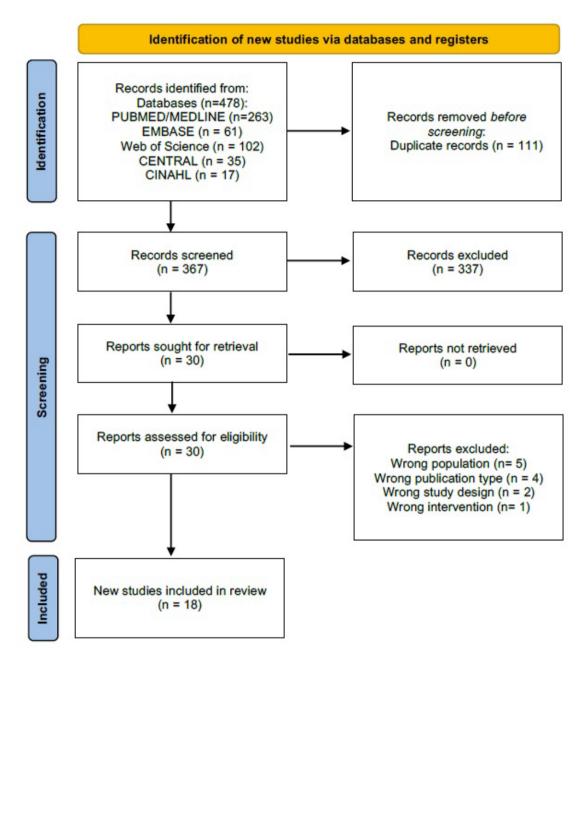
Figure 5. Exercise and pain threshold reporting checklist for strength training in PWH.

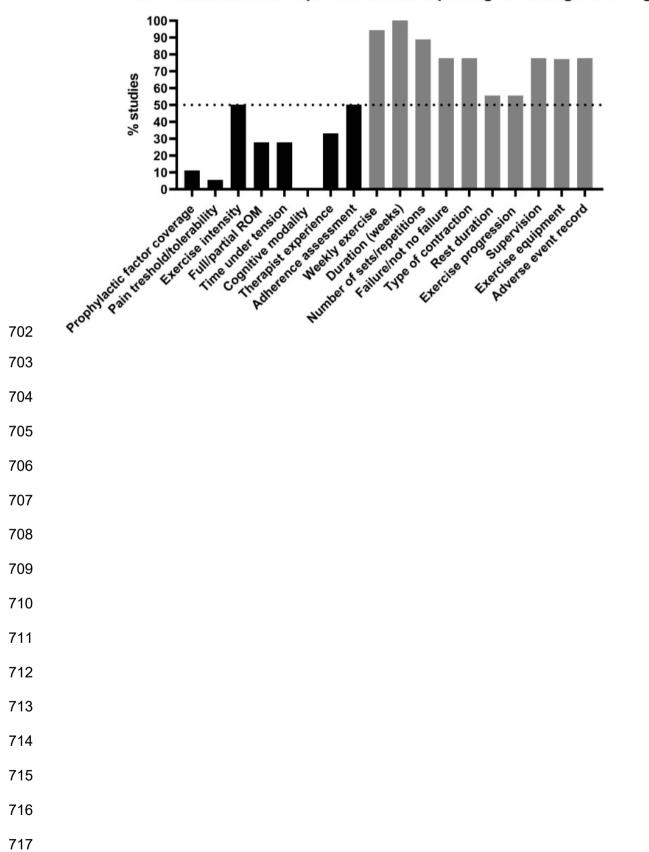
Table 1. Characteristics of the studies.

Author, year	Countr y	Design	n	Age (year)	Type of Haemophi lia	Severit y	Hemostat ic treatment régimen	Prophylac tic factor coverage	Strengthening exercise
Hilberg 2003	Germa ny	Before- After	9	32.4 ± 9.4	A: 9	Severe: 9	Prophylaxi s: 9	NR	Specific muscle- strengthening programme
Hill 2010	Australi a	Before- After	1 2	39.4 (95%Cl : 33.7– 45.1).	A: 11 B: 1	Severe: 9 Moderat e: 2 Mild:1	NR	NR	Individualized balance and strength home exercise programme
Vallejo 2010	Spain	Before- After	1 3	32.27 ± 1.5	A: 13	Severe: 12 Moderat e: 1	Inhibitors: 1 On- demand: 9 Prophylaxi s: 4	NR	Aquatic muscular endurance and muscle strengthening exercises
Von Mackense n 2012	Germa ny	Prospecti ve (non- randomiz ed)	28	IG: 42.54 ± 13.5 CG 39.07 ± 12.3	A: 22 B: 6	NR	Prophylaxi s: 8 On- demand: 19 Both: 1	NR	Specific aqua- training programme (strengthening exercises in the full range of motion)
Czepa 2013	Germa ny	Before- After	4 4	IG: 45±5 CG: 39 ± 11	A: 24 B: 1	Severe: 25	Prophylaxi s: 12 On demand: 13	NR	Home training (muscle activation with elastic resistance exercises)
Goto 2014	Japan	RCT	3 2	IG: 41.8 ± 8.6 CG: 43.9 ±10.7	A: 26 B: 6	Severe: 27 Moderat e: 5	Prophylaxi s: 25 On demand: 7	NR	Home exercise program (knee extension strengthening, static stretching for the knee flexor muscles, and standing balance training)
Cuesta- Barriuso 2014	Spain	RCT	3 1	35.29 ± 2.877	A: 26 B: 5	Severe: 19 Moderat e: 12	Prophylaxi s: 17 On demand: 14	NR	Isometric and resisted exercises, in submaximal ranges, of dorsal and plantar flexion
Parhamp our 2014	Iran	RCT	43	NR	A: 43	NR	Prophylaxi s: 43	NR	Strength-training exercises consisted of hip flexion/ abduction/extens ion, knee extension, shoulder press, chest press, scapula retraction, leg press, back

									extension, and squat
Runkel 2016a	Germa ny	RCT	64	IG: 41.9 ± 10.6 CG: 40.3 ± 8.8	A: 57 B: 7	Severe: 59 Moderat e: 5	Prophylaxi s: IG: 92%, CG: 86% On demand: CG:7% Without specificati on: IG: 8%, CG: 7%	NR	Programmed sports therapy (supervised group therapy supplemented by individual training) with strength training equipment.
Runkel 2016b	Germa ny	RCT	6 4	IG: 41.9 ± 10.6 CG: 40.3 ± 8.8	A: 57 B: 7	Severe: 59 Moderat e: 5	NR	NR	Programmed sports-specific therapy training (supervised group instruction supplemented by individual training at home)
Runkel 2017	Germa ny	Before- After	2 8	39.6 ± 9.0 to 41.9 ± 8.6	NR	NR	NR	NR	Specific training program in strength, coordination and endurance.
Cuesta- Barriuso 2017	Spain	RCT	2 0	30.95 ± 11.9	A: 14 B: 7	Severe: 10 Moderat e: 4 Mild: 7	Prophylaxi s: 7 On demand: 13	NR	Isometric exercises of quadriceps, hamstrings, biceps, triceps, and calves
Cuesta- Barriuso 2018	Spain	RCT	2 7	34.48 ± 12.99	A: 22 B: 5	Severe: 17 Mild: 10	Prophylaxi s: 15 On demand: 12	NR	Isometric and isotonic exercises of elbow
Parhamp our 2019	Iran	RCT	4 8	RT: 46.42 ± 4.68	A: 48	Moderat e: 48	Prophylaxi s: 48	NR	Core, upper limb and lower limb exercises. (knee ext-flex, calf raise, leg press, shoulder press, chest press and squat)
Calatayud 2020	Spain	RCT	2 0	IG: 36.3 ± 10.5 CG:39. 1 ± 8.4	A:18 B:2	Severe: 17 Moderat e: 1 Mild: 2	Prophylaxi s: 17 On demand: 3	1 to 26 hours before each training session	Progressive Moderate-to- Vigorous Intensity Elastic Resistance Training
María García- Dasí 2021	Spain	Controlled trial study	1 9	IG: 45 ± 8.46 CG: 37.89 ± 13.31	A: 18 B: 1	Severe: 19	Prophylaxi s: 19	NR	Resistance training with elastic bands

Tat 2021	Turkey	RCT pilot study	1 7	24 ±9	A: 15 B: 2	Severe: 16 Mild: 1	Prophylaxi s: 16 On demand: 1	Interventio ns coincided with the day they received factor treatment (3 times per week).	Strengthening Exercises (with medium or mild resistance band)
Parhamp our 2022	Iran	RCT	42	RT:46. 79 ± 4.42	A: 42	Moderat e: 42	Prophylaxi s: 42	NR	Resistance training (Squat and leg press, shoulder and shoulder press, knee ext/knee flex and calf raise


663 Abbreviations: CG: control group, IG: interventional group, NR: not reported, RCT: Randomized 664 controlled trials, RT: resistance training.


Table 2. Exercise Variables in the strength exercise protocols

84 Study	Toler abilit	Freq uenc y	Dura tion	e Varia	Num ber of	Repe tition s to	Ful I vs	Type of musc	Temp o for each	Inte rnal or	Inter- set rest	Exerc ise progr	Super vised or	Exerci se equip	Ther apist expe	Adher ence asses	Adv ers e
	y or Pain thres hold				sets and repet ition s	failur e/not to failur e	pa rti al RO M	le contr actio n	phase	ext ern al foc us	durat ion	essio n	unsup ervise d	ment	rienc e in PWH	smen t	eve nts rec ord
Hilber g 2003	NR	Twic e a week	6 mont hs	NR	20– 25 reps	Not to failure	NR	NR	NR	NR	NR	NR	NR	Elastic resista nce band	NR	NR	Yes
Hill 2010	NR	5–7 days each week	4 mont hs	NR	NR	NR	NR	NR	NR	NR	NR	NR	Hybrid	NR	NR	Exerci se diary	Yes
Vallej o 2010	NR	3 days per week	9 wee ks	Percei ved exerti on scale: 2-3 to 6-7	2 serie s of 20 reps	Not to failure	NR	Dyna mic	NR	NR	Paus e betw een serie s: 30 s	Yes	Superv ised	Alter- gim, silicon e, gloves /circles , circles/ fist/	NR	NR	Yes
Von Mack ensen 2012	NR	Once a week	12 mont h	NR	≈ 20 reps	Not to failure	Ful I RO M	NR	NR	NR	NR	NR	Superv ised	hydrob ells Aqua- dumbb ells, pool- noodle s and boards	NR	% of trainin g units	Yes
Czep a 2013	NR	At least 2 times per week	1- year	NR	NR	Not to failure	NR	Isome tric and dyna mic	NR	NR	NR	NR	Superv ised	Elastic resista nce band	NR	Compl iance with protoc o	Yes
Goto 2014	NR	NR	8 wee ks	NR	10 times per day.	NR	NR	Isome tric and isoton ic	NR	NR	NR	NR	Unsup ervised	NR	NR	% of adher ence	Yes
Cuest a- Barriu so 2014	NR	2 sessi ons per week	12 wee ks	NR	20 reps	NR	NR	Isome tric and isoton ic	20 s	NR	10-s rest betw een each rep	NR	NR	NR	Yes	NR	Yes
Parha mpou r 2014	NR	3 days per week	6 wee ks	50%- 60% 1RM	10-15 reps	Not to failure	Pa rtia I RO M	Dyna mic	NR	NR	10 s betw een reps, 1-2 minut es betw een muscl e group s	Yes	Superv ised	Free weight s, dumbb ells and halter	NR	NR	Yes
Runk el 2016a	NR	2 days per week	6- mont h	10– 30% to 50- 70% (rate of percei ved exerti on)	3 rates with 15 reps	Not to failure	NR	Dyna mic	NR	NR	NR	Yes	Superv ised	Exerci se machi ne (leg press or cable pull).	Yes	Sign in attend ance	Yes
Runk el 2016b	NR	2 days per week	6- mont h	10– 30% to 50- 70% (rate of percei ved exerti on)	3 rates with 15 reps	Not to failure	NR	Dyna mic	NR	NR	NR	Yes	Superv ised	Exerci se machi ne (leg press or cable pull).	Yes	Sign in attend ance	NR
Runk el 2017	NR	2 days per week	6- mont h	10– 30% to 50- 70% (rate of percei ved exerti on)	3 rates with 15 reps	Not to failure	NR	Dyna mic	NR	NR	NR	Yes	Superv ised	Exerci se machi ne (leg press or cable pull).	Yes	NR	NR

Cuest a- Barriu so 2017	NR	6 days a week	15- wee k	NR	2 sets of 10 reps	Not to failure	NR	Isome tric	20 s	NR	10-s rest betw een sets	NR	NR	NR	Yes	NR	NR
Cuest a- Barriu so 2018	NR	2 sessi ons week ly	12 wee ks	NR	2 sets of 10 reps	NR	NR	Isome tric and dyna mic	20 s	NR	10-s rest betw een sets	NR	NR	NR	Yes	Daily regist er	Yes
Parha mpou r 2019	NR	3 days per week	6 wee ks	65%- 75% 1RM	10-12 reps	Not to failure	NR	Dyna mic	NR	NR	10 s betw een reps, 1-2 minut es betw een muscl e group s	Yes	Superv ised	Free weight s, dumbb ells and halter	NR	NR	Yes
Calat ayud 2020	NR	2 days per week	8 wee ks	20RM and increa sed progre ssivel y towar d 15, 12, and finally 10RM.	3 sets, 1 reps belo w musc le failur e	Not to failure	Ful I RO M	Dyna mic	Approx imately 1 s	NR	1 min betw een sets and exerc ises	Yes	Superv ised	Elastic resista nce band	NR	% attend ance	Yes
María Garcí a- Dasí 2021	NR	3 days per week	4 mont hs.	Percei ved exerti on (level of 3– 4)	3 sets of 10 reps each	Not to failure	Ful I RO M	Dyna mic	NR	NR	1- minut e rest interv als betw een each set	Yes	Hybrid	Elastic resista nce band	NR	Exerci se diary	NR
Tat 2021	"exer cise within the limits of mobili ty and pain, slowl y done"	3 days per week	5 wee ks.	NR	10 reps, 1-2 times	Not to failure	NR	NR	10 sec of contra ction	NR	5 sec interv als betw een each rep	Yes	Hybrid	Elastic resista nce band	NR	NR	Yes
Parha mpou r 2022	NR	3 days per week	6 wee ks	65%- 75% 1RM	10-12 reps	Not to failure	Pa rtia I RO M	Dyna mic	NR	NR	10-s betw een reps and a 1–2 min betw een two cons ecutiv e exerc ises	Yes	Superv ised	Dumb bells, barbell s and free weight s	NR	NR	Yes

686 Abbreviations: NR, not reported; RM, repetition maximum; ROM, Range of motion.

Exercise variables and pain threshold reporting for strength training

718 Figura 3

		Risk of bias									
		D1	D2	D3	D4	D5	D6	D7			
	Goto 2014	+	-	×	-	×	-	+			
	Cuesta-Barriuso 2014	-	-	-	+	+	-	+			
	Parhampour 2014	+	+	+	X	X	-	+			
	Runkel 2016a	+	-	-	-	+	-	+			
	Runkel 2016b	-	-	-	-	+	-	+			
Study	Cuesta-Barriuso 2017	-	+	X	+	+	+	+			
	Cuesta-Barriuso 2018	-	+	X	+	+	+	+			
	Parhampour 2019	+	-	X	-	+	+	+			
	Calatayud 2020	+	+	-	+	+	+	+			
	Tat 2021	+	-	X	X	+	+	+			
	Parhampour 2022	+	-	-	+	+	+	+			
	D1: Random sequence generation D2: Allocation concealment D3: Blinding of participants and personnel D4: Blinding of outcome assessment D5: Incomplete outcome data D6: Selective reporting D7: Other sources of bias										

728 Figura 4

Safety thresholds based on VAS

Safe	Acceptable	High risk
VAS (0-2)	VAS (3-5)	VAS (6-10)