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Abstract

Motivation: Despite the fact that antimicrobial resistance is an increasing health concern, the pace of production of
new drugs is slow due to the high cost and uncertain success of the process. The development of high-throughput
technologies has allowed the integration of biological data into detailed genome-scale models of multiple organ-
isms. Such models can be exploited by means of computational methods to identify system vulnerabilities such as
chokepoint reactions and essential reactions. These vulnerabilities are appealing drug targets that can lead to novel
drug developments. However, the current approach to compute these vulnerabilities is only based on topological
data and ignores the dynamic information of the model. This can lead to misidentified drug targets.

Results: This work computes flux constraints that are consistent with a certain growth rate of the modelled organ-
ism, and integrates the computed flux constraints into the model to improve the detection of vulnerabilities. By
exploiting these flux constraints, we are able to obtain a directionality of the reactions of metabolism consistent with
a given growth rate of the model, and consequently, a more realistic detection of vulnerabilities can be performed.
Several sets of reactions that are system vulnerabilities are defined and the relationships among them are studied.
The approach for the detection of these vulnerabilities has been implemented in the Python tool CONTRABASS.
Such tool, for which an online web server has also been implemented, computes flux constraints and generates a re-
port with the detected vulnerabilities.

Availability and implementation: CONTRABASS is available as an open source Python package at https://github.
com/openCONTRABASS/CONTRABASS under GPL-3.0 License. An online web server is available at http://contra
bass.unizar.es.

Contact: contrabass@unizar.es or julvez@unizar.es

Supplementary information: A glossary of terms are available at Bioinformatics online.

1 Introduction

Antimicrobial resistance (AMR) occurs when bacteria, viruses, fungi
and parasites evolve to become unresponsive to conventional antibi-
otics, thus threatening our ability to treat common infections and
increasing the risk of spread of severe illnesses. The emergence of
multidrug-resistant bacteria (MDR) is particularly alarming, as they
can cause infections untreatable with existing antibiotics. According
to the World Health Organization, AMR is one of the primary glo-
bal public health threats of humanity due to its high increasing rate
(Leung et al., 2011).

Despite the increasing emergency of AMR, the pipeline of drug
development involves a huge cost of time and budget and, in add-
ition, most drug candidates fail the clinical stages. Therefore, novel

approaches for the development of drugs that tackle the rising prob-
lem of AMR should be established urgently (Jubeh et al., 2020).

The emergence of high-throughput technologies has led to the
construction of large datasets with structural and transcriptomic
data of different pathogens. The integration of multidimensional
data has the potential to offer a more rapid and cost-effective strat-
egy compared to traditional screening methods in the process of
drug discovery. In this context, the integration of metabolic func-
tions obtained from genome annotations enabled the reconstruction
of metabolic networks of multiple microorganisms. These recon-
structions allow the modelling of metabolism, which can provide
non-intuitive insights into biological systems that in vivo assays
alone cannot provide (Ramos et al., 2018; Richelle et al., 2020).

Metabolism is the set of basic life processes that take place in the
cell, and it is the means by which cells can maintain life and grow
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from their environment. Metabolism can be represented as a meta-
bolic network, which includes all the metabolic reactions that can
occur in a cell. A possible strategy for drug development is to find
vulnerabilities in the metabolism that can stop the growth and repli-
cation of the bacterium, and thus its damaging effects.

As of 2019, genome-scale models (GEMs) of metabolism have
been reconstructed for more than 6000 organisms including bac-
teria, archaea and eukaryotes by either automatic or manual recon-
struction (Gu et al., 2019). GEMs have proven useful in a wide
range of applications, such as expanding knowledge on microorgan-
isms (Henry et al., 2006; Navid and Almaas, 2012) and microbial
communities (Kumar et al., 2019; Zomorrodi and Maranas, 2012),
microbial engineering (McAnulty et al., 2012; Roberts et al., 2010)
and drug discovery (Ramos et al., 2018). Furthermore, these models
have proven to be interesting in areas such as oncology, by studying
drug targets in cancer metabolism (Folger et al., 2011), and viral dis-
eases (Bannerman et al., 2021). Drug targeting in pathogens is usual-
ly performed by considering essential genes, reactions or
metabolites, whose inhibition can effectively kill a pathogen (Gu
et al., 2019) or through metabolic network topology analysis
(Ramos et al., 2018).

Despite the number of GEMs developed recently, most of these
models lack genetic information, which could hamper the model
analysis based on gene essentiality and calls for the design of compu-
tational methods that exploit as much as possible the available bio-
logical information. Here, we focus on the computation of critical
reactions in metabolic networks such as essential reactions, dead
reactions, and chokepoints (Chukualim et al., 2008; Yeh et al.,
2004).

A reaction is essential if it is required by the organism to grow.
The deletion of one of these reactions has the potential to cause a
malfunction in the metabolism and stop the growth of the organism.
As this eventually leads to the death of the organism, essential reac-
tions are widely accepted as drug target candidates (Oyelade et al.,
2018).

Dead reactions are those reactions that cannot carry any flux.
These reactions will receive special attention since they may reflect
an incompleteness of the model or non-preferred pathways of the or-
ganism. As it will be shown, these reactions directly affect the num-
ber of critical reactions computed for a model.

A chokepoint is a reaction that is the only consumer or the only
producer of a given metabolite. Thus, the inhibition of a chokepoint
may lead to the unlimited accumulation of potentially toxic metabo-
lites or the lack of production of an essential compound.
Chokepoints are, therefore, appealing drug targets in microbial
metabolism.

The current methods for the computation of chokepoints only
make use of the topological properties of the metabolic network.
Although the directionality of the network accounts for the sets of
reactants and products of each reaction, it disregards the fact that
such sets depend on the fluxes of the reactions.

Reaction fluxes define the direction in which they take place. To
establish a particular direction, all reactions are given flux bounds
that delimit the range of flux values that a reaction can take.
Reactions that are given positive upper flux bounds and negative
lower flux bounds are said to be reversible. These flux bounds are
used to model reactions that can take place in both directions or
simply to model reactions whose direction is unknown (Thiele and
Palsson, 2010). For instance, let us say that a chemical reaction r :
A$ B is reversible. This means that r can happen in a forward dir-
ection (r : A! B) when a positive flux is assigned, or a backward
direction when a negative flux is assigned (r : A B). Notice that
this means that metabolites in reversible reactions can act both as
reactants and as products. In the reaction r : A! B, metabolite A is
the reactant and metabolite B is the product, however, if the flux of
the reaction is negative, then A becomes the product and B the
reactant.

In most GEMs, unknown flux bounds are given default
flux bounds, e.g. bðrÞ ¼ �1000 mmol gDW�1h�1 and ubðrÞ ¼
1000 mmol gDW�1h�1, that is, reactions are defined as reversible by
default. However, not all these default flux bounds are compatible

with a positive growth rate. This work exploits the flux constraints
of the model to compute sets of reactants and products that are
consistent with a given growth rate, and in turn, to compute
growth-dependent critical reactions. Such approach improves the
detection of vulnerabilities and is applied to compute chokepoints,
essential reactions and dead reactions. The dependence of these sets
with respect to growth is also inferred theoretically. To facilitate the
computation of vulnerabilities in GEMs by integrating dynamic con-
straints, a software tool (CONTRABASS) has been developed.

The remainder of the article is organized as follows: Sections 2.1
and 2.2 recall preliminary concepts and definitions such as
constraint-based models and essential reactions. Structural defini-
tions of constraint-based models and flux-dependent definitions are
recalled in Sections 2.3 and 2.4, respectively. In Section 2.5, growth-
dependent definitions are introduced. Section 2.6 is devoted to dead
reactions, blocked reactions and their relationship. Section 2.7
shows how the integration of dynamic constraints affects the com-
putation of vulnerabilities in Plasmodium falciparum model.
Finally, Section 3 reviews the implemented tool CONTRABASS and
Section 4 concludes the article.

2 Systems and methods

2.1 Constraint-based models
This subsection recalls definitions (Oarga et al., 2020) and methods
that will be used in the next sections.

Definition 2.1. A constraint-based model (Orth et al., 2011; Varma and

Palsson, 1994) is a tuple fR;M; S; L; Ug where R is a set of reactions,

M is a set of metabolites, S 2 R
jMj�jRj is the stoichiometric matrix, and

L;U 2 R
jRj are lower and upper flux bounds of the reactions.

Without loss of generality, it is assumed that L½r� � U½r�
8r 2 R.

All reactions are associated with a set of reactant metabolites
and a set of product metabolites (one of these two sets can be
empty). For example, the reaction r : A! 2B has a reactant metab-
olite A, and a product metabolite B with stoichiometric weight 2,
i.e. two molecules of type B are produced per each molecule of type
A that is consumed by r. The stoichiometric matrix S accounts for
all the stoichiometric weights of the reactions, i.e. S½m; r� is the stoi-
chiometric weight of metabolite m 2M for reaction r 2 R. Thus,

• if S½m; r� < 0 then m is a reactant and is consumed when r

occurs.
• if S½m; r� > 0 then m is a product and is produced when r occurs.
• if S½m; r� ¼ 0 then m is neither consumed nor produced when r

occurs.
Constraint-based models can be expressed as bipartite graphs with

two types of nodes representing reactions and metabolites. Hence,
constraint-based models can be represented graphically as Petri nets
(Heiner et al., 2008; Murata, 1989), where places, drawn as circles,
model metabolites, and transitions, drawn as squares, model reac-
tions. The presence of an arc from a place (transition) to a transition
(place) means that the place is a reactant (product) of the reaction
modelled by the transition. The weights of the arcs of the Petri net ac-
count for the stoichiometry of the constraint-based model. In other
words, the stoichiometric matrix of a constraint-based model and the
incidence matrix of its corresponding Petri net coincide.

Example 2.1.The Petri net in Figure 1 represents a simple constraint-

based model that consists of 10 reactions and 7 metabolites. As an ex-

ample, transition r7 models the reaction r7 : me ! 2mf .

Flux balance analysis (FBA) (Orth et al., 2010) is a mathematical
procedure for the estimation of steady-state fluxes in constraint-
based models. Among other possibilities, FBA can be used to predict
the growth rate of an organism or the rate of production of a given
metabolite.
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Let v 2 R
jRj be the vector of fluxes of reactions and v½r� denote

the flux of reaction r. The system is assumed to be mass balanced at
steady state, this is, the rate of production and rate of consumption
of metabolites is constant. This constraint is given by the expression
S � v ¼ 0, where S is the stoichiometric matrix. The steady-state
mass balance fluxes of reactions, v, must also satisfy the lower and
upper bounds L and U. Thus, the linear programming problem
(LPP) for FBA is:

max z � v
st: S � v ¼ 0

L � v � U
(1)

where z 2 R
jRj expresses the objective function.

Let rg be the reaction that models growth (or biomass produc-
tion) in a constraint-based model. Without loss of generality, it will
be assumed that L½rg� � 0. An optimistic estimate for the growth
rate of the modelled microorganism can be obtained by:

max v½rg�
st: S � v ¼ 0

L � v � U
(2)

The solution of the above LPP (Equation (2)) will be denoted by
lmax.

2.2 Essential reactions
A reaction is said to be essential if it is required by the organism to
grow. In other words, the deletion of an essential reaction implies
null growth. Consequently, these reactions have the potential to
cause the death of the modelled organism.

Definition 2.2. (Oyelade et al., 2018) A reaction r 2 R is an essential re-

action if the solution of the following LPP:

max v½rg�
st: S � v ¼ 0

L � v � U
v½r� ¼ 0

(3)

is equal to 0 or the LPP is infeasible.

The set of essential reactions, which is denoted ER, can be computed
straightforwardly by solving Equation (3) for each r 2 R.

Example 2.2. Let us say that in the Petri net of Figure 1 reaction rg mod-

els growth. In this model, reactions r1 and r2 are essential reactions. This

is because, if the flux of any of these reactions is set to 0, then it is not

possible to produce metabolite mb, which is necessary for the growth re-

action rg.

2.3 Structural definitions
This section recalls how structural definitions of chokepoints and
dead-end metabolites can be defined by making use of Petri net

notation. Let X denotes a vertex of the net, i.e. a reaction or a me-
tabolite. Then, •X(X•) denotes the set of input (output) vertices of
X. For instance, for a given reaction r 2 R; •r denotes its set of reac-
tants and r• its set of products; for a given metabolite m 2M; •m
denotes its set of producing reactions and m• its set of consuming
reactions.

A chokepoint is a reaction that is the only producer or the only
consumer of a metabolite. More formally:

Definition 2.3. (Chukualim et al., 2008; Yeh et al., 2004) A reaction r 2
R is a chokepoint if there exists m 2 M such that m• ¼ frg or •m ¼ frg.

The set of chokepoint reactions will be denoted as CP. Notice
that the inhibition of a chokepoint reaction can lead either to the in-
finite accumulation of a substrate (which will not be used as
expected or might be toxic) or to the depletion of a metabolite
(which might be essential for the cell) (Chukualim et al., 2008; Yeh
et al., 2004). The identification of chokepoints is, therefore, relevant
to the identification of potential drug targets.

A dead-end metabolite is a metabolite without input or output
reactions:

Definition 2.4. (Mackie et al., 2013) A metabolite m 2 M is a dead-end

metabolite if m• ¼ fg or •m ¼ fg.

Dead-end metabolites can indicate a potential shortcoming or in-
completeness of the model since their concentration can only in-
crease or decrease.

2.4 Flux-dependent definitions
The previous definitions only take into account the structure of the
network and disregard the flux bounds of the reactions. In order to
capture the fact that reactions can proceed forwards or backwards,
e.g. reversible reactions, new sets of reactants, products, consumers
and producers that take into account flux bounds were defined
(Oarga et al., 2020):

• Flux-dependent set of reactants of r:

?r ¼ fm 2MjðSðm; rÞ < 0 ^U½r� > 0Þ _ ðSðm; rÞ > 0 ^ L½r� < 0Þg

• Flux-dependent set of products of r:

r? ¼ fm 2MjðSðm; rÞ > 0 ^U½r� > 0Þ _ ðSðm; rÞ < 0 ^ L½r� < 0Þg

• Flux-dependent set of producers of m:

?m ¼ fr 2 Rjm 2 r?g

• Flux-dependent set of consumers of m:

m? ¼ fr 2 Rjm 2 ?rg
Flux-dependent chokepoints and dead-end metabolites can be

defined accordingly (Oarga et al., 2020):

Definition 2.5. A reaction r 2 R is a flux-dependent chokepoint if there

exists m 2 M such that m? ¼ frg or ?m ¼ frg. The set of flux-dependent

chokepoints is denoted CP?.

Definition 2.6. A metabolite m 2M is a flux-dependent dead-end me-

tabolite if m? ¼ fg or ?m ¼ fg. The set of flux-dependent dead-end

metabolites is denoted DEM?.

Example 2.3. In the Petri net in Figure 1, r1 is a producer of ma, i.e.

r1 2 •ma; r2 is a flux-dependent chokepoint because it is the only con-

sumer of ma, i.e. ma
• ¼ fr2g and r2 2 CP?; and mg is a flux-dependent

dead-end metabolite, i.e. mg 2 DEM?.

(a) (b)

Fig. 1. (a) Example Petri net modelling a constraint-based model. (b) Flux bounds of

the model
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In addition to chokepoints, flux bounds can be used to classify
reactions as dead, reversible or non-reversible:

Definition 2.7. A reaction r 2 R is dead if L½r� ¼ U½r� ¼ 0.

Definition 2.8. A reaction r 2 R is reversible if L½r� < 0 < U½r�.

Definition 2.9. A reaction r 2 R is non-reversible if r is not dead and r is

not reversible.

From the above definitions, it can be deduced that r is non-
reversible if ð0 � L½r� ^ 0 < U½r�Þ _ ðL½r� < 0 ^U½r� � 0Þ.

Notice that dead reactions will never have a non-zero flux. Since
this might indicate a deficiency of the model or a blocked pathway
of the organism, special attention will be paid to dead reactions.

The sets of dead, reversible and non-reversible reactions are
denoted DR, RR and NR, respectively. By definition, DR, RR and

NR represent a partition of the set of reactions R, i.e.
DR [ RR [NR ¼ R, DR \ RR ¼1; RR \NR ¼1 and
DR \NR ¼1.

For the Petri net representation of a constraint-based model,
dead reactions, reversible reactions and non-reversible reactions will

be represented as rectangles with a cross inside, as double rectangles,
and as rectangles, respectively.

Example 2.4. The Petri net in Figure 2a represents a constraint-based

model with five metabolites and eight reactions. In this model, reactions

r3, r4 are reversible reactions (i.e. RR ¼ fr3; r4g), reaction r7 is a dead re-

action (i.e. DR ¼ fr7g) and reactions r1; r2; r5; r6; rg are non-reversible

reactions (i.e. NR ¼ fr1; r2; r5; r6; rgg).

2.5 Growth-dependent definitions
In contrast to the previous flux-dependent definitions of reactions,
this section introduces growth-dependent definitions, i.e. the sets of

reactions that depend on the growth constraints that are imposed on
the model.

2.5.1 Essential reactions

Similar to essential reactions, which are those reactions that are ne-
cessary to produce non-null growth on the model, growth-
dependent essential reactions are those reactions that are necessary
to produce a certain growth on the model. This certain growth will
be expressed as c � lmax where c 2 ½0; 1� and lmax is the solution of
Equation (2).

A reaction is said to be a growth-dependent essential reaction for
a given growth c � lmax if its deletion implies that the maximum pos-
sible growth is below c � lmax. More formally,

Definition 2.10. Let lmax be the solution of the LPP in Equation (2).

Given c 2 ½0; 1�, a reaction r 2 R is a growth-dependent essential reac-

tion if the solution of LPP (Equation (3)) is lower than c � lmax or the

LPP is infeasible.

The set of growth-dependent essential reactions for a given
growth specified by c 2 ½0; 1� will be denoted ERc. This set can be
computed straightforwardly by solving LPP (Equation (3)) for each
reaction.

Special attention is given to the set of reactions ER1, as it will
consist of those reactions that are necessary to produce the optimal
growth of the model. This set will be named essential reactions for
optimal growth (EROG).

Example 2.5. In the Petri net of Figure 1 where rg models growth, reac-

tions r1; r2; r3; r4 are EROG (i.e. r1; r2; r3; r4 2 EROG). Reactions r1, r2

are essential reactions, and thus, they are also EROG. If one, or both

reactions, r3, r4 are forced to have flux equal to 0, metabolite m, which

is essential for growth, can only be produced through a non-optimal

path. Then, the model will not be able to achieve optimal growth.

Therefore, these reactions are EROG.

2.5.2 Dead, reversible and chokepoint reactions

Flux variability analysis (FVA) (Mahadevan and Schilling, 2003) is a
mathematical procedure to compute the minimum and maximum
fluxes of reactions that are compatible with some state. Let lmax be
the maximum growth calculated by FBA (Equation (2)). FVA is
computed by solving two independent LPPs per reaction r 2 R.
One programming problem maximizes the flux of r, v½r�, and
the other minimizes v½r�. The constraints of both problems are the
same: the steady state condition S � v ¼ 0, the flux bounds
L½r� � v½r� � U½r�, and the maintenance of lmax to a certain degree
c 2 ½0;1�. The two programming problems for a given reaction r 2
R can be expressed as:

max=min v½r�
st: S � v ¼ 0

L � v � U
c � lmax � v½rg�

; (4)

where rg is the reaction that models growth.
The computation of the flux bounds by means of FVA (Equation

(4)), can be carried out in an optimal state, i.e. c¼1, or in a subopti-
mal state, i.e. 0 � c < 1. In the optimal state, all fluxes must be op-
timally directed towards growth, whereas in suboptimal states,
fluxes are allowed to deviate towards other functionalities.

Let lbc; ubc 2 R
jRj be the result of computing FVA (Equation (4))

on a constraint-based model fR;M; S; L; Ug for a given c, i.e.
lbc½r� and ubc½r� are the minimum and maximum fluxes given by
FVA for reaction r. If the flux bounds L, U of the constrained-based
model are replaced by lbc;ubc, a new constraint-based model,
fR;M; S; lbc; ubcg, with more restrictive (and realistic) flux
bounds is obtained.

Given c 2 ½0; 1�, the sets of growth-dependent products, reac-
tants, consumers, and producers of the model fR;M; S; L; Ug,
which are denoted rc; cr;mc; cm, respectively, are defined as the flux-
dependent products, reactants, consumers and products of
fR;M; S; lbc; ubcg as discussed in Section 2.4.

(a) (b)

(d)(c)

Fig. 2. (a) Petri net modelling a constraint-based model. (b) Initial flux bounds. (c)

Petri net modelling a constraint-based model obtained with c¼ 1 and rg as objective.

(d) Constrained flux bounds obtained by FVA with c¼ 1
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Similarly, given fR;M; S; L; Ug and c 2 ½0;1�, the sets of
growth-dependent dead, reversible and non-reversible reactions,
which are denoted DRc; RRc and NRc, the sets of growth-
dependent chokepoint reactions and dead-end metabolites, which
are denoted as CPc and DEMc, are also defined as the corresponding
flux-dependent elements of fR;M; S; lbc; ubcg.

Example 2.6. Let us assume that rg in Figure 2a represents growth, i.e.

the component of z in Equation (1) that corresponds to rg is equal to 1

and the rest of components of z are 0. In order to obtain growth-

dependent sets, the flux bounds computed by FVA with c¼ 1 are

assigned to the reactions and the net in Figure 2c is obtained (notice that

other values of c can be considered). In this new net, r2, r3, r5, r6 and r7

are dead reactions, i.e. r2; r3; r5; r6; r7 2 DR1, and r4, which was a revers-

ible reaction in Figure 2a, becomes a non-reversible reaction, i.e.

r4 2 NR1.

In the model of Figure 2a, reaction r3 is the only flux-dependent
consumer of metabolite mb and, thus, is a flux-dependent choke-
point reaction, i.e. r3 2 CP?. However, in the growth-dependent
model of Figure 2c, r3 becomes a dead reaction, i.e. r3 2 DR1, and
hence, it is no longer considered a chokepoint reaction, i.e.
r3 62 CP1.

On the other hand, reaction r4 is not the only producer or con-
sumer of any metabolite in the model of Figure 2a, and thus, it is not
a flux-dependent chokepoint reaction, i.e. r4 62 CP?. However, in the
growth-dependent model of Figure 2c, reactions r2, r3 and r5 become
dead reactions and reaction r4 becomes the only consumer of ma and
the only producer of mc, consequently, r4 becomes a growth-
dependent chokepoint reaction r4 2 CP1.

Given their importance in model tuning and drug discovery, the
following sections focus on dead reactions, essential reactions and
chokepoint reactions.

2.6 Dead reactions
This subsection explores the relationship between dead reactions
and blocked reactions, and shows that the set of growth-dependent
dead reactions is the same for any suboptimal state, i.e. for any
growth strictly lower than the maximum growth lmax. Such a set
coincides with the set of blocked reactions. Recall that a reaction r 2
R is said to be blocked if its flux is 0 at any possible steady state.
More formally:

Definition 2.11. (Vlassis et al., 2014) A reaction r 2 R is a blocked reac-

tion if for every v 2 R
jRj such that S � v ¼ 0, it holds v½r� ¼ 0.

Example 2.7. In the Petri net in Figure 2a, reaction r6 is a blocked reac-

tion. This is because r6 consumes md, which is a DEM. If the flux of r6

were positive (negative), the amount of md would decrease(increase) in-

definitely, which contradicts the steady-state constraint, therefore the

only possible steady-state flux for r6 is v½r6� ¼ 0.

In Vlassis et al. (2014) blocked reactions are obtained by solving
the following LPPs that compute the maximum and minimum feas-
ible fluxes of the reactions subject to the steady state constraint
S � v ¼ 0:

max=min v½r�
st: S � v ¼ 0

L � v � U
(5)

A reaction with null maximum and minimum feasible flux is a
blocked reaction. Note that this procedure is equivalent to comput-
ing FVA, see Equation (4), with c¼0. Thus, the set of blocked reac-
tions is equal to DR0.

Interestingly, the set of growth-dependent dead reactions, DRc is
the same for any c such that 0 � c < 1. In other words, the set of
dead reactions in suboptimal states, regardless of the growth rate
imposed on the model, is equivalent to the set of blocked reactions.

This fact will be proved through several steps. Let us first prove that
the range of feasible fluxes of a reaction r, i.e. the interval
½lbc½r�; ubc½r��, cannot increase as c increases.

Lemma 2.1. ½lbc2
½r�; ubc2

½r�� � ½lbc1
½r�; ubc1

½r�� 8 r 2 R ^ 8 c1, c2 such that

0 � c1 < c2 � 1.

Proof.

Given c 2 ½0; 1�, the range of feasible fluxes of r 2 R, ½lbc½r�; ubc½r��, is

given by the solutions of FVA (Equation (4)). Notice that the constraints

of such LPP define a convex set of possible solutions which can only

shrink as c increases, i.e. as the constraint c � lmax � z � v becomes more

restrictive. Thus, if c1 < c2 then lbc1
½r� � lbc2

½r� and ubc1
½r� � ubc2

½r�. h

Then, the set of growth-dependent dead reactions cannot de-
crease with c:

Lemma 2.2.DRc1
� DRc2

8 c1, c2 such that 0 � c1 < c2 � 1.

Proof. Let r 2 DRc1
, i.e. lbc1

½r� ¼ ubc1
½r� ¼ 0, then by Lemma 2.1, it fol-

lows that lbc2
½r� ¼ ubc2

½r� ¼ 0 and hence r 2 DRc2
. h

Let us now show that the set of growth-dependent dead reactions
cannot increase with c in suboptimal states, i.e. with c < 1:

Lemma 2.3. DRc1
	 DRc2

8 c1, c2 such that 0 � c1 < c2 < 1.

Proof. The convex set of possible solutions defined by the constraints in

Equation (4) can only decrease as c increases, see Lemma 2.1. Assume

there exist ca; cb such that 0 � ca < cb < 1; lbca
½r� < ubca

½r� and

lbcb
½r� ¼ ubcb

½r� ¼ 0, i.e. r becomes dead when ca is increased to cb.

Then, given that the constraints in Equation (4) are linear, if cb is further

increased by � 2 R such that � > 0 and cb þ � < 1, then lbcbþ�½r� >
ubcbþ�½r� should hold which is not possible because a lower bound cannot

exceed an upper bound. h

From Lemmas 2.2 and 2.3, the following theorem can be derived
straightforwardly:

Theorem 2.4.DRc1
¼ DRc2

8c1; c2 2 ½0; 1Þ.

Thus, in particular, the set of blocked reactions coincides with
the set of dead reactions in suboptimal states.

Corollary 2.5.DRc ¼ DR0 8c 2 ½0; 1Þ.

Notice that DR1 can be strictly greater than DRc with c 2 ½0; 1Þ. As an

example, the next subsection analyses a constrained-based model in

which DR1 is strictly greater than DRc with c 2 ½0; 1Þ, see Figure 3d.

2.7 Case study: Plasmodium falciparum
This section presents the results obtained for the constraint-based
model of P.falciparum (iAM-Pf480) (Abdel-Haleem et al., 2018).
The model includes a total of 1083 reactions, 909 metabolites, and
480 genes. The sizes of the sets of flux-dependent reactions are
jRRj ¼ 493; jNRj ¼ 590; jDRj ¼ 0. The number of initial flux-
dependent chokepoint reactions is jCP?j ¼453. The sets of essential
reactions and EROG were also computed, and the following sizes
were obtained: jERj ¼ 192 and jEROGj ¼ 317.

Figure 3 shows the sizes of the growth-dependent sets
NRc; RRc; CPc; DRc; ERc; R� ERc �DRc in plots 3(a), 3(b), 3(c),
3(d), 3(e) and 3(f), respectively. To assess the impact of c on these
sets, different values of c in the interval ½0;1� have been used. In add-
ition to the sizes of the sets obtained with c, the leftmost value
(depicted in green) of plots 3(a), 3(b), 3(c) and 3(d) refers to the size
of the flux-dependent set prior to FVA, i.e. NR, RR,CP? and DR.
Similarly, the leftmost value (in green) of plots 3(e) and 3(f) includes
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the sizes of the set of essential reactions ER and the set
R� ER�DR, respectively.

Notice that if c¼0, the constraint c � lmax � z � v in Equation
(4) does not impose a minimum growth on the model, and only the
steady state condition S � v ¼ 0 must be satisfied. It can be seen that
at c¼0, the set of dead reactions exhibits an increase from the initial
set of flux-dependent dead reactions: jDRj ¼ 0 and jDR0j ¼ 222. As
noted in Section 2.6, this set DR0 is equal to the set of blocked reac-
tions, and keeps the same for every c 2 ½0; 1Þ, see Figure 3d. The se-
cond increase in the set of dead reactions takes place at c¼1 and it
is due to the fact that in the optimal growth state, the flux must be
necessarily distributed through optimal paths for biomass produc-
tion and no flux can be diverted through other paths. Thus, non-
optimal reactions for biomass production become dead reactions.

With respect to reversible reactions, the steady-state constraint
S � v ¼ 0 reduces the size of this set from jRRj ¼ 493 to
jRR0j ¼ 210, see Figure 3b. Such a reduction is caused by the
blocked reactions that belonged to RR and become dead reactions,
and by the reversible reactions that become non-reversible with the
steady-state constraint.

Similarly, blocked reactions that belonged to the set of flux-
dependent non-reversible reactions NR become dead reactions with
the steady-state constraint. However, due to the significant amount
of reversible reactions that become non-reversible reactions, the size
of the set increases from jNRj ¼ 590 to jNR0j ¼ 651, see Figure 3a.

With regard to chokepoint reactions, see Figure 3c, the number
of flux-dependent chokepoints is jCP?j ¼ 453. At c¼0, there is a de-
crease to jCP0j ¼ 450, and then the set increases slowly until
jCP0:99j ¼ 507. As in the sets of non-reversible reactions and revers-
ible reactions, the set of chokepoints decreases at c¼1 as many reac-
tions become dead reactions.

Notice that the set of chokepoints at c¼1, CP1, is smaller than
the set of flux-dependent chokepoints, CP?. Moreover, CP1 is not
contained in CP?. This is due to the changes produced in the sets of
non-reversible reactions and reversible reactions as c increases.
Recall that a reversible reaction is considered simultaneously both
as a consumer and as a producer of a given metabolite. If this reac-
tion becomes non-reversible, then it might not be a producer and
consumer of a given metabolite. This fact can lead to the appearance
of new growth-dependent chokepoints in CP1 that were not choke-
points in CP?. On the other hand, dead reactions are neither con-
sumers nor producers and, hence, they are not chokepoints. Thus,
the increase of dead reactions in DR1 can imply changes in CP1 with
respect to CP?.

Figure 3e reports the size of the set of essential reactions ERc

with respect to c. Recall that the leftmost value of this graph refers
to the ER set, i.e. the set of essential reactions with no growth
constraints.

Notice that no reaction is mandatory to produce a null growth,
hence at c¼0, jER0j is always 0. Furthermore, for positive values of
c the size of ERc increases as the size of RRc decreases. This is due to
the fact that, as c increases, some reversible reactions become non-
reversible, and the flux of these reactions is necessary, i.e. essential
for growth. On the other hand, as expected, the amount of growth-
dependent essential reactions increases with c.

Finally, Figure 3f shows the size of the set R� ERc �DRc with
respect to c, with the leftmost point corresponding toR� ER�DR.
This set is of interest as it is composed of those reactions that can
contribute to growth, that is, they are not dead reactions, and at the
same time are not growth-dependent essential reactions, that is, if
one of these reactions is knocked out the growth can still be kept the
same (notice that this does not mean that all the reactions in this set
can be knocked simultaneously without affecting growth). The fact
that knocking out one of these reactions does not reduce the growth
might then imply the presence of redundancy in the metabolism.
Therefore, this set of reactions provides the metabolism with resili-
ence and flexibility. As it can be seen, the size of this set decreases
with c. This fact means that producing higher growths is more
demanding as it requires a higher amount of reactions to sustain it.
In other words, the higher the growth the more reactions are neces-
sary to produce such growth, and therefore, less flexibility is given
to the metabolism.

3 Implementation

CONTRABASS is a software tool for the computation of vulnerabil-
ities in GEMs. CONTRABASS is distributed as a Python command
line tool but can also be executed through an online web server at
http://contrabass.unizar.es. The CONTRABASS web server is
designed to offer an intuitive interface to access the operations of
the tool.

The tool takes as an input a model in systems biology markup
language (SBML) (Hucka et al., 2019) of Levels 1, 2 or 3, and com-
putes the set of chokepoints reactions, essential reactions, dead reac-
tions and dead-end metabolites on the model by taking into account
the dynamic constraints for the model as explained in the article.
The results are then exported as a spreadsheet file and as an inter-
active HTML report. The operations that CONTRABASS allows
include the computation of sets of chokepoints, dead, reversible, non-
reversible and essential reactions with different values of c; computa-
tion and removal of dead-end metabolites from a model; and the up-
date of the flux bounds of the reactions according to FVA.

In addition to the above, through the interactive HTML report
users can also access the data available in the model, this is, reac-
tions, genes and metabolites along with their databases identifiers if

(a) (b)

(d)(c)

(e) (f)

Fig. 3. Sizes of the sets of reactions NRc; RRc; CPc; DRc; ERc and R� ERc �DRc

of P.falciparum for c 2 ½0; 1�. The leftmost value of each plot corresponds to NR,

RR, CP?, DR, ER andR� ER�DR, respectively
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available; explore the reaction sets defined in this article; and also
explore the intersection of different sets of critical reactions.

The documentation of the tool is available at https://contrabass.
readthedocs.io. CONTRABASS makes use of the Python toolbox
COBRApy (Ebrahim et al., 2013). The source code of the command
line tool and the web server is available at https://github.com/
openCONTRABASS/CONTRABASS and https://github.com/
openCONTRABASS, respectively. All the code is released under
GPL-3.0 License.

4 Discussion

The development of new drugs is an expensive and costly process.
This process needs to be streamlined in order to face current health
threats as those posed by MDR. In this work, computational meth-
ods to identify critical reactions, i.e. vulnerabilities, in the metabol-
ism of microorganisms are proposed. When applied on models of
pathogenic bacteria, such critical reactions are potential drug
targets.

The developed methods classify the reactions of the models in
different sets, e.g. essential reactions, chokepoint reactions, blocked
reactions, etc., according to their role in the metabolism. In order to
exploit the information available in the model as much as possible,
flux- and growth-dependent sets of reactions have been defined.
Such sets capture the role of the reactions as a function of the
growth rate of the organism. Thus, it is possible to unveil how the
cell uses its reactions to achieve its growth. The relationship among
these sets has been explored and it has been shown that the set of
dead reactions keeps constant for any non-optimal growth rate.
Moreover, the computation of other flux- and growth-dependent
sets, such as dead-end metabolites and dead reactions, can help in
the identification of potential shortcomings of the model. In order to
facilitate their use, an online web server and a command line tool
implementing the discussed methods have been made publicly
available.

Funding

This work was partially supported by the Spanish Ministry of Science and

Innovation [ref. DAMOCLES-PID2020-113969RB-I00] and by a grant from

The Engineering Research Institute of Aragon (I3A). The work was also par-

tially supported by the grant number [TED2021-130449B-I00] funded by

MCIN/AEI/10.13039/501100011033 and by the European Union

NextGenerationEU/PRTR.

Conflict of Interest: none declared.

References

Abdel-Haleem,A.M. et al. (2018) Functional interrogation of Plasmodium

genus metabolism identifies species-and stage-specific differences in nutrient

essentiality and drug targeting. PLoS Comput. Biol., 14, e1005895.

Bannerman,B.P. et al. (2021) Integrated human/SARS-COV-2 metabolic mod-

els present novel treatment strategies against COVID-19. Life Sci. Alliance,

4, e202000954.

Chukualim,B. et al. (2008) Trypanocyc – a metabolic pathway database for

Trypanosoma brucei. BMC Bioinformatics, 9 (Suppl 10), P5.

Ebrahim,A. et al. (2013) COBRApy: COnstraints-Based Reconstruction and

Analysis for python. BMC Syst. Biol., 7, 1–6.

Folger,O. et al. (2011) Predicting selective drug targets in cancer through

metabolic networks. Mol. Syst. Biol., 7, 501.

Gu,C. et al. (2019) Current status and applications of genome-scale metabolic

models. Genome Biol., 20, 1–18.

Heiner,M. et al. (2008) Petri nets for systems and synthetic biology, Vol.

5016. pp. 215–264. http://dx.doi.org/10.1007/978-3-540-68894-5_7.

Henry,C.S. et al. (2006) Genome-scale thermodynamic analysis of Escherichia

coli metabolism. Biophys. J., 90, 1453–1461.

Hucka,M. et al. (2019) The systems biology markup language (SBML): lan-

guage specification for level 3 version 2 core release 2. J. Integr.

Bioinformatics, 16, 20190021.

Jubeh,B. et al. (2020) Antibacterial prodrugs to overcome bacterial resistance.

Molecules, 25, 1543.

Kumar,M. et al. (2019) Modelling approaches for studying the microbiome.

Nat. Microbiol., 4, 1253–1267.

Leung,E. et al.; World Health Organization World Health Day

Antimicrobial Resistance Technical Working Group. (2011) The WHO

policy package to combat antimicrobial resistance. Bull. World Health

Organ., 89, 390–392.

Mackie,A. et al. (2013) Dead end metabolites-defining the known unknowns

of the E. coli metabolic network. PLoS One, 8, e75210.

Mahadevan,R. and Schilling,C.H. (2003) The effects of alternate optimal solu-

tions in constraint-based genome-scale metabolic models. Metab. Eng., 5,

264–276.

McAnulty,M.J. et al. (2012) Genome-scale modeling using flux ratio con-

straints to enable metabolic engineering of clostridial metabolism in silico.

BMC Syst. Biol., 6, 1–15.

Murata,T. (1989) Petri nets: properties, analysis and applications. Proc.

IEEE, 77, 541–580.

Navid,A. and Almaas,E. (2012) Genome-level transcription data of Yersinia

pestis analyzed with a new metabolic constraint-based approach. BMC Syst.

Biol., 6, 150.

Oarga,A. et al. (2020) Growth dependent computation of chokepoints in

metabolic networks. In: International Conference on Computational

Methods in Systems Biology, Konstanz, Germany, pp. 102–119. Springer,

Heidelberg, Germany.

Orth,J.D. et al. (2010) What is flux balance analysis? Nat. Biotechnol., 28,

245–248.

Orth,J.D. et al. (2011) A comprehensive genome-scale reconstruction of

Escherichia coli metabolism – 2011. Mol. Syst. Biol., 7, 535.

Oyelade,J. et al. (2018) In silico knockout screening of Plasmodium falcip-

arum reactions and prediction of novel essential reactions by analysing the

metabolic network. BioMed Res. Int., 2018, 8985718.

Ramos,P.I.P. et al. (2018) An integrative, multi-omics approach towards the

prioritization of Klebsiella pneumoniae drug targets. Sci. Rep., 8, 1–19.

Richelle,A. et al. (2020) Towards a widespread adoption of metabolic model-

ing tools in biopharmaceutical industry: a process systems biology engineer-

ing perspective. NPJ Syst. Biol. Appl., 6, 6.

Roberts,S.B. et al. (2010) Genome-scale metabolic analysis of

Clostridium thermocellum for bioethanol production. BMC Syst. Biol.,

4, 1–17.

Thiele,I. and Palsson,B.Ø. (2010) A protocol for generating a high-quality

genome-scale metabolic reconstruction. Nat. Protoc., 5, 93–121.

Varma,A. and Palsson,B.Ø. (1994) Metabolic flux balancing: basic concepts,

scientific and practical use. Nat. Biotechnol., 12, 994–998.

Vlassis,N. et al. (2014) Fast reconstruction of compact context-specific meta-

bolic network models. PLoS Comput. Biol., 10, e1003424.

Yeh,I. et al. (2004) Computational analysis of Plasmodium falciparum metab-

olism: organizing genomic information to facilitate drug discovery. Genome

Res., 14, 917–924.

Zomorrodi,A.R. and Maranas,C.D. (2012) OptCom: a multi-level optimiza-

tion framework for the metabolic modeling and analysis of microbial com-

munities. PLoS Comput. Biol., 8, e1002363.

CONTRABASS 7

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/2/btad053/7000333 by guest on 11 April 2023

https://contrabass.readthedocs.io
https://contrabass.readthedocs.io
https://github.com/openCONTRABASS/CONTRABASS
https://github.com/openCONTRABASS/CONTRABASS
https://github.com/openCONTRABASS
https://github.com/openCONTRABASS
http://dx.doi.org/10.1007/978-3-540-68894-5_7

