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We consider a singularly perturbed two-dimensional convection-diffusion elliptic interface problem with Robin 
boundary conditions, where the source term is a discontinuous function. The coefficient of the highest-order 
terms in the differential equation and in the boundary conditions, denoted by 𝜀, is a positive parameter which 
can be arbitrarily small. Due to the discontinuity in the source term and the presence of the diffusion parameter, 
the solutions to such problems have, in general, boundary, corner and weak-interior layers. In this work, a 
numerical approach is carried out using a finite-difference technique defined on an appropriated layer-adapted 
piecewise uniform Shishkin mesh to provide a good estimate of the error. We show some numerical results which 
corroborate in practice that these results are sharp.

1. Introduction

Several partial differential equations (PDEs) found in practice are parameter-dependent with a singularly perturbed nature for small values of 
this parameter. Moreover, the solutions to these problems have boundary layers, that are almost near the boundary or at the interior of the domain 
where the solution possesses an extremely higher gradient. These layers can be either regular (exponential) or of parabolic type (characteristic).

Application of these problems, for simplified problems defined on rectangular domains, ranges from magnetohydrodynamic flow, simulation 
of oil and gas reservoirs, chemical flow reactor theory (see e.g. [1]), boundary layers influenced by suction (or blowing) of some fluid (see e.g. 
[2,3]). The same model is used in [4] to simulate the transport and dispersion of pollutants in a fluid or porous media. Hence, the application of 
numerical techniques is required to precisely solve these complicated equations. Although, classical techniques is a highly sought interesting topic of 
research for numerical analysts, it can completely fail in the presence of layers (see e.g. [5,6]). In a nutshell, our objective is to establish a numerical 
technique that can generate estimations which resolve the existing layers and for which an error bound independent of the perturbation parameter 
can be proven, i.e., the numerical method is uniformly convergent.

Singularly perturbed elliptic problems with Dirichlet type boundary conditions, analogous to (1.1), have been widely explored in the literature 
(see [7–13]). However, there are just a few research using Robin boundary conditions (RBCs) to solve the singularly perturbed 1-D problems [14–18]. 
To resolve the layers and build parameter-uniform numerical algorithms, all of these researches used Shishkin meshes. As far as we are aware, there 
is no work in the literature that considers the approximation of a singularly perturbed elliptic interface problem with Robin boundary conditions like 
(1.1) on layer-adaptive piecewise meshes. As a result, the goal of this study is to provide a parameter-uniform numerical technique for the problem 
(1.1) using a piecewise uniform mesh of Shishkin type. To preserve accuracy, the space derivative is discretized using the upwind difference scheme, 
and Robin boundary conditions are approximated using a finite difference scheme. We provide the suggested method’s convergence analysis and 
prove that it is an almost first order parameter-uniform method. To validate our theoretical results and the method’s efficiency, some numerical 
experiments are carried out.
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To be precise, let us define a singularly perturbed 2-D convection-diffusion elliptic interface problem with Robin boundary conditions, given by

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜀𝑧(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦), ∀(𝑥, 𝑦) ∈𝔇,

1𝑧(𝑥, 𝑦) ≡ 𝑧(𝑥, 𝑦) − 𝜀
𝜕𝑧(𝑥, 𝑦)

𝜕𝑥
= 𝑔1(𝑦), (𝑥, 𝑦) ∈ Γ1,

2𝑧(𝑥, 𝑦) ≡ 𝑧(𝑥, 𝑦) − 𝜀
𝜕𝑧(𝑥, 𝑦)

𝜕𝑦
= 𝑔2(𝑥), (𝑥, 𝑦) ∈ Γ2,

3𝑧(𝑥, 𝑦) ≡ 𝑧(𝑥, 𝑦) + 𝜀
𝜕𝑧(𝑥, 𝑦)

𝜕𝑥
= 𝑔3(𝑦), (𝑥, 𝑦) ∈ Γ3,

4𝑧(𝑥, 𝑦) ≡ 𝑧(𝑥, 𝑦) + 𝜀
𝜕𝑧(𝑥, 𝑦)

𝜕𝑦
= 𝑔4(𝑥), (𝑥, 𝑦) ∈ Γ4,

(1.1a)

where the differential operator is

𝜀𝑧(𝑥, 𝑦) ≡ −𝜀
(
𝜕2𝑧

𝜕𝑥2
+ 𝜕2𝑧

𝜕𝑦2

)
+ 𝑎(𝑥, 𝑦) 𝜕𝑧

𝜕𝑥
+ 𝑏(𝑥, 𝑦) 𝜕𝑧

𝜕𝑦
+ 𝑐(𝑥, 𝑦)𝑧, (1.1b)

the boundaries are

Γ1 =
{
(0, 𝑦) | (0 ≤ 𝑦 ≤ 𝑑2) ∪ (𝑑2 ≤ 𝑦 ≤ 1)

}
, Γ2 =

{
(𝑥,0) | (0 ≤ 𝑥 ≤ 𝑑1) ∪ (𝑑1 ≤ 𝑥 ≤ 1)

}
,

Γ3 =
{
(1, 𝑦) | (0 ≤ 𝑦 ≤ 𝑑2) ∪ (𝑑2 ≤ 𝑦 ≤ 1)

}
, Γ4 =

{
(𝑥,1) | (0 ≤ 𝑥 ≤ 𝑑1) ∪ (𝑑1 ≤ 𝑥 ≤ 1)

}
,

and Γ = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4.

The arbitrarily small perturbation parameter satisfies 0 < 𝜀 ≪ 1. The problem’s domain is 𝔇 =
4⋃

𝑘=1
𝔇𝑘, being 𝔇1 = Ω−

𝑥
× Ω−

𝑦
, 𝔇2 = Ω+

𝑥
× Ω−

𝑦
, 

𝔇3 = Ω−
𝑥
×Ω+

𝑦
, and 𝔇4 = Ω+

𝑥
×Ω+

𝑦
, where Ω−

𝑥
= (0, 𝑑1), Ω+

𝑥
= (𝑑1, 1), Ω−

𝑦
= (0, 𝑑2), and Ω+

𝑦
= (𝑑2, 1), and 𝑑1, 𝑑2 are any point in (0, 1). Let 𝔇∗ = (0, 1) ×(0, 1).

We assume that the convection terms are bounded and they satisfy

𝑎(𝑥, 𝑦) ≥ 𝛼 > 0, 𝑏(𝑥, 𝑦) ≥ 𝛽 > 0,

for some constants 𝛼 and 𝛽, while the reaction coefficient satisfies 𝑐(𝑥, 𝑦) ≥ 0. We also suppose that 𝑎|𝔇, 𝑏|𝔇 ∈ 𝐶3,𝛾 (𝔇), 𝑓 |𝔇𝑘
∈ 𝐶3,𝛾 (𝔇𝑘), 𝑐 ∈ 𝐶3,𝛾 (�̄�), 

and 𝑔𝑘 ∈ 𝐶4,𝛾 (𝔇), for some 𝛾 ∈ (0, 1], 𝑘 = 1, 2, 3, 4. Further, we assume that the data of the problem satisfy sufficient compatibility conditions (see, the 
reference [9]). Hence, 𝑧 ∈ 𝐶4,𝛾 (𝔇𝑘), 𝑘 = 1, 2, 3, 4 (see [19,20]). We denote the continuous subsets of the boundaries and the interior line segments of 
the discontinuity by Γ𝑘,𝑗 , 𝑐𝑘,𝑗 , where 𝑗 = 1, 2, 3, 4 indicate the edges and corners of 𝔇𝑘, respectively.

In problem (1.1), the source term 𝑓 (𝑥, 𝑦) has a jump discontinuity at both lines 𝑥 = 𝑑1 and 𝑦 = 𝑑2. So, it is congruent to denote the jump 
discontinuity in any function 𝜅 at a point (𝑥, 𝑦) ∈ 𝔇 along the lines parallel to x- and y-axes as [𝜅](𝑑1, 𝑦) = 𝜅(𝑑+1 , 𝑦) − 𝜅(𝑑−1 , 𝑦) and [𝜅](𝑥, 𝑑2) =
𝜅(𝑥, 𝑑+2 ) − 𝜅(𝑥, 𝑑−2 ) respectively.

The paper is organized as follows. In Section 2, we express the maximum principle, the boundedness of the continuous solution, and prove 
adequate estimates for its derivatives. In Section 3, we construct the numerical approach by using a finite difference scheme (FDS) defined on an 
adequate Shishkin mesh. In section 4, we derive the error estimation proving that the numerical scheme is an almost first-order uniformly convergent 
method; in a future, we have the intention to analyze the uniform convergence of the numerical method defined on other special meshes, such as 
Bakhvalov, Gartland or Duran-Shishkin meshes. Also, we are sure that it is interesting to consider the case when a posteriori meshes are used, which 
are based on appropriated error indicators; note that, from a numerical point of view, these meshes are useful because they can be constructed 
without information on the behaviour of the exact solution of the continuous problem. Finally, in Section 5 some test problems are solved and the 
numerical results corroborate in practice the theoretical results.

Henceforth, we denote by ‖ ⋅ ‖𝐷 the maximum norm on the domain 𝐷; moreover, 𝐶 denotes a generic positive constant which is independent of 
the diffusion parameter 𝜀 and the discretization parameter 𝑁 .

2. Analytical properties of the solution

The present section contains the maximum principle for the differential operator, along with consequent stability results, and bounds on the 
solution and its derivatives.

Theorem 2.1. (Maximum principle) Let the function Φ ∈ 𝐶1(𝔇∗) ∩ 𝐶2(𝔇) such that 𝑖Φ(𝑥, 𝑦) ≥ 0 on Γ𝑖, 𝑖 = 1, 2, 3, 4, 𝜀Φ(𝑥, 𝑦) ≥ 0 for all (𝑥, 𝑦) ∈

𝔇, 
[
𝜕Φ
𝜕𝑥

]
(𝑑1, 𝑦) ≤ 0, and 

[
𝜕Φ
𝜕𝑦

]
(𝑥, 𝑑2) ≤ 0. Then Φ(𝑥, 𝑦) ≥ 0 for all (𝑥, 𝑦) ∈ �̄�.

Proof. We follow the technique used in [21]. Consider the function  on �̄� defined through Φ(𝑥, 𝑦) = (𝑥, 𝑦)𝜓(𝑥, 𝑦), with the function

𝜓(𝑥, 𝑦) = exp
(
𝛼(𝑥− 𝑑1)

2𝜀
+

𝛽(𝑦− 𝑑2)
2𝜀

)
, (𝑥, 𝑦) ∈ �̄�,

where 𝛼 > 0, and 𝛽 > 0 are some constants. Let be (𝑥′, 𝑦′) = min
(𝑥,𝑦)∈�̄�

{(𝑥, 𝑦)}. If (𝑥′, 𝑦′) ≥ 0, there is nothing to prove. Suppose (𝑥′, 𝑦′) < 0. We 

distinguish several cases.

Case(i): If (𝑥′, 𝑦′) ∈𝔇, at the point (𝑥′, 𝑦′), it holds
𝜕

𝜕𝑥
(𝑥′, 𝑦′) = 𝜕

𝜕𝑦
(𝑥′, 𝑦′) = 0 and 𝜕

2

𝜕𝑥2
(𝑥′, 𝑦′) ≥ 0, 𝜕

2

𝜕𝑦2
(𝑥′, 𝑦′) ≥ 0. Then, we have

𝜀Φ(𝑥′, 𝑦′) = 𝜓(𝑥′, 𝑦′)

(
− 𝜀Δ +

(
𝛼

2𝜀

(
− 𝛼

2
+ 𝑎(𝑥′, 𝑦′)

)
+ 𝛽

2𝜀

(
− 𝛽

2
+ 𝑏(𝑥′, 𝑦′)

))
(𝑥′, 𝑦′)
2



C. Clavero, R. Shiromani and V. Shanthi Computers and Mathematics with Applications 140 (2023) 1–16
Fig. 1. Layer appearance diagram.

+𝑐(𝑥′, 𝑦′)(𝑥′, 𝑦′)

)
< 0,

which contradicts the hypothesis.

Case(ii): If (𝑥′, 𝑦′) ∈ Γ1, the left boundary along the 𝑦-direction, we have that 𝜕
𝜕𝑥

≥ 0 implies that 𝜕Φ
𝜕𝑥

≥ 0. Hence,

1Φ(𝑥′, 𝑦′) ≡Φ(𝑥′, 𝑦′) − 𝜀
𝜕Φ(𝑥′, 𝑦′)

𝜕𝑥
< 0,

which contradicts the hypothesis.

Case(iii): If (𝑥′, 𝑦′) ∈ Γ3, the right boundary along the 𝑦-direction, we have that 𝜕
𝜕𝑥

≤ 0 implies that 𝜕Φ
𝜕𝑥

≤ 0. Hence

3Φ(𝑥′, 𝑦′) ≡Φ(𝑥′, 𝑦′) + 𝜀
𝜕Φ(𝑥′, 𝑦′)

𝜕𝑥
< 0,

which contradicts the hypothesis.

Similarly, at the other two boundaries, that is, if (𝑥′, 𝑦′) ∈ Γ2 ∪ Γ4, it can be proved that we also arrive at contradiction.

Case(iv): If (𝑥′, 𝑦′) ∈ {(𝑑1, 𝑦) ∪(𝑥, 𝑑2)}. Here, either (𝑥′, 𝑦′) = (𝑑1, 𝑦′), or (𝑥′, 𝑦′) = (𝑥′, 𝑑2). Let us consider (𝑥′, 𝑦′) = (𝑑1, 𝑦′). Given  takes minimum value 

at (𝑥′, 𝑦′), then 𝜕
𝜕𝑥

(𝑑+1 , 𝑦
′) ≥ 0 and 𝜕

𝜕𝑥
(𝑑−1 , 𝑦

′) ≤ 0. Then, it is evident that 
[
𝜕

𝜕𝑥

]
≥ 0. As (𝑑1, 𝑦′) < 0, we have

[
𝜕Φ
𝜕𝑥

]
(𝑑1, 𝑦′) = exp

(
𝛽(𝑦′ − 𝑑2)

2𝜀

)([
𝜕

𝜕𝑥

]
(𝑑1, 𝑦′)

)
> 0,

contradicting the hypothesis 𝜕Φ
𝜕𝑥

(𝑑1, 𝑦) ≤ 0.

The another case when (𝑥′, 𝑦′) = {(𝑥′, 𝑑2)} can be proved similarly. This completes the proof. □

A consequence of this maximum principle is the parameter uniform boundedness of the solution of (1.1) given below.

Lemma 2.2 (Stability result). Let 𝑧(𝑥, 𝑦) be the solution of (1.1). Then, Theorem 2.1 holds, and yields the stability estimate

‖𝑧(𝑥, 𝑦)‖ ≤ 1
𝐾
‖𝑓‖�̄� + max

(𝑥,𝑦)∈�̄�

{|𝑔1(𝑦)|, |𝑔2(𝑥)|, |𝑔3(𝑦)|, |𝑔4(𝑥)|}, (2.1)

where 𝐾 =min(𝛼, 𝛽).

Proof. We define the smooth barrier function

𝜓±(𝑥, 𝑦) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑀 + ‖𝑓‖�̄�
𝐾

(
1 + 𝑥

𝑑1
+ 𝑦

𝑑2

)
± 𝑧(𝑥, 𝑦), (𝑥, 𝑦) ∈ [0, 𝑑1] × [0, 𝑑2],

𝑀 + ‖𝑓‖�̄�
𝐾

(
1 + (1−𝑥)

(1−𝑑1)
+ 𝑦

𝑑2

)
± 𝑧(𝑥, 𝑦), (𝑥, 𝑦) ∈ (𝑑1,1] × [0, 𝑑2],

𝑀 + ‖𝑓‖�̄�
𝐾

(
1 + 𝑥

𝑑1
+ (1−𝑦)

(1−𝑑2)

)
± 𝑧(𝑥, 𝑦), (𝑥, 𝑦) ∈ [0, 𝑑1] × (𝑑2,1],

𝑀 + ‖𝑓‖�̄�
𝐾

(
1 + (1−𝑥)

(1−𝑑1)
+ (1−𝑦)

(1−𝑑2)

)
± 𝑧(𝑥, 𝑦), (𝑥, 𝑦) ∈ (𝑑1,1] × (𝑑2,1],

(2.2)
3
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where 𝑀 = max
(𝑥,𝑦)∈�̄�

{|𝑔1(𝑦)|, |𝑔2(𝑥)|, |𝑔3(𝑦)|, |𝑔4(𝑥)|}.

Thus, clearly 𝑖𝜓(𝑥, 𝑦) ≥ 0 on Γ𝑖, 𝑖 = 1, 2, 3, 4. For all (𝑥, 𝑦) ∈𝔇, we have 𝜀𝜓
±(𝑥, 𝑦) ≥ 0. Since, 𝑧(𝑥, 𝑦) ∈ 𝐶1(𝔇∗) ∪𝐶2(𝔇), we have[

𝜕𝜓±

𝜕𝑥

]
(𝑑1, 𝑦) =

−‖𝑓‖�̄�
𝑑1(1 − 𝑑1)𝐾

±
[
𝜕𝑧±

𝜕𝑥

]
(𝑑1, 𝑦) ≤ 0,[

𝜕𝜓±

𝜕𝑦

]
(𝑥,𝑑2) =

−‖𝑓‖�̄�
𝑑2(1 − 𝑑2)𝐾

±
[
𝜕𝑧±

𝜕𝑦

]
(𝑥,𝑑2) ≤ 0.

From the discrete maximum principle, it follows that 𝜓±(𝑥, 𝑦) ≥ 0, ∀(𝑥, 𝑦) ∈ �̄�, which allows to get the required bound on ‖𝑧(𝑥, 𝑦)‖�̄�. □

We state the following global bounds on the solution’s derivatives. They follow from arguments in [22,23].

Lemma 2.3. Let 𝑧 be the solution of (1.1). Then, for 0 ≤ 𝑖 + 𝑗 ≤ 4,|||||
||||| 𝜕𝑖+𝑗𝑧

𝜕𝑥𝑖𝜕𝑦𝑗

|||||
|||||𝔇𝑘

≤ 𝐶𝜀−(𝑖+𝑗), 𝑘 = 1,2,3,4. (2.3)

Proof. We consider the new variables 𝜍 = (1 − 𝑥)∕𝜀, 𝜂 = (1 − 𝑦)∕𝜀; in the new variables, the continuous problem is given by

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

𝜕2𝑧

𝜕𝜍2
+ 𝜕2𝑧

𝜕𝜂2
− 𝑎(𝜍, 𝜂) 𝜕𝑧

𝜕𝜍
− 𝑏(𝜍, 𝑦) 𝜕𝑧

𝜕𝜂
+ 𝜀𝑐(𝜍, 𝜂)𝑧,= 𝜀𝑓 (𝜍, 𝜂), ∀(𝜍, 𝜂) ∈𝔇𝜀,

𝑧(𝜍, 𝜂) + 𝜕𝑧(𝜍, 𝜂)
𝜕𝜍

= 𝑔1(𝜂), (𝜍, 𝜂) ∈ Γ1,𝜀,

𝑧(𝜍, 𝜂) + 𝜕𝑧(𝜍, 𝜂)
𝜕𝜂

= 𝑔2(𝜍), (𝜍, 𝜂) ∈ Γ2,𝜀,

𝑧(𝜍, 𝜂) − 𝜕𝑧(, 𝜍, 𝜂)
𝜕𝜍

= 𝑔3(𝜂), (𝜍, 𝜂) ∈ Γ3,𝜀,

𝑧(𝜍, 𝜂) − 𝜕𝑧(𝜍, 𝜂)
𝜕𝜂

= 𝑔4(𝜍), (𝜍, 𝜂) ∈ Γ4,𝜀,

where 𝔇𝜀 = (0, 1
𝜀
)2 and Γ𝑖,𝜀, 𝑖 = 1, 2, 3, 4 are the corresponding boundaries of 𝔇𝜀. Then, from [24] it follows that

|||||
||||| 𝜕

𝑖+𝑗𝑧

𝜕𝜍𝑖𝜕𝜂𝑗

|||||
|||||𝔇𝑘

≤ 𝐶, 𝑘 = 1,2,3,4,

and therefore, in the original variables, (2.3) follows. □

To get pointwise bounds, we start by proposing a solution decomposition of the solution of (1.1). Here, to establish stronger bounds on the 
smooth components 𝑟𝑘, 𝑘 = 1, 2, 3, 4, we will do the analysis separately for the subregions 𝔇𝑘, 𝑘 = 1, 2, 3, 4. To accomplish this, we first investigate the 
subregion 𝔇1 and introduce a new function 𝑟∗1 on the domain Ω̄∗ which is a sufficiently large neighbourhood of �̄�1 such that �̄�1 ⊂ �̄�∗

1 . Define an 
extended domain, for example 𝔇∗

1 = (0, 𝑑1 + 𝜌1) × (0, 𝑑2 + 𝜌2), where 𝜌1, 𝜌2 > 0 with Γ∗ = �̄�∗
1∖𝔇

∗
1 , corners 𝑐∗

𝑘
and edges Γ∗

𝑘
, 𝑘 = 1, 2, 3, 4. Suppose that 

the regular component 𝑟∗1 defined on �̄�∗
1 can be decomposed as 𝑟∗1 = 𝑟∗0,1 + 𝜀𝑟∗1,1 + 𝜀2𝑟∗2,1, where 𝑟∗

𝑘,1, 𝑘 = 0, 1 are the solution of the following first-order 
problems

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑎∗
𝜕𝑟∗0,1

𝜕𝑥
+ 𝑏∗

𝜕𝑟∗0,1

𝜕𝑦
+ 𝑐∗𝑟∗0,1 = 𝑓 ∗, ∀(𝑥, 𝑦) ∈𝔇∗

1 ,

1𝑟
∗
0,1(𝑥, 𝑦) =1𝑧(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ Γ∗1 , 2𝑟

∗
0,1(𝑥, 𝑦) =2𝑧(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ Γ∗2 ,

𝑎∗
𝜕𝑟∗1,1

𝜕𝑥
+ 𝑏∗

𝜕𝑟∗1,1

𝜕𝑦
+ 𝑐∗𝑟∗1,1 =

(
𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)
𝑟0,1, ∀(𝑥, 𝑦) ∈𝔇∗

1 ,

𝑘𝑟
∗
1,1(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈ Γ∗

𝑘
, 𝑘 = 1,2,

(2.4)

and 𝑟∗2,1 is the solution of the boundary value problem

⎧⎪⎨⎪⎩
−𝜀

( 𝜕2𝑟∗2,1

𝜕𝑥2
+

𝜕2𝑟∗2,1

𝜕𝑦2

)
+ 𝑎∗

𝜕𝑟∗2,1

𝜕𝑥
+ 𝑏∗

𝜕𝑟∗2,1

𝜕𝑦
+ 𝑐∗𝑟∗2,1 =

(
𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)
𝑟∗1,1, ∀(𝑥, 𝑦) ∈𝔇∗

1 ,

𝑘𝑟
∗
2,1(𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ Γ∗

𝑘
, 𝑘 = 1,2,3,4.

(2.5)

Here, the coefficients 𝑎∗, 𝑏∗, 𝑐∗ and 𝑓 ∗ are respective smooth extensions of the functions 𝑎, 𝑏, 𝑐 and 𝑓 associated with the problem (1.1) from the 
domain �̄�1 onto the domain �̄�∗

1 . Since, 𝑟∗1,1 ∈ 𝐶4,𝛾 (𝔇∗
1), we get(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)
𝑟∗1,1 ∈ 𝐶2,𝛾 (𝔇∗

1).

The extension of all the functions are taken such that the compatibility conditions at the corners of the �̄�∗
1 up to second order (see [9,19]) are 

satisfied. Hence 𝑟∗2,1 ∈ 𝐶4,𝛾 (𝔇∗
1).

The regular component 𝑟1, is taken to be the solution of the boundary value problem

𝜀𝑟1(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦), ∀(𝑥, 𝑦) ∈𝔇1, (2.6a)

𝑘𝑟1(𝑥, 𝑦) =𝑘𝑟
∗(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ Γ1,𝑗 , 𝑗, 𝑘 = 1,2, (2.6b)
1

4



C. Clavero, R. Shiromani and V. Shanthi Computers and Mathematics with Applications 140 (2023) 1–16
𝑟1(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈ Γ1,𝑗 , 𝑗 = 3,4. (2.6c)

Applying Lemma 2.2 and Lemma 2.3 to the extended problem (2.5), we deduce that 𝑟1 ∈ 𝐶4,𝛾 (𝔇1) and|||||
||||| 𝜕

𝑘+𝑙𝑟1
𝜕𝑥𝑘𝜕𝑦𝑙

|||||
|||||𝔇1

≤ 𝐶(1 + 𝜀2−(𝑘+𝑙)), 0 ≤ 𝑘+ 𝑙 ≤ 4. (2.7)

Similarly, corresponding to the remaining subdomains 𝔇𝑘, 𝑘 = 2, 3, 4, we can define the remaining smooth functions 𝑟𝑘, 𝑘 = 2, 3, 4.

Corresponding to the right edge Γ3 of the domain 𝔇4, a regular layer component 𝑠7 exists, which is the solution of the problem

𝜀𝑠7 = 0, ∀(𝑥, 𝑦) ∈𝔇4, (2.8a)

𝑠7(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈ Γ4,1 ∪ Γ4,2, (2.8b)

3𝑠7(𝑥, 𝑦) = 𝑔3(𝑦), ∀(𝑥, 𝑦) ∈ Γ4,3, 4𝑠7(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈ Γ4,4. (2.8c)

To obtain the bound for 𝑠7, we consider the transformed function 𝑠7. Set 𝜍 = (1 − 𝑥)∕𝜀 and 𝑠7(𝑥, 𝑦) = 𝑠7(𝜍, 𝑦). We write 𝜀 for the operator 𝜀

defined in term of the variables 𝜍 and 𝑦. Then,

𝜀𝑠7(𝜍, 𝑦) = −𝜀−1
𝜕2𝑠7

𝜕𝜍2
− 𝜀

𝜕2𝑠7

𝜕𝑦2
− 𝜀−1𝑎(𝜍, 𝑦)

𝜕𝑠7
𝜕𝜍

+ 𝑏(𝜍, 𝑦)
𝜕𝑠7
𝜕𝑦

+ 𝑐(𝜍, 𝑦)𝑠7,

where, 𝑎(𝜍, 𝑦) = 𝑎(1 − 𝜀𝜍, 𝑦), 𝑏(𝜍, 𝑦) = 𝑏(1 − 𝜀𝜍, 𝑦) and 𝑐(𝜍, 𝑦) = 𝑐(1 − 𝜀𝜍, 𝑦). Expanding 𝑎(𝜍, 𝑦), 𝑏(𝜍, 𝑦) and 𝑐(𝜍, 𝑦) in powers of 𝜀𝜍, using Taylor series, we 
have

𝑎(𝜍, 𝑦) =
∞∑
𝑙=0

(−𝜀𝜍)𝑙

𝑙!
𝜕𝑙𝑎

𝜕𝑥𝑙
(1, 𝑦), 𝑏(𝜍, 𝑦) =

∞∑
𝑙=0

(−𝜀𝜍)𝑙

𝑙!
𝜕𝑙𝑏

𝜕𝑥𝑙
(1, 𝑦),

𝑐(𝜍, 𝑦) =
∞∑
𝑙=0

(−𝜀𝜍)𝑙

𝑙!
𝜕𝑙𝑐

𝜕𝑥𝑙
(1, 𝑦).

.

The solution �̄�7 of the equation ̄𝜀�̄�7 = 0 is expanded into powers of 𝜀, as 𝑠7 = 𝑠0,7 +𝜀𝑠1,7. With the above change of variables, equating the coefficients 
of 𝜀0 and 𝜀−1 in 𝑠7 for (𝜍, 𝑦) ∈ (0, (1 − 𝑑1)∕𝜀) × (0, 1), that solves (2.8), we deduce that 𝑠0,7 and 𝑠1,7, satisfy the second order differential equations

𝜕2𝑠0,7

𝜕𝜍2
+ 𝑎(1, 𝑦)

𝜕�̄�0,7

𝜕𝜍
= 0, (2.9a)

𝜕2𝑠1,7

𝜕𝜍2
+ 𝑎(1, 𝑦)

𝜕𝑠1,7

𝜕𝜍
= 𝑏(1, 𝑦)

𝜕𝑠0,7

𝜕𝑦
+ 𝑐(1, 𝑦)𝑠0,7 + 𝜍

𝜕𝑎(1, 𝑦)
𝜕𝑥

𝜕𝑠0,7

𝜕𝜍
= 0, (2.9b)

with boundary conditions

1𝑠𝑒,7(0, 𝑦) = −3𝑟𝑒,7(1, 𝑦), 3𝑠𝑒,7(𝜍, 𝑦)→ 0 𝑎𝑠 𝜍 →∞, 𝑒 = 0,1. (2.9c)

Solving (2.9), we obtain

𝑠0,7(𝜍, 𝑦) = (−3𝑟0,7(1, 𝑦)) exp(−𝑎(1, 𝑦)𝜍),

and

𝑠1,7(𝜍, 𝑦) =
{
−3𝑟1,7 + 𝜍

[ 𝜕

𝜕𝑦

( 𝑏
𝑎
3𝑟0,7

)
+ 𝑐 − 𝑎

𝑎
3𝑟0,7

]
+ 𝜍2[ 𝑏

𝑎

𝜕𝑎

𝜕𝑦
+ 𝜕𝑎

𝜕𝑥
](3𝑟0,7)

}
(1, 𝑦) exp(−𝑎(1, 𝑦)𝜍).

Using that min
(𝑥,𝑦)∈𝔇

𝑎(𝑥, 𝑦) > 𝛼, it follows

||||| 𝜕
𝑘+𝑙𝑠𝑒,7

𝜕𝑥𝑘𝜕𝑦𝑙

||||| ≤ 𝐶𝜀−𝑘−𝑙 exp(−𝛼𝜍), 0 ≤ 𝑘+ 𝑙 ≤ 4, 𝑒 = 0,1,

and hence||||| 𝜕
𝑘+𝑙𝑠𝑒,7

𝜕𝑥𝑘𝜕𝑦𝑙

||||| ≤ 𝐶𝜀−𝑘−𝑙 exp(−𝛼(1 − 𝑥)∕𝜀), 0 ≤ 𝑘+ 𝑙 ≤ 4, 𝑒 = 0,1.

This implies that the bounds on the regular boundary layer component are||||| 𝜕
𝑘+𝑙𝑠7

𝜕𝑥𝑘𝜕𝑦𝑙

||||| ≤ 𝐶𝜀−𝑘−𝑙 exp(−𝛼(1 − 𝑥)∕𝜀), 0 ≤ 𝑘+ 𝑙 ≤ 4. (2.10)

In view of 𝑠7 ∈ 𝐶3,𝛾 ((0, (1 − 𝑑1)∕𝜀) × (0, 1)), an analogue of (2.3) applies to 𝑠7 in (0, (1 − 𝑑1)∕𝜀) × (0, 1), implies another desired bound‖‖‖‖‖ 𝜕
𝑙𝑠7
𝜕𝑦𝑙

‖‖‖‖‖ ≤ 𝐶𝜀1−𝑙 , 0 ≤ 𝑙 ≤ 4. (2.11)

Similarly, corresponding to the remaining domain’s edge Γ𝑘,𝑗 of the domains 𝔇𝑘, 𝑘 = 1, 2, 3, 4 we can define remaining boundary and interior 
layer components 𝑠𝑖, 𝑖 = 1, 2, ...6, 8 (see Fig. 1).
5
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Next we introduce the corner layer component 𝑝4 (see, Fig. 1) related to the corner (1, 1) of the domain 𝔇4, which is the solution of the boundary 
value problem

𝜀𝑝4(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈𝔇4, (2.12a)

3𝑝4(𝑥, 𝑦) = −3𝑠7(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ Γ4,3, 4𝑝4(𝑥, 𝑦) = −4𝑠8(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ Γ4,4, (2.12b)

𝑝4(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈ Γ4,1 ∪ Γ4,2. (2.12c)

We note that 𝜀𝑠7 = 𝜀𝑠8 = 0 and 𝑠7, 𝑠8 ∈ 𝐶4,𝛾 (𝔇4). Therefore, the compatibility conditions up to second-order exist at the four corners of the domain 
which indicates that 𝑝4 ∈ 𝐶4,𝛾 (𝔇4) (see [9,19]). Now, set 𝜍 = (1 − 𝑥)∕𝜀, 𝜂 = (1 − 𝑦)∕𝜀 and the corner layer component 𝑝4(𝑥, 𝑦) = �̆�4(𝜍, 𝜂) in (2.12)

corresponding to 𝑝4. Furthermore, we write ̆𝜀 for the operator 𝜀 defined in terms of the variables 𝜍 and 𝜂. Then, we have

̆𝜀�̆�4(𝜍, 𝜂) = −𝜀−1
( 𝜕2�̆�4
𝜕𝜍2

+
𝜕2�̆�4
𝜕𝜂2

)
+ �̆�(𝜍, 𝜂)𝜀−1

𝜕�̆�4
𝜕𝜍

+ �̆�(𝜍, 𝜂)𝜀−1
𝜕�̆�4
𝜕𝜂

+ 𝑐(𝜍, 𝜂)�̆�4,

where, �̆�(𝜍, 𝜂) = 𝑎(1 − 𝜀𝜍, 1 − 𝜀𝜂), �̆�(𝜍, 𝜂) = 𝑏(1 − 𝜀𝜍, 1 − 𝜀𝜂) and 𝑐(𝜍, 𝜂) = 𝑐(1 − 𝜀𝜍, 1 − 𝜀𝜂). Expanding �̆�(𝜍, 𝜂), �̆�(𝜍, 𝜂) and 𝑐(𝜍, 𝜂) in powers of 𝜀𝜍 and 𝜀𝜂 using 
Taylor series, we have

�̆�(𝜍, 𝜂) =
∞∑
𝑙=0

∞∑
𝑚=0

(−𝜀𝜍)𝑙(−𝜀𝜂)𝑚

𝑙!𝑚!
𝜕𝑙+𝑚𝑎

𝜕𝑥𝑙𝜕𝑦𝑚
(1,1),

�̆�(𝜍, 𝜂) =
∞∑
𝑙=0

∞∑
𝑚=0

(−𝜀𝜍)𝑙(−𝜀𝜂)𝑚

𝑙!𝑚!
𝜕𝑙+𝑚𝑏

𝜕𝑥𝑙𝜕𝑦𝑚
(1,1),

𝑐(𝜍, 𝜂) =
∞∑
𝑙=0

∞∑
𝑚=0

(−𝜀𝜍)𝑙(−𝜀𝜂)𝑚

𝑙!𝑚!
𝜕𝑙+𝑚𝑐

𝜕𝑥𝑙𝜕𝑦𝑚
(1,1).

Let �̆�4 = �̆�0,4 + 𝜀�̆�1,4, where �̆�𝑒,4, for 𝑒 = 0, 1 are the solutions of the second order differential equations

𝜕2�̆�0,4

𝜕𝜍2
+

𝜕2�̆�0,4

𝜕𝜂2
+ 𝑎(1,1)

𝜕�̆�0,4

𝜕𝜍
+ 𝑏(1,1)

𝜕�̆�0,4

𝜕𝜂
= 0,

and

𝜕2�̆�1,4

𝜕𝜍2
+

𝜕2�̆�1,4

𝜕𝜂2
− 𝜍

𝜕𝑎(1,1)
𝜕𝑥

𝜕�̆�0,4

𝜕𝜍
− 𝜂

𝜕𝑎(1,1)
𝜕𝑦

𝜕�̆�0,4

𝜕𝜍
− 𝜍

𝜕𝑏(1,1)
𝜕𝑥

𝜕�̆�0,4

𝜕𝜂
− 𝜂

𝜕𝑏(1,1)
𝜕𝑦

𝜕�̆�0,4

𝜕𝜂

+ 𝑎(1,1)
𝜕�̆�1,4

𝜕𝜍
+ 𝑏(1,1)

𝜕�̆�1,4

𝜕𝜂
− 𝑐(1,1)�̆�0,1 = 0,

on (𝜍, 𝜂) ∈ (0, (1 − 𝑑1)∕𝜀) × (0, (1 − 𝑑2)∕𝜀), respectively, which satisfy the boundary conditions

2�̆�𝑒,4(𝜍,0) = −4𝑟𝑒,4(𝜍,1), 1�̆�𝑒,4(0, 𝜂) = −3𝑟𝑒,4(1, 𝜂), 𝑘�̆�𝑒,4(𝜍, 𝜂)→ 0, 𝑘 = 3,4,

as 𝜍, 𝜂→∞, for 𝑒 = 0, 1. Following the arguments in [9], we can deduce||||| 𝜕
𝑘+𝑙𝑝4

𝜕𝑥𝑘𝜕𝑦𝑙

||||| ≤ 𝐶𝜀−𝑘−𝑙 exp(−𝛼(1 − 𝑥)∕𝜀) exp(−𝛽(1 − 𝑦)∕𝜀), 0 ≤ 𝑘+ 𝑙 ≤ 4.

In view of 𝑝4 ∈ 𝐶3,𝛾 ((0, (1 − 𝑑1)∕𝜀) × (0, (1 − 𝑑2)∕𝜀)), an analogue of (2.3) applies to 𝑝4 in (0, (1 − 𝑑1)∕𝜀) × (0, (1 − 𝑑2)∕𝜀), implies another desired bound‖‖‖‖‖ 𝜕𝑘+𝑙𝑝4
𝜕𝑥𝑘𝜕𝑦𝑙

‖‖‖‖‖ ≤ 𝐶𝜀−𝑘−𝑙 , 0 ≤ 𝑘+ 𝑙 ≤ 4.

Next, we introduce the corner layer component 𝑝1 (see, Fig. 1) of the domain 𝔇1, which is the solution of the boundary value problem

𝜀𝑝1(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈𝔇1, (2.13a)

1𝑝1(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈ Γ1,1, 2𝑝1(𝑥, 𝑦) = 0, ∀(𝑥, 𝑦) ∈ Γ1,2, (2.13b)

𝑝1(𝑥, 𝑦) = −𝑠1(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ Γ1,3, 𝑝1(𝑥, 𝑦) = −𝑠2(𝑥, 𝑦), ∀(𝑥, 𝑦) ∈ Γ1,4. (2.13c)

To obtain the bound for 𝑝1, we use Lemma 2.1 and the barrier function Ψ ± 𝑝1, where

Ψ(𝑥, 𝑦) = 𝐶
𝜖2

𝛼𝛽
exp

(
−

𝛼(𝑑1 − 𝑥)
𝜖

)
exp

(
−

𝛽(𝑑2 − 𝑦)
𝜖

)
.

Let 𝑝1 satisfies (2.13) and we can prove the derivative bounds for 𝑝1 over the domain 𝔇1 with the help of [25,26], using similar arguments to those 
ones given in the previous proof for 𝑝4.
Similarly we can be describe the bounds of the remaining corner layer components 𝑝𝑘, 𝑘 = 2, 3 related to the remaining corners of the domains 
𝔇𝑘, 𝑘 = 2, 3.

As a result, we have created a Shishkin solution decomposition and calculated the derivatives of its components. Local Schauder-type estimates 
([25], p.110, (1.12) and (1.13)) can be used in place of the global bound ([25], p.110, (1.11)) to derive more precise pointwise bounds on the derivatives 
of the layer components, which contain decaying exponential factors.

From previous estimates, we can now conclude with the following theorem, which gives the decomposition of the exact solution and show its 
asymptotic behaviour with respect to the diffusion parameter 𝜀.
6
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Theorem 2.4. The exact solution 𝑧 of the continuous problem (1.1) may be written as a sum

𝑧 =
4∑
𝑖=1

𝑟𝑖 +
8∑

𝑗=1
𝑠𝑗 +

4∑
𝑘=1

𝑝𝑘,

where,

𝜀𝑟𝑖 = 𝑓, 𝜀𝑠𝑗 = 0, 𝜀𝑝𝑘 = 0, 𝑖, 𝑘 = 1, ...4, 𝑗 = 1, ...,8.

The boundary conditions for regular, regular boundary layer and corner layer components can be expressed so that the following bounds on the derivatives of 
the components hold|||||

||||| 𝜕
𝑘+𝑙𝑟𝑖

𝜕𝑥𝑘𝜕𝑦𝑙

|||||
||||| ≤ 𝐶(1 + 𝜀2−(𝑘+𝑙)), 0 ≤ 𝑘+ 𝑙 ≤ 4.

|𝑠1(𝑥, 𝑦)| ≤ 𝐶𝜀𝑒
−𝛼
𝜀
|𝑑1−𝑥|, |𝑠2(𝑥, 𝑦)| ≤ 𝐶𝜀𝑒

−𝛽
𝜀
|𝑑2−𝑦|,

|𝑠3(𝑥, 𝑦)| ≤ 𝐶𝑒
−𝛼
𝜀
(1−𝑥)

, |𝑠4(𝑥, 𝑦)| ≤ 𝐶𝜀𝑒
−𝛽
𝜀
|𝑑2−𝑦|,

|𝑠5(𝑥, 𝑦)| ≤ 𝐶𝜀𝑒
−𝛼
𝜀
|𝑑1−𝑥|, |𝑝1(𝑥, 𝑦)| ≤ 𝐶𝜀2𝑒

−𝛼
𝜀
|𝑑1−𝑥|𝑒 −𝛽

𝜀
|𝑑2−𝑦|,

|𝑠6(𝑥, 𝑦)| ≤ 𝐶𝑒
−𝛽
𝜀
(1−𝑦)

, |𝑝2(𝑥, 𝑦)| ≤ 𝐶𝜀𝑒
−𝛼
𝜀
(1−𝑥)

𝑒
−𝛽
𝜀
|𝑑2−𝑦|,

|𝑠7(𝑥, 𝑦)| ≤ 𝐶𝑒
−𝛼
𝜀
(1−𝑥)

, |𝑝3(𝑥, 𝑦)| ≤ 𝐶𝜀𝑒
−𝛼
𝜀
|𝑑1−𝑥|𝑒 −𝛽

𝜀
(1−𝑦)

,

|𝑠8(𝑥, 𝑦)| ≤ 𝐶𝑒
−𝛽
𝜀
(1−𝑦); |𝑝4(𝑥, 𝑦)| ≤ 𝐶𝑒

−𝛼
𝜀
(1−𝑥)

𝑒
−𝛽
𝜀
(1−𝑦)

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖‖‖‖‖ 𝜕𝑘𝑠𝑖

𝜕𝑥𝑘

‖‖‖‖‖ ≤ 𝐶𝜀1−𝑘,
‖‖‖‖‖ 𝜕𝑙𝑠𝑖

𝜕𝑦𝑙

‖‖‖‖‖ ≤ 𝐶𝜀2−𝑙 , where, 0 ≤ 𝑘, 𝑙 ≤ 4, 𝑖 = 1,5,

‖‖‖‖‖ 𝜕𝑙𝑠𝑖

𝜕𝑦𝑙

‖‖‖‖‖ ≤ 𝐶𝜀1−𝑙 ,
‖‖‖‖‖ 𝜕𝑘𝑠𝑖

𝜕𝑥𝑘

‖‖‖‖‖ ≤ 𝐶𝜀2−𝑘, where, 0 ≤ 𝑘, 𝑙 ≤ 4, 𝑖 = 2,4,

‖‖‖‖‖ 𝜕𝑘𝑠𝑖

𝜕𝑥𝑘

‖‖‖‖‖ ≤ 𝐶𝜀−𝑘,
‖‖‖‖‖ 𝜕𝑙𝑠𝑖

𝜕𝑦𝑙

‖‖‖‖‖ ≤ 𝐶𝜀1−𝑙 , where, 0 ≤ 𝑘, 𝑙 ≤ 4, 𝑖 = 3,7,

‖‖‖‖‖ 𝜕𝑙𝑠𝑖

𝜕𝑦𝑙

‖‖‖‖‖ ≤ 𝐶𝜀−𝑙 ,
‖‖‖‖‖ 𝜕𝑘𝑠𝑖

𝜕𝑥𝑘

‖‖‖‖‖ ≤ 𝐶𝜀1−𝑘, where, 0 ≤ 𝑘, 𝑙 ≤ 4, 𝑖 = 6,8,

|||||
||||| 𝜕

𝑘+𝑙𝑝1
𝜕𝑥𝑘𝜕𝑦𝑙

|||||
||||| ≤ 𝐶𝜀2−𝑘−𝑙 ,

|||||
||||| 𝜕

𝑘+𝑙𝑝4
𝜕𝑥𝑘𝜕𝑦𝑙

|||||
||||| ≤ 𝐶𝜀−𝑘−𝑙 , where 0 ≤ 𝑘+ 𝑙 ≤ 4,

|||||
|||||
𝜕𝑘+𝑙𝑝𝑗

𝜕𝑥𝑘𝜕𝑦𝑙

|||||
||||| ≤ 𝐶𝜀1−𝑘−𝑙 , where 0 ≤ 𝑘+ 𝑙 ≤ 4, 𝑗 = 2,3.

3. Discretization of the problem

3.1. The Shishkin mesh

Motivate by the solution decomposition in Theorem 2.4, we construct a suitable piecewise uniform fitted mesh as follows. First, we define the 
mesh transition points,

𝜏𝑥 =min
{

𝑑1
2
,
2𝜀
𝛼

ln𝑁
}
, and 𝜏𝑦 =min

{
𝑑2
2
,
2𝜀
𝛽

ln𝑁
}
. (3.1)

Then, we subdivide the unit intervals in 𝑥 into four subdomains

[0,1] = [0, 𝑑1 − 𝜏𝑥] ∪ [𝑑1 − 𝜏𝑥, 𝑑1] ∪ [𝑑1,1 − 𝜏𝑥] ∪ [1 − 𝜏𝑥,1]. (3.2a)

Note that the grid points around the interior points 𝑑1 and 𝑑2, are concentrated only in the left part and not in the right part, which is the same that 
it occurs in [21].

Let �̄�𝑁
𝑥

then denote the one-dimensional piecewise uniform mesh obtained by placing a uniform mesh with 𝑁∕4 mesh intervals on each of the 
four subdomains in (3.2a). For convenience, we denote 𝔇𝑁

𝑥
the mesh points in �̄�𝑁

𝑥
that exclude the boundary and discontinuity points {0, 𝑑1, 1}. 

Similarly, we subdivide the unit intervals in 𝑦 into four subintervals

[0,1] = [0, 𝑑2 − 𝜏𝑦] ∪ [𝑑2 − 𝜏𝑦, 𝑑2] ∪ [𝑑2,1 − 𝜏𝑦] ∪ [1 − 𝜏𝑦,1]. (3.2b)

Let �̄�𝑁
𝑦

then denote the one-dimensional piecewise uniform mesh obtained by placing a uniform mesh on each of the subintervals in (3.2b), with 
N/4 mesh intervals. Again, for convenience, we denote 𝔇𝑁

𝑦
≡ �̄�𝑁

𝑦
∖{0, 𝑑2, 1}. Finally, we set �̄�𝑁,𝑁 = �̄�𝑁

𝑥
× �̄�𝑁

𝑦
. Therefore, �̄�𝑁,𝑁 is the piecewise 

two-dimensional tensor product mesh with grid points (𝑥𝑖, 𝑦𝑗 ) where 𝑥𝑖 ∈ �̄�𝑁
𝑥
, 𝑦𝑗 ∈ �̄�𝑁

𝑦
. Similarly, we set 𝔇𝑁,𝑁 =𝔇𝑁

𝑥
×𝔇𝑁

𝑦
.
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The interior regions of the mesh are denoted by 𝔇𝑁,𝑁 =
4⋃

𝑘=1
𝔇𝑁,𝑁

𝑘
. Here the subdomains are

𝔇𝑁,𝑁

1 =
{
(𝑥𝑖, 𝑦𝑗 ) ∶ 1 ≤ 𝑖 ≤

(
𝑁

2
− 1

)
,1 ≤ 𝑗 ≤

(
𝑁

2
− 1

)}
;

𝔇𝑁,𝑁

2 =
{
(𝑥𝑖, 𝑦𝑗 ) ∶

(
𝑁

2
+ 1

)
≤ 𝑖 ≤ (𝑁 − 1),1 ≤ 𝑗 ≤

(
𝑁

2
− 1

)}
;

𝔇𝑁,𝑁

3 =
{
(𝑥𝑖, 𝑦𝑗 ) ∶ 1 ≤ 𝑖 ≤

(
𝑁

2
− 1

)
,

(
𝑁

2
+ 1

)
≤ 𝑗 ≤ (𝑁 − 1)

}
;

𝔇𝑁,𝑁

4 =
{
(𝑥𝑖, 𝑦𝑗 ) ∶

(
𝑁

2
+ 1

)
≤ 𝑖 ≤ (𝑁 − 1),

(
𝑁

2
+ 1

)
≤ 𝑗 ≤ (𝑁 − 1)

}
.

The boundaries of these subdomains are denoted as

Γ𝑁,𝑁

1 =
{
(0, 𝑦𝑗 )

|||
(
0 ≤ 𝑗 <

𝑁

2

)
∪
(
𝑁

2
< 𝑗 ≤𝑁

)}
,

Γ𝑁,𝑁

2 =
{
(𝑥𝑖,0)

|||
(
0 ≤ 𝑖 <

𝑁

2

)
∪
(
𝑁

2
< 𝑖 ≤𝑁

)}
,

Γ𝑁,𝑁

3 =
{
(1, 𝑦𝑗 )

|||
(
0 ≤ 𝑗 <

𝑁

2

)
∪
(
𝑁

2
< 𝑗 ≤𝑁

)}
,

Γ𝑁,𝑁

4 =
{
(𝑥𝑖,1)

|||
(
0 ≤ 𝑖 <

𝑁

2

)
∪
(
𝑁

2
< 𝑖 ≤𝑁

)}
,

and Γ𝑁,𝑁 = Γ𝑁,𝑁

1 ∪ Γ𝑁,𝑁

2 ∪ Γ𝑁,𝑁

3 ∪ Γ𝑁,𝑁

4 .

We shall employ the notation that ℎ𝑖 = 𝑥𝑖 − 𝑥𝑖−1, and 𝑘𝑗 = 𝑦𝑗 − 𝑦𝑗−1. But since there are few actual distinct mesh widths, it is useful to introduce 
notation for them:

ℎ𝑖 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐻𝑙 =
4(𝑑1 − 𝜏𝑥)

𝑁
, 𝑖 = 1, ..., 𝑁

4
,

ℎ𝑙 =
4𝜏𝑥
𝑁

, 𝑖 = 𝑁

4
+ 1, ..., 𝑁

2
,

𝐻𝑟 =
4(1 − 𝜏𝑥 − 𝑑1)

𝑁
, 𝑖 = 𝑁

2
+ 1, ..., 3𝑁

4
,

ℎ𝑟 =
4𝜏𝑥
𝑁

, 𝑖 = 3𝑁
4

+ 1, ...,𝑁,

𝑘𝑗 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝐾𝑙 =
4(𝑑2 − 𝜏𝑦)

𝑁
, 𝑖 = 1, ..., 𝑁

4
,

𝑘𝑙 =
4𝜏𝑦
𝑁

, 𝑖 = 𝑁

4
+ 1, ..., 𝑁

2
,

𝐾𝑟 =
4(1 − 𝜏𝑦 − 𝑑2)

𝑁
, 𝑖 = 𝑁

2
+ 1, ..., 3𝑁

4
,

𝑘𝑟 =
4𝜏𝑦
𝑁

, 𝑖 = 3𝑁
4

+ 1, ...,𝑁.

(3.3)

3.2. The finite difference scheme (FDS)

On the previous piecewise-uniform mesh �̄�𝑁,𝑁 , we consider the finite-difference operator

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩


𝑁,𝑁
𝜀 𝑍(𝑥𝑖, 𝑦𝑗 ) ≡ −𝜀(𝛿2

𝑥𝑥
+ 𝛿2

𝑦𝑦
)𝑍(𝑥𝑖, 𝑦𝑗 ) + 𝑎𝑖,𝑗𝐷

−
𝑥
𝑍(𝑥𝑖, 𝑦𝑗 ) + 𝑏𝑖,𝑗𝐷

−
𝑦
𝑍(𝑥𝑖, 𝑦𝑗 ) + 𝑐𝑖,𝑗𝑍(𝑥𝑖, 𝑦𝑗 )

= 𝑓𝑖,𝑗 , ∀(𝑥𝑖, 𝑦𝑗 ) ∈𝔇𝑁,𝑁 ,


𝑁,𝑁

1 𝑍(𝑥𝑖, 𝑦𝑗 ) ≡𝑍(𝑥𝑖, 𝑦𝑗 ) − 𝜀𝐷+
𝑥
𝑍(𝑥𝑖, 𝑦𝑗 ) = 𝑔1(𝑦𝑗 ), for (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

1 ,


𝑁,𝑁

2 𝑍(𝑥𝑖, 𝑦𝑗 ) ≡𝑍(𝑥𝑖, 𝑦𝑗 ) − 𝜀𝐷+
𝑦
𝑍(𝑥𝑖, 𝑦𝑗 ) = 𝑔2(𝑥𝑖), for (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

2 ,


𝑁,𝑁

3 𝑍(𝑥𝑖, 𝑦𝑗 ) ≡𝑍(𝑥𝑖, 𝑦𝑗 ) + 𝜀𝐷−
𝑥
𝑍(𝑥𝑖, 𝑦𝑗 ) = 𝑔3(𝑦𝑗 ), for (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

3 ,


𝑁,𝑁

4 𝑍(𝑥𝑖, 𝑦𝑗 ) ≡𝑍(𝑥𝑖, 𝑦𝑗 ) + 𝜀𝐷−
𝑦
𝑍(𝑥𝑖, 𝑦𝑗 ) = 𝑔4(𝑥𝑖), for (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

4 ,

(3.4a)

and the discretization at the points (𝑑1, 𝑦𝑗 ) and (𝑥𝑖, 𝑑2) is given by{
𝐷−

𝑥
𝑍(𝑥𝑁∕2, 𝑦𝑗 ) =𝐷+

𝑥
𝑍(𝑥𝑁∕2, 𝑦𝑗 ),

𝐷−
𝑦
𝑍(𝑥𝑖, 𝑦𝑁∕2) =𝐷+

𝑦
𝑍(𝑥𝑖, 𝑦𝑁∕2),

(3.4b)

respectively, where the discrete differential operators 𝐷−
𝑥

, 𝐷+
𝑥

, 𝐷−
𝑦

, 𝐷+
𝑦

, 𝛿2
𝑥𝑥

, and 𝛿2
𝑦𝑦

are defined in classical way as follows:

⎧⎪⎪⎪⎨⎪⎪⎪

𝐷−
𝑥
𝑍(𝑥𝑖, 𝑦𝑗 ) =

𝑍(𝑥𝑖,𝑦𝑗 )−𝑍(𝑥𝑖−1 ,𝑦𝑗 )
ℎ𝑖

, 𝐷+
𝑥
𝑍(𝑥𝑖, 𝑦𝑗 ) =

𝑍(𝑥𝑖+1 ,𝑦𝑗 )−𝑍(𝑥𝑖,𝑦𝑗 )
ℎ𝑖+1

,

𝐷−
𝑦
𝑍(𝑥𝑖, 𝑦𝑗 ) =

𝑍(𝑥𝑖,𝑦𝑗 )−𝑍(𝑥𝑖,𝑦𝑗−1)
𝑘𝑗

, 𝐷+
𝑦
𝑍(𝑥𝑖, 𝑦𝑗 ) =

𝑍(𝑥𝑖,𝑦𝑗+1)−𝑍(𝑥𝑖,𝑦𝑗 )
𝑘𝑗+1

,

𝛿2
𝑥𝑥
𝑍(𝑥𝑖, 𝑦𝑗 ) =

1
ℎ̄𝑖
(𝐷+

𝑥
−𝐷−

𝑥
)𝑍(𝑥𝑖, 𝑦𝑗 ), 𝛿2

𝑦𝑦
𝑍(𝑥𝑖, 𝑦𝑗 ) =

1
�̄�𝑗
(𝐷+

𝑦
−𝐷−

𝑦
)𝑍(𝑥𝑖, 𝑦𝑗 ).
⎩
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Lemma 3.1. (Discrete maximum principle) The operator 𝜀Φ𝑁,𝑁 defined by (3.4) satisfies a discrete maximum principle, i.e. if (𝑥𝑖, 𝑦𝑗 ) is a mesh function 
that satisfies 𝑁,𝑁

𝑘
(𝑥𝑖, 𝑦𝑗 ) ≥ 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁 , 𝑁,𝑁

𝜀 (𝑥𝑖, 𝑦𝑗 ) ≥ 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈𝔇𝑁,𝑁 , and 𝐷+
𝑥
(𝑥𝑁∕2, 𝑦𝑗 ) −𝐷−

𝑥
(𝑥𝑁∕2, 𝑦𝑗 ) ≤ 0, 𝐷+

𝑦
(𝑥𝑖, 𝑦𝑁∕2) −

𝐷−
𝑦
(𝑥𝑖, 𝑦𝑁∕2) ≤ 0 Then, (𝑥𝑖, 𝑦𝑗 ) ≥ 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ �̄�𝑁,𝑁 .

Proof. Let be (𝑥𝑘1 , 𝑦𝑘2 ) = min
(𝑥𝑖,𝑦𝑗 )∈�̄�𝑁,𝑁

{(𝑥𝑘1 , 𝑦𝑘2 )}. If (𝑥𝑘1 , 𝑦𝑘2 ) ≥ 0, there is nothing to prove. Suppose (𝑥𝑘1 , 𝑦𝑘2 ) < 0. At the point (𝑥𝑖, 𝑦𝑗 ) = (𝑥𝑘1 , 𝑦𝑘2 ), 

it holds

𝐷−
𝑥
(𝑥𝑘1 , 𝑦𝑘2 ) ≤ 0 ≤𝐷+

𝑥
(𝑥𝑘1 , 𝑦𝑘2 ), 𝐷

−
𝑦
(𝑥𝑘1 , 𝑦𝑘2 ) ≤ 0 ≤𝐷+

𝑦
(𝑥𝑘1 , 𝑦𝑘2 ).

Assume that (𝑥𝑖, 𝑦𝑗 ) ∈𝔇𝑁,𝑁 . Then, we have

𝑁,𝑁
𝜀

(𝑥𝑘1 , 𝑦𝑘2 ) =
(
− 𝜀

(
𝛿2
𝑥𝑥

+ 𝛿2
𝑦𝑦

)
 + 𝑎𝑖,𝑗𝐷

−
𝑥
 + 𝑏𝑖,𝑗𝐷

−
𝑦
 + 𝑐𝑖,𝑗

)
(𝑥𝑘1 ,𝑦𝑘2 ) < 0,

which contradicts the hypothesis 𝑁,𝑁
𝜀 (𝑥𝑘1 , 𝑦𝑘2 ) ≥ 0, for (𝑥𝑖, 𝑦𝑗 ) ∈𝔇𝑁,𝑁 . Also at the boundary points (𝑥𝑖, 𝑦𝑗 ) = (0, 𝑦𝑘2 ) ∈ Γ𝑁,𝑁

1 , we have


𝑁,𝑁

1 (0, 𝑦𝑘2 ) ≡ (0, 𝑦𝑘2 ) − 𝜀𝐷+
𝑥
(0, 𝑦𝑘2 ) < 0,

which contradicts the hypothesis. At the other three boundary conditions when (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

2 ∪Γ𝑁,𝑁

3 ∪Γ𝑁,𝑁

4 it can be proved similarly. If (𝑥𝑘1 , 𝑦𝑘2 ) ∈
(𝑥𝑁∕2, 𝑦𝑗 ) ∪ (𝑥𝑖, 𝑦𝑁∕2), we use an analogous argument. Therefore, (𝑥𝑖, 𝑦𝑗 ) ≥ 0 for all (𝑥𝑖, 𝑦𝑗 ) ∈ �̄�𝑁,𝑁 . □

Lemma 3.2. Let 𝑍𝑖,𝑗 be the solution of (3.4). Then, Theorem 3.1 holds and it yields the stability estimate

||𝑍𝑖,𝑗 || ≤ 1
𝐾
||𝑓𝑖,𝑗 ||+ max

(𝑥𝑖,𝑦𝑗 )∈𝜕𝔇𝑁,𝑁

{|𝑍(𝑥𝑖, 𝑦𝑗 )|}, (3.5)

where 𝐾 =min{𝛼, 𝛽}.

Proof. It can be proved easily using Lemma 3.1. □

4. Analysis of the uniform convergence

In this section we prove that the method given in (3.4), constructed on the Shishkin mesh given by the tensorial product of meshes defined in 
(3.3), is uniformly convergent with respect to the diffusion parameter 𝜀. We split the discrete solution of (3.4) equivalent to the exact solution, 
in order to bound the nodal error independently outside and inside the layers. First, the mesh functions 𝑅𝑘, 𝑘 = 1, 2, 3, 4 are the solutions of the 
following discrete problems:

⎧⎪⎨⎪⎩

𝑁,𝑁
𝜀 𝑅𝑘(𝑥𝑖, 𝑦𝑗 ) = 𝑓 (𝑥𝑖, 𝑦𝑗 ), for all (𝑥𝑖, 𝑦𝑗 ) ∈𝑁,𝑁 , 𝑘 = 1,2,3,4,


𝑁,𝑁

𝑘
𝑅𝑘(𝑥𝑖, 𝑦𝑗 ) =𝑘𝑟𝑘(𝑥𝑖, 𝑦𝑗 ), for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

𝑘
,

𝑅𝑘(𝑥𝑁∕2, 𝑦𝑗 ) = 𝑟𝑘(𝑑1, 𝑦𝑗 ), 𝑅𝑘(𝑥𝑖, 𝑦𝑁∕2) = 𝑟𝑘(𝑥𝑖, 𝑑2).
(4.1)

Hence, we defined the mesh functions 𝑆𝑙 and 𝑃𝑚, 𝑙 = 1, 2, ..., 8, 𝑚 = 1, 2, 3, 4 as the solutions of the following discrete problems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩


𝑁,𝑁
𝜀 𝑆𝑙(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈

𝑁,𝑁

𝑘
, 𝑙 = 1, ...,8, 𝑘 = 1,2,3,4,


𝑁,𝑁
𝑛 𝑆𝑙(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

1,𝑛 , 𝑛 = 1,2, 𝑙 = 1,2,

𝑁,𝑁
𝑛 𝑆𝑙(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

2,𝑛 , 𝑛 = 2,3, 𝑙 = 4,

𝑁,𝑁
𝑛 𝑆𝑙(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

3,𝑛 , 𝑛 = 1,4, 𝑙 = 5,

𝑁,𝑁

2 𝑆𝑙(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

2,2 , 𝑙 = 3,

𝑁,𝑁

4 𝑆𝑙(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

3,4 , 𝑙 = 6,

𝑁,𝑁

3 𝑆𝑙(𝑥𝑖, 𝑦𝑗 ) =3𝑠𝑙(𝑥𝑖, 𝑦𝑗 ), for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

𝑘,3 , 𝑘 = 2,4, 𝑙 = 3,7,

𝑁,𝑁

4 𝑆𝑙(𝑥𝑖, 𝑦𝑗 ) =4𝑠𝑙(𝑥𝑖, 𝑦𝑗 ), for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

𝑘,4 , 𝑘 = 3,4, 𝑙 = 6,8,
𝑆1(𝑑1, 𝑦𝑗 ) +𝑅1(𝑑1, 𝑦𝑗 ) = 𝑆3(𝑑1, 𝑦𝑗 ) +𝑅2(𝑑1, 𝑦𝑗 ), 𝑆5(𝑑1, 𝑦𝑗 ) +𝑅3(𝑑1, 𝑦𝑗 ) = 𝑆7(𝑑1, 𝑦𝑗 ) +𝑅4(𝑑1, 𝑦𝑗 ),
𝑆2(𝑥𝑖, 𝑑2) +𝑅1(𝑥𝑖, 𝑑2) = 𝑆6(𝑥𝑖, 𝑑2) +𝑅3(𝑥𝑖, 𝑑2), 𝑆4(𝑥𝑖, 𝑑2) +𝑅2(𝑥𝑖, 𝑑2) = 𝑆8(𝑥𝑖, 𝑑2) +𝑅4(𝑥𝑖, 𝑑2),
𝐷−

𝑥
𝑆1(𝑑1, 𝑦𝑗 ) +𝐷−

𝑥
𝑅1(𝑑1, 𝑦𝑗 ) =𝐷+

𝑥
𝑆3(𝑑1, 𝑦𝑗 ) +𝐷+

𝑥
𝑅2(𝑑1, 𝑦𝑗 ),

𝐷−
𝑥
𝑆5(𝑑1, 𝑦𝑗 ) +𝐷−

𝑥
𝑅3(𝑑1, 𝑦𝑗 ) =𝐷+

𝑥
𝑆7(𝑑1, 𝑦𝑗 ) +𝐷+

𝑥
𝑅4(𝑑1, 𝑦𝑗 ),

𝐷−
𝑦
𝑆2(𝑥𝑖, 𝑑2) +𝐷−

𝑦
𝑅1(𝑥𝑖, 𝑑2) =𝐷+

𝑦
𝑆6(𝑥𝑖, 𝑑2) +𝐷+

𝑦
𝑅3(𝑥𝑖, 𝑑2),

𝐷−
𝑦
𝑆4(𝑥𝑖, 𝑑2) +𝐷−

𝑦
𝑅2(𝑥𝑖, 𝑑2) =𝐷+

𝑦
𝑆8(𝑥𝑖, 𝑑2) +𝐷+

𝑦
𝑅4(𝑥𝑖, 𝑑2).

(4.2)
9
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩


𝑁,𝑁
𝜀 𝑃𝑚(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈

𝑁,𝑁

𝑘
, 𝑚 = 1,2,3,4, 𝑘 = 1,2,3,4,


𝑁,𝑁
𝑛 𝑃1(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

1,𝑛 , 𝑛 = 1,2,

𝑁,𝑁
𝑛 𝑃2(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

2,𝑛 , 𝑛 = 2,

𝑁,𝑁
𝑛 𝑃3(𝑥𝑖, 𝑦𝑗 ) = 0, for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

3,𝑛 , 𝑛 = 1,

𝑁,𝑁

3 𝑃2(𝑥𝑖, 𝑦𝑗 ) = −𝑁,𝑁

3 𝑆3(𝑥𝑖, 𝑦𝑗 ), 
𝑁,𝑁

3 𝑃4(𝑥𝑖, 𝑦𝑗 ) = −𝑁,𝑁

3 𝑆7(𝑥𝑖, 𝑦𝑗 ), for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

3 ,


𝑁,𝑁

4 𝑃3(𝑥𝑖, 𝑦𝑗 ) = −𝑁,𝑁

4 𝑆6(𝑥𝑖, 𝑦𝑗 ), 
𝑁,𝑁

4 𝑃4(𝑥𝑖, 𝑦𝑗 ) = −𝑁,𝑁

4 𝑆8(𝑥𝑖, 𝑦𝑗 ), for all (𝑥𝑖, 𝑦𝑗 ) ∈ Γ𝑁,𝑁

4 ,

𝑃1(𝑑1, 𝑦𝑗 ) + 𝑆1(𝑑1, 𝑦𝑗 ) = 𝑃3(𝑑1, 𝑦𝑗 ) + 𝑆3(𝑑1, 𝑦𝑗 ), 𝑃3(𝑑1, 𝑦𝑗 ) + 𝑆5(𝑑1, 𝑦𝑗 ) = 𝑃4(𝑑1, 𝑦𝑗 ) +𝑆7(𝑑1, 𝑦𝑗 ),
𝑃1(𝑥𝑖, 𝑑2) + 𝑆2(𝑥𝑖, 𝑑2) = 𝑃3(𝑥𝑖, 𝑑2) +𝑆6(𝑥𝑖, 𝑑2), 𝑃2(𝑥𝑖, 𝑑2) +𝑆4(𝑥𝑖, 𝑑2) = 𝑃4(𝑥𝑖, 𝑑2) + 𝑆8(𝑥𝑖, 𝑑2),

(4.3)

such that the discrete solution 𝑍 of (3.4) can be define as the following decomposition:

𝑍(𝑥𝑖, 𝑦𝑗 ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝑅1(𝑥𝑖, 𝑦𝑗 ) +𝑆1(𝑥𝑖, 𝑦𝑗 ) + 𝑃1(𝑥𝑖, 𝑦𝑗 ) +𝑆2(𝑥𝑖, 𝑦𝑗 ), for (𝑥𝑖, 𝑦𝑗 ) ∈
𝑁,𝑁

1 ,

𝑅2(𝑥𝑖, 𝑦𝑗 ) +𝑆3(𝑥𝑖, 𝑦𝑗 ) + 𝑃2(𝑥𝑖, 𝑦𝑗 ) +𝑆4(𝑥𝑖, 𝑦𝑗 ), for (𝑥𝑖, 𝑦𝑗 ) ∈
𝑁,𝑁

2 ,

𝑅3(𝑥𝑖, 𝑦𝑗 ) +𝑆5(𝑥𝑖, 𝑦𝑗 ) + 𝑃3(𝑥𝑖, 𝑦𝑗 ) +𝑆6(𝑥𝑖, 𝑦𝑗 ), for (𝑥𝑖, 𝑦𝑗 ) ∈
𝑁,𝑁

3 ,

𝑅4(𝑥𝑖, 𝑦𝑗 ) +𝑆7(𝑥𝑖, 𝑦𝑗 ) + 𝑃4(𝑥𝑖, 𝑦𝑗 ) +𝑆8(𝑥𝑖, 𝑦𝑗 ), for (𝑥𝑖, 𝑦𝑗 ) ∈
𝑁,𝑁

4 ,

[𝑅(𝑑1, 𝑦𝑗 )] + [𝑆(𝑑1, 𝑦𝑗 )] + [𝑃 (𝑑1, 𝑦𝑗 )] = 0,
[𝑅(𝑥𝑖, 𝑑2)] + [𝑆(𝑥𝑖, 𝑑2)] + [𝑃 (𝑥𝑖, 𝑑2)] = 0,

(4.4)

where 𝑅 =∑4
𝑘=1𝑅𝑘, 𝑆 =

∑8
𝑙=1 𝑆𝑙, 𝑃 =

∑4
𝑚=1 𝑃𝑚.

Lemma 4.1. Let the continuous regular components 𝑟𝑘(𝑥, 𝑦) are the solutions of problem (2.6) and the discrete regular components 𝑅𝑘 are the numerical 
solutions of the problem (4.1); then, it holds

|𝑟𝑘(𝑥𝑖, 𝑦𝑗 ) −𝑅𝑘(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1, ∀(𝑥𝑖, 𝑦𝑗 ) ∈𝔇
𝑁,𝑁

𝑘
, 𝑘 = 1,2,3,4. (4.5)

Proof. Note that the inequalities{|𝑁,𝑁

1 (𝑟𝑘(0, 𝑦𝑗 ) −𝑅𝑘(0, 𝑦𝑗 ))| ≤ 𝐶𝑁−1, |𝑁,𝑁

2 (𝑟𝑘(𝑥𝑖,0) −𝑅𝑘(𝑥𝑖,0))| ≤ 𝐶𝑁−1,|𝑁,𝑁

3 (𝑟𝑘(1, 𝑦𝑗 ) −𝑅𝑘(1, 𝑦𝑗 ))| ≤ 𝐶𝑁−1, |𝑁,𝑁

4 (𝑟𝑘(𝑥𝑖,1) −𝑅𝑘(𝑥𝑖,1))| ≤ 𝐶𝑁−1,
(4.6)

follow immediately from (4.1) and Theorem 2.4.

The truncation error related to the regular components 𝑅𝑘, 𝑘 = 1, 2, 3, 4 on the subdomains 𝑁,𝑁

𝑘
, 𝑘 = 1, 2, 3, 4 satisfies

|𝐿𝑁,𝑁
𝜀

(𝑟𝑘(𝑥𝑖, 𝑦𝑗 ) −𝑅𝑘(𝑥𝑖, 𝑦𝑗 ))| ≤ 𝐶𝜀

(
ℎ̄𝑖

‖‖‖‖‖ 𝜕
3𝑟

𝜕𝑥3

‖‖‖‖‖+ �̄�𝑗

‖‖‖‖‖ 𝜕
3𝑟

𝜕𝑦3

‖‖‖‖‖
)
+𝐶

(
ℎ𝑖

‖‖‖‖‖ 𝜕
2𝑟

𝜕𝑥2

‖‖‖‖‖+ 𝑘𝑗

‖‖‖‖‖ 𝜕
2𝑟

𝜕𝑦2

‖‖‖‖‖
)
,

and therefore it holds

|𝐿𝑁,𝑁
𝜀

(𝑟𝑘(𝑥𝑖, 𝑦𝑗 ) −𝑅𝑘(𝑥𝑖, 𝑦𝑗 ))| ≤ 𝐶𝑁−1,

and from the discrete maximum principle the required result follows. □

To establish 𝜀-uniform bounds on the truncation errors for the components associated with the edges ad corner functions, we use the standard 
barrier functions given by

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑠1;𝑖 =
𝑁∕2∏
𝜈=𝑖

(
1 + ℎ𝜈

𝛼

2𝜀

)−1
, for 𝑖 = 1,2, ...,𝑁∕2, 𝑗 = 1,2, ...,𝑁∕2,

𝑠2;𝑗 =
𝑁∕2∏
𝜈=𝑗

(
1 + 𝑘𝜈

𝛽

2𝜀

)−1
, for 𝑖 = 1,2, ...,𝑁∕2, 𝑗 = 1,2, ...,𝑁∕2,

𝑝1;𝑖,𝑗 =
𝑁∕2∏
𝜈=𝑖

(
1 + ℎ𝜈

𝛼

2𝜀

)−1 𝑁∕2∏
𝜈=𝑗

(
1 + 𝑘𝜈

𝛽

2𝜀

)−1
, for 𝑖 = 1,2, ...,𝑁∕2, 𝑗 = 1,2, ...,𝑁∕2,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑠3;𝑖 =
𝑁∏
𝜈=𝑖

(
1 + ℎ𝜈

𝛼

2𝜀

)−1
, for 𝑖 =𝑁∕2 + 1, ...,𝑁, 𝑗 = 1,2, ...,𝑁∕2,

𝑠4;𝑗 =
𝑁∕2∏
𝜈=𝑗

(
1 + 𝑘𝜈

𝛽

2𝜀

)−1
, for 𝑖 =𝑁∕2 + 1, ...,𝑁, 𝑗 = 1,2, ...,𝑁∕2,

𝑝2;𝑖,𝑗 =
𝑁∏
𝜈=𝑖

(
1 + ℎ𝜈

𝛼

2𝜀

)−1 𝑁∕2∏
𝜈=𝑗

(
1 + 𝑘𝜈

𝛽

2𝜀

)−1
, for 𝑖 =𝑁∕2 + 1, ...,𝑁, 𝑗 = 1,2, ...,𝑁∕2,

⎧⎪⎪⎪⎨⎪⎪⎪

𝑠5;𝑖 =
𝑁∕2∏
𝜈=𝑖

(
1 + ℎ𝜈

𝛼

2𝜀

)−1
, for 𝑖 = 1, ...,𝑁∕2, 𝑗 =𝑁∕2 + 1, ...,𝑁,

𝑠6;𝑗 =
𝑁∏
𝜈=𝑗

(
1 + 𝑘𝜈

𝛽

2𝜀

)−1
, for 𝑖 = 1, ...,𝑁∕2, 𝑗 =𝑁∕2 + 1, ...,𝑁,

𝑝3;𝑖,𝑗 =
𝑁∕2∏ (

1 + ℎ𝜈
𝛼

2𝜀

)−1 𝑁∏ (
1 + 𝑘𝜈

𝛽

2𝜀

)−1
, for 𝑖 = 1, ...,𝑁∕2, 𝑗 =𝑁∕2 + 1, ...,𝑁,
⎩ 𝜈=𝑖 𝜈=𝑗

10
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⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑠7;𝑖 =
𝑁∏
𝜈=𝑖

(
1 + ℎ𝜈

𝛼

2𝜀

)−1
, for 𝑖 =𝑁∕2 + 1, ...,𝑁, 𝑗 =𝑁∕2 + 1, ...,𝑁,

𝑠8;𝑗 =
𝑁∏
𝜈=𝑗

(
1 + 𝑘𝜈

𝛽

2𝜀

)−1
, for 𝑖 =𝑁∕2 + 1, ...,𝑁, 𝑗 =𝑁∕2 + 1, ...,𝑁,

𝑝4;𝑖,𝑗 =
𝑁∏
𝜈=𝑖

(
1 + ℎ𝜈

𝛼

2𝜀

)−1 𝑁∏
𝜈=𝑗

(
1 + 𝑘𝜈

𝛽

2𝜀

)−1
, for 𝑖 =𝑁∕2 + 1, ...,𝑁, 𝑗 =𝑁∕2 + 1, ...,𝑁.

These functions are first order Taylor series of the exponential functions related to the singular component of the problem (1.1). For any grid point 
(𝑥𝑖, 𝑦𝑗 ) ∈

𝑁,𝑁

1 , we have

|𝑆1(𝑥𝑖, 𝑦𝑗 )| ≤ 𝑠1;𝑖, |𝑆2(𝑥𝑖, 𝑦𝑗 )| ≤ 𝑠2;𝑗 , |𝑃1(𝑥𝑖, 𝑦𝑗 )| ≤ 𝑝1;𝑖,𝑗 . (4.7)

For 𝑖 = 1, ..., 𝑁∕4, 𝑗 = 1, ..., 𝑁∕2, we get

𝑠1;𝑖 ≤ 𝑠1;𝑁∕4 ≤ 𝐶 exp
( 𝑁∕2∑

𝜈=𝑁∕4

(
1
2

(
𝛼ℎ𝜈

2𝜀

)2
−

𝛼ℎ𝑣

2𝜀

))
≤ 𝐶𝑁−1. (4.8)

For 𝑖 = 1, ..., 𝑁∕2, 𝑗 = 1, ..., 𝑁∕4, we have

𝑠2;𝑗 ≤ 𝑠2;𝑁∕4 ≤ 𝐶 exp
( 𝑁∕2∑

𝜈=𝑁∕4

(
1
2

(
𝛼𝑘𝜈

2𝜀

)2
−

𝛼𝑘𝑣

2𝜀

))
≤ 𝐶𝑁−1. (4.9)

For 𝑖 = 1, ..., 𝑁∕4, 𝑗 = 1, ..., 𝑁∕4, we have

𝑝1;𝑖,𝑗 ≤ 𝑝1;𝑁∕4,𝑁∕4 ≤ 𝐶 exp

(
𝑁∕2∑

𝜈=𝑁∕4

(
1
2

(
𝛼ℎ𝜈

2𝜀

)2
−

𝛼ℎ𝑣

2𝜀

)
+

𝑁∕2∑
𝜈=𝑁∕4

(
1
2

(
𝛼𝑘𝜈

2𝜀

)2
−

𝛼𝑘𝑣

2𝜀

))
≤ 𝐶𝑁−1. (4.10)

Similarly, bounds exist for the remaining layer components.

Lemma 4.2. Let 𝑠𝑙 are the solutions of the problem (2.8) and 𝑆𝑙 are the solutions of the problem (4.2), then, for 𝑙 = 1, ..., 8, it holds

|𝑠𝑙(𝑥𝑖, 𝑦𝑗 ) −𝑆𝑙(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1 ln𝑁, for (𝑥𝑖, 𝑦𝑗 ) ∈
𝑁,𝑁

𝑘
, 𝑘 = 1,2,3,4. (4.11)

Proof. First, note the inequalities for the interior layer component 𝑠1 on the boundaries of subdomain 𝑁,𝑁

1 , such as

|𝑁,𝑁

1 (𝑠1(0, 𝑦𝑗 ) − 𝑆1(0, 𝑦𝑗 ))| ≤ 𝐶𝑁−1, |𝑁,𝑁

2 (𝑠1(𝑥𝑖,0) −𝑆1(𝑥𝑖,0))| ≤ 𝐶𝑁−1, (4.12)

which follow from (4.2) and Theorem 2.4.

If 𝜏𝑥 =
𝑑1
2 , standard procedures can be used to obtain the proof by noting that 𝜀−1 ≤ 𝐶 ln𝑁 . Hereby, we will assume that 𝜏𝑥 =

2𝜀
𝛼
ln𝑁 . Here we 

merely give the details of the proof corresponding to the layer function 𝑠1 .

Using Theorem 2.4 and (4.7), we can deduce

|𝑠1(𝑥𝑖, 𝑦𝑗 ) −𝑆1(𝑥𝑖, 𝑦𝑗 )| ≤ |𝑠1(𝑥𝑖, 𝑦𝑗 )|+ |𝑆1(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶 exp(−𝛼𝜏𝑥∕𝜀) + 𝑠1;𝑖.

From (4.8), it follows

|𝑠1(𝑥𝑖, 𝑦𝑗 ) −𝑆1(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1, 𝑖 = 1, ...,𝑁∕4, 𝑗 = 1, ...,𝑁∕2. (4.13)

We proceed in the following manner to prove equivalent error bounds in the region 𝑁,𝑁

1,1 = {(𝑥𝑖, 𝑦𝑗 )|𝑁4 < 𝑖 < 𝑁

2 , 0 < 𝑗 <
𝑁

2 }. Using Taylor series, we 
obtain

|𝐿𝑁,𝑁
𝜀

(𝑠1(𝑥𝑖, 𝑦𝑗 ) − 𝑆1(𝑥𝑖, 𝑦𝑗 ))| ≤ 𝐶𝑁−1𝜏𝑥

(
𝜀
‖‖‖‖‖ 𝜕

3𝑠1
𝜕𝑥3

‖‖‖‖‖+
‖‖‖‖‖ 𝜕

2𝑠1
𝜕𝑥2

‖‖‖‖‖
)
+𝐶𝑁−1

(
𝜀
‖‖‖‖‖ 𝜕

3𝑠1
𝜕𝑦3

‖‖‖‖‖+
‖‖‖‖‖ 𝜕

2𝑠1
𝜕𝑦2

‖‖‖‖‖
)
.

With the help of derivative’s bounds of 𝑠1 given in Theorem 2.4, we obtain the following estimate

|𝐿𝑁,𝑁
𝜀

(𝑠1(𝑥𝑖, 𝑦𝑗 ) − 𝑆1(𝑥𝑖, 𝑦𝑗 ))| ≤ 𝐶𝑁−1 ln𝑁.

Hence, using the discrete maximum principle Lemma 3.1, we get the error bound on the domain ̄𝑁,𝑁

1,1 as

|𝑠1(𝑥𝑖, 𝑦𝑗 ) −𝑆1(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1 ln𝑁. (4.14)

The result follows from (4.13) and (4.14).

Likewise, we can obtain similar bounds for the errors associate to the remaining layer components 𝑠𝑙, 𝑙 = 2, ..., 8 on the subdomains 𝑁,𝑁

𝑘
, 𝑘 =

1, 2, 3, 4. □

Lemma 4.3. Let 𝑝𝑚 are the solutions of problem (2.12) and 𝑃𝑚 are the solutions of problem (4.3), then, for 𝑚 = 1, 2, 3, 4, it holds

|𝑝𝑚(𝑥𝑖, 𝑦𝑗 ) − 𝑃𝑚(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1 ln𝑁, for (𝑥𝑖, 𝑦𝑗 ) ∈
𝑁,𝑁

, 𝑘 = 1,2,3,4. (4.15)

𝑘

11
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Proof. First, note the inequalities for the corner layer component 𝑝1 on the boundaries of subdomain 𝑁,𝑁

1 , such as

|𝑁,𝑁

1 (𝑝1(0, 𝑦𝑗 ) − 𝑃1(0, 𝑦𝑗 ))| ≤ 𝐶𝑁−1, |𝑁,𝑁

2 (𝑝1(𝑥𝑖,0) − 𝑃1(𝑥𝑖,0))| ≤ 𝐶𝑁−1, (4.16)

which follow from (4.3) and Theorem 2.4.

Here, for the corner layer component 𝑝1, we merely present the proof of (4.15). Using Theorem 2.4 and (4.7), we obtain

|𝑝1(𝑥𝑖, 𝑦𝑗 ) − 𝑃1(𝑥𝑖, 𝑦𝑗 )| ≤ |𝑝(𝑥𝑖, 𝑦𝑗 )|+ |𝑃1(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶 exp(−𝛼𝜏𝑥∕𝜀) exp(−𝛽𝜏𝑦∕𝜀) + 𝑝1;𝑖,𝑗 .

From (4.10), we prove

|𝑝1(𝑥𝑖, 𝑦𝑗 ) − 𝑃1(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1, 𝑖 = 1, ...,𝑁∕4, 𝑗 = 1, ...,𝑁∕4. (4.17)

In the domain 𝑁,𝑁

1,2 = {(𝑥𝑖, 𝑦𝑗 )|𝑁4 < 𝑖 < 𝑁

2 , 
𝑁

4 < 𝑗 <
𝑁

2 }, the truncation error holds

|𝐿𝑁,𝑁
𝜀

(𝑝1(𝑥𝑖, 𝑦𝑗 ) − 𝑃1(𝑥𝑖, 𝑦𝑗 ))| ≤ 𝐶𝑁−1𝜏𝑥

(
𝜀
‖‖‖‖‖ 𝜕

3𝑝1
𝜕𝑥3

‖‖‖‖‖+
‖‖‖‖‖ 𝜕

2𝑝1
𝜕𝑥2

‖‖‖‖‖
)
+𝐶𝑁−1𝜏𝑦

(
𝜀
‖‖‖‖‖ 𝜕

3𝑝1
𝜕𝑦3

‖‖‖‖‖+
‖‖‖‖‖ 𝜕

2𝑝1
𝜕𝑦2

‖‖‖‖‖
)
,

≤ 𝐶𝜀𝑁−1 ln𝑁.

Using the suitable barrier function Φ±(𝑥𝑖, 𝑦𝑗 ) = 𝐶

(
𝜏𝑥𝑁

−1

𝜀
(𝑥𝑖−𝑑1) +

𝜏𝑦𝑁
−1

𝜀
(𝑦𝑗 −𝑑2)

)
±(𝑝1(𝑥𝑖, 𝑦𝑗 ) −𝑃1(𝑥𝑖, 𝑦𝑗 )) and apply the Lemma 3.1, used on ̄𝑁,𝑁

1,2 , 
we get

|𝑝1(𝑥𝑖, 𝑦𝑗 ) − 𝑃1(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1 ln𝑁. (4.18)

The result follows from (4.17) and (4.18).

Likewise, we can obtain similar bounds for the errors associate to the remaining corner layer components 𝑝𝑚, 𝑚 = 2, 3, 4 on the subdomains 


𝑁,𝑁

𝑘
, 𝑘 = 2, 3, 4. □

Theorem 4.4. Let 𝑧 be the exact solution of the continuous problem (1.1) and 𝑍 the numerical solution of the finite difference scheme (3.4) constructed on 
the Shishkin mesh given by the tensorial product of meshes defined in (3.3); then, it holds

|𝑧(𝑥𝑖, 𝑦𝑗 ) −𝑍(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1 ln2𝑁, ∀(𝑥𝑖, 𝑦𝑗 ) ∈ �̄�𝑁,𝑁 , (4.19)

where 𝐶 is a positive constant independent of 𝜀 and 𝑁 . Therefore, the numerical algorithm is an almost first order uniformly convergent method.

Proof. From Lemmas 4.1, 4.2 and 4.3, we deduce the following result of convergence

|𝑧(𝑥𝑖, 𝑦𝑗 ) −𝑍(𝑥𝑖, 𝑦𝑗 )| ≤ 𝐶𝑁−1 ln𝑁, ∀(𝑥𝑖, 𝑦𝑗 ) ∈𝔇𝑁,𝑁∖{(𝑑1, 𝑦𝑗 ) ∪ (𝑥𝑖, 𝑑2)}, (4.20a)

and from (4.6), (4.12), (4.16) and Lemma 2.3, we deduce the following result of convergence on the boundaries of the domain 𝔇𝑁,𝑁 such as

|𝑁,𝑁

1 (𝑧(0, 𝑦𝑗 ) −𝑍(0, 𝑦𝑗 ))| ≤ 𝐶𝑁−1 ln𝑁, |𝑁,𝑁

2 (𝑧(𝑥𝑖,0) −𝑍(𝑥𝑖,0))| ≤ 𝐶𝑁−1 ln𝑁, (4.20b)

|𝑁,𝑁

3 (𝑧(1, 𝑦𝑗 ) −𝑍(1, 𝑦𝑗 ))| ≤ 𝐶𝑁−1 ln𝑁, |𝑁,𝑁

4 (𝑧(𝑥𝑖,1) −𝑍(𝑥𝑖,1))| ≤ 𝐶𝑁−1 ln𝑁. (4.20c)

On the other hand, at line (𝑥𝑖, 𝑦𝑗 ) = (𝑑1, 𝑦𝑗 ), it holds

|(𝐷+
𝑥
−𝐷−

𝑥
)(𝑧(𝑑1, 𝑦𝑗 ) −𝑍(𝑑1, 𝑦𝑗 ))| ≤|𝐷+

𝑥
𝑧(𝑑1, 𝑦𝑗 ) −

𝜕𝑧

𝜕𝑥
(𝑑1, 𝑦𝑗 )|+ |𝐷−

𝑥
𝑧(𝑑1, 𝑦𝑗 ) −

𝜕𝑧

𝜕𝑥
(𝑑1, 𝑦𝑗 )|

≤(ℎ𝑙 +𝐻𝑟)
𝜕2𝑧

𝜕𝑥2
(𝑑1, 𝑦𝑗 )

≤(ℎ𝑙 +𝐻𝑟)𝜀−2 ≤ 𝐶
𝑁−1 ln𝑁

𝜀
. (4.21)

Using the suitable barrier function

Φ(𝑥𝑖, 𝑦𝑗 ) = 𝐶
𝜏𝑥𝑁

−1

𝜀2
(𝑥𝑖 − (𝑑1 − 𝜏𝑥)), (𝑥𝑖, 𝑦𝑗 ) ∈𝑁,𝑁 ∩ (𝑑1 − 𝜏𝑥, 𝑑1) × (0,1),

applying the Lemma 3.1 to Φ(𝑥𝑖, 𝑦𝑗 ) ± (𝑧(𝑑1, 𝑦𝑗 ) −𝑍(𝑑1, 𝑦𝑗 )) over the interval ̄𝑁,𝑁 ∩ [𝑑1 − 𝜏𝑥, 𝑑1] × [0, 1], we obtain

|(𝑧(𝑑1, 𝑦𝑗 ) −𝑍(𝑑1, 𝑦𝑗 ))| ≤ 𝐶𝑁−1 ln2𝑁. (4.22)

Similarly, we can prove for the discontinuous line (𝑥𝑖, 𝑦𝑗 ) = (𝑥𝑖, 𝑑2). Hence from (4.20) and (4.22), we can get the required result. □

5. Numerical experiments

In this Section, the proposed method is applied to two test problems. To see in practice that the numerical results are according with the 
theoretical results, we show tabular results for the errors and the orders of convergence. For simplicity, we take the same number of grid points at 
each spatial direction.

As the exact solutions are unknown for these problems, we use the double mesh principle (see [26]) to approximate the errors in the maximum 
norm. Then, the errors are approximated by
12



𝐸𝑁,𝑁
𝜀

= max
(𝑥𝑖,𝑦𝑗 )∈�̄�𝑁,𝑁

|𝑍2𝑁,2𝑁 (𝑥2𝑖, 𝑦2𝑗 ) −𝑍𝑁,𝑁 (𝑥𝑖, 𝑦𝑗 )|
where 𝑍2𝑁,2𝑁 (𝑥2𝑖, 𝑦2𝑗 ) represents the numerical solution to the problem (1.1) on a mesh with 2𝑁 partitions on each direction, which has the mesh 
points of the coarse mesh and their midpoints at each direction. The numerical orders of convergence are given by

𝑁,𝑁
𝜀

= log2
(

𝐸
𝑁,𝑁
𝜀

𝐸
2𝑁,2𝑁
𝜀

)
.

The parameter maximum point-wise norm are determined by

𝐸𝑁,𝑁 =max
𝜀

𝐸𝑁,𝑁
𝜀

.

We also compute the uniform numerical orders of convergence in a standard way; they are given by

𝑁,𝑁 = log2
(

𝐸𝑁,𝑁

𝐸2𝑁,2𝑁

)
.

Example 5.1. The first example is given by

−𝜀
(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)
𝑧(𝑥, 𝑦) + (1 + 𝑥) 𝜕𝑧(𝑥, 𝑦)

𝜕𝑥
+ (1 + 𝑦) 𝜕𝑧(𝑥, 𝑦)

𝜕𝑦
+ 𝑧(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦), ∀(𝑥, 𝑦) ∈𝔇,

where 𝑑1 = 0.5, 𝑑2 = 0.5, the source term is given by

𝑓 (𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩

𝑓1(𝑥, 𝑦) = 4 sin(𝜋𝑥) sin(𝜋𝑦), 𝑥 ≤ 𝑑1, 𝑦 ≤ 𝑑2,

𝑓2(𝑥, 𝑦) = −3sin(𝜋(1 − 𝑥)) sin(𝜋𝑦), 𝑥 > 𝑑1, 𝑦 ≤ 𝑑2,

𝑓3(𝑥, 𝑦) = 8 sin(𝜋𝑥) sin(𝜋(1 − 𝑦)), 𝑥 ≤ 𝑑1, 𝑦 > 𝑑2,

𝑓4(𝑥, 𝑦) = 2 sin(𝜋(1 − 𝑥) sin(𝜋(1 − 𝑦))), 𝑥 > 𝑑1, 𝑦 > 𝑑2,

and the boundary conditions are

𝑧(0, 𝑦) − 𝜀
𝜕𝑧(0, 𝑦)
𝜕𝑥

= 0, 𝑧(1, 𝑦) + 𝜀
𝜕𝑧(1, 𝑦)
𝜕𝑥

= (1 − 𝑦),

𝑧(𝑥,0) − 𝜀
𝜕𝑧(𝑥,0)

𝜕𝑦
= 0, 𝑧(𝑥,1) + 𝜀

𝜕𝑧(𝑥,1)
𝜕𝑦

= (1 − 𝑥).

Example 5.2. The second example is given by

−𝜀
(

𝜕2

𝜕𝑥2
+ 𝜕2

𝜕𝑦2

)
𝑧(𝑥, 𝑦) + (1 + 𝑥 sin(𝜋𝑦∕4)) 𝜕𝑧(𝑥, 𝑦)

𝜕𝑥
+ (1 + 𝑦 exp(𝑥)) 𝜕𝑧(𝑥, 𝑦)

𝜕𝑦
+ (exp(2𝑦))𝑧(𝑥, 𝑦) = 𝑓 (𝑥, 𝑦), ∀(𝑥, 𝑦) ∈𝔇,

where now 𝑑1 = 0.4, 𝑑2 = 0.6, the source term is given by

𝑓 (𝑥, 𝑦) =

⎧⎪⎪⎨⎪⎪⎩

𝑓1(𝑥, 𝑦) = 𝑥𝑦 sin(𝜋𝑥) cos(𝜋𝑦∕2), 𝑥 ≤ 𝑑1, 𝑦 ≤ 𝑑2,

𝑓2(𝑥, 𝑦) = (1 − 𝑥)𝑦 sin(𝜋(𝑥− 𝑑1)) cos(𝜋𝑦∕2), 𝑥 > 𝑑1, 𝑦 ≤ 𝑑2,

𝑓3(𝑥, 𝑦) = 𝑥(1 − 𝑦) sin(𝜋𝑥) cos(𝜋(𝑦− 𝑑2)∕2), 𝑥 ≤ 𝑑1, 𝑦 > 𝑑2,

𝑓4(𝑥, 𝑦) = (1 − 𝑥)(1 − 𝑦) sin(𝜋(𝑥− 𝑑1)) cos(𝜋(𝑦− 𝑑1)∕2), 𝑥 > 𝑑1, 𝑦 > 𝑑2,

and the boundary conditions are

𝑧(0, 𝑦) − 𝜀
𝜕𝑧(0, 𝑦)
𝜕𝑥

= 0, 𝑧(1, 𝑦) + 𝜀
𝜕𝑧(1, 𝑦)
𝜕𝑥

= 0,

𝑧(𝑥,0) − 𝜀
𝜕𝑧(𝑥,0)

𝜕𝑦
= 0, 𝑧(𝑥,1) + 𝜀

𝜕𝑧(𝑥,1)
𝜕𝑦

= 0.

In Tables 1 and 2 we have chosen 𝜀 = 2−3𝑘, 𝑘 = 0, ..., 8, using the finite-difference method (FDM) on the Shishkin mesh. These tables show the 
maximum point-wise errors and the orders of convergence corresponding to Example 5.1 and Example 5.2 respectively. Further, from Tables 1 and 
2, it is clear that our numerical scheme is an almost first-order uniformly convergent method. Figs. 2a and 3a display the numerical solution of 
Problems 5.1 and 5.2 respectively, for 𝜀 = 2−6 and 𝑁 = 128; from them, we clearly see the boundary and the interior layers in both cases. Due to 
the appearance of these layers, the errors are significantly large in these regions, as we can observe in Figs. 4a and 5a for Examples 5.1 and 5.2, 
respectively.

Remark 5.1. In the future, we intend to analyze the uniform convergence on other special meshes, such as Bakhvalov, Gartland, or Duran-Shishkin 
meshes. Here, we have included the numerical solution and computed error solution graphs, for both examples, to substantiate the difference 
between the Bakhvalov-Shishkin and Shishkin meshes (see the Figs. 2, 3, 4 and 5). In addition, we have observed that the variation of the present 
scheme can also capture the boundary and interior layers based on the several possible changes of sign at the point of discontinuities on the 
convection coefficients. It is to be noted that the current problem can be also extended to elliptic interface problems with complicated domain, 
having interface on a curve based, by using some suitable transformations. The current problem relies on a linear setup with Robin-type boundary 
conditions that may be generalized to nonlinear situations by linearization techniques under suitable conditions. This will also be considered in our 
future works.
C. Clavero, R. Shiromani and V. Shanthi Computers and Mathematics with Applications 140 (2023) 1–16
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Table 1

Orders of convergence 𝑁,𝑁 and maximum point-wise errors 𝐸𝑁,𝑁 for Example 5.1.

𝜀/ 𝑁 32 64 128 256 512 1024

20 3.003e-2 1.652e-2 8.640e-3 4.416e-3 2.232e-3 1.122e-3

𝑁,𝑁
𝜀

0.86219 0.9347 0.9682 0.9844 0.9922 -

2−3 5.534e-2 3.016e-2 1.589e-2 8.190e-3 4.162e-3 2.098e-3

𝑁,𝑁
𝜀

0.87569 0.9246 0.9564 0.9767 0.9879 -

2−6 1.264e-1 8.662e-2 5.630e-2 3.519e-2 2.091e-2 1.198e-2

𝑁,𝑁
𝜀

0.54522 0.6217 0.6778 0.7514 0.8035 -

2−9 1.448e-1 1.006e-1 6.439e-2 3.998e-2 2.347e-2 1.333e-2

𝑁,𝑁
𝜀

0.52543 0.6436 0.6876 0.7684 0.8160 -

2−12 1.479e-1 1.032e-1 6.593e-2 4.097e-2 2.402e-2 1.364e-2

𝑁,𝑁
𝜀

0.51918 0.6459 0.6863 0.7703 0.8160 -

2−15 1.483e-1 1.035e-1 6.616e-2 4.110e-2 2.410e-2 1.369e-2

𝑁,𝑁
𝜀

0.51889 0.6457 0.6867 0.7705 0.8160 -

2−18 1.483e-1 1.035e-1 6.619e-2 4.112e-2 2.411e-2 1.369e-2

𝑁,𝑁
𝜀

0.51889 0.6457 0.6867 0.7705 0.8160 -

2−21 1.484e-1 1.036e-1 6.619e-2 4.112e-2 2.411e-2 1.369e-2

𝑁,𝑁
𝜀

0.51847 0.6456 0.6867 0.7705 0.8160 -

2−24 1.484e-1 1.036e-1 6.619e-2 4.112e-2 2.411e-2 1.369e-2

𝑁,𝑁
𝜀

0.51847 0.6456 0.6867 0.7705 0.8160 -

𝐸𝑁,𝑁 1.484e-1 1.036e-1 6.619e-2 4.112e-2 2.411e-2 1.369e-2

𝑁,𝑁 0.51847 0.6456 0.6867 0.7705 0.8160 -

Table 2

Orders of convergence 𝑁,𝑁 and maximum point-wise errors 𝐸𝑁,𝑁 for Example 5.2.

𝜀/ 𝑁 32 64 128 256 512 1024

20 3.669e-4 1.891e-4 9.913e-5 5.074e-5 2.567e-5 1.291e-5

𝑁,𝑁
𝜀

0.95624 0.9316 0.9661 0.9831 0.9916 -

2−3 6.148e-4 3.608e-4 1.998e-4 1.060e-4 5.474e-5 2.784e-5

𝑁,𝑁
𝜀

0.76892 0.8524 0.9146 0.9535 0.9755 -

2−6 1.344e-3 9.902e-4 6.789e-4 4.568e-4 2.879e-4 1.692e-4

𝑁,𝑁
𝜀

0.44074 0.5445 0.5716 0.6662 0.7670 -

2−9 1.446e-3 1.071e-3 7.294e-4 4.820e-4 2.990e-4 1.764e-4

𝑁,𝑁
𝜀

0.43311 0.5545 0.5977 0.6891 0.7611 -

2−12 1.459e-3 1.084e-3 7.378e-4 4.847e-4 2.983e-4 1.748e-4

𝑁,𝑁
𝜀

0.42862 0.5547 0.6062 0.7002 0.7711 -

2−15 1.460e-3 1.085e-3 7.389e-4 4.849e-4 2.980e-4 1.743e-4

𝑁,𝑁
𝜀

0.42827 0.5547 0.6076 0.7025 0.7734 -

2−18 1.461e-3 1.086e-3 7.390e-4 4.850e-4 2.979e-4 1.743e-4

𝑁,𝑁
𝜀

0.42793 0.5547 0.6078 0.7028 0.7738 -

2−21 1.461e-3 1.086e-3 7.390e-4 4.850e-4 2.979e-4 1.743e-4

𝑁,𝑁
𝜀

0.42793 0.5547 0.6078 0.7029 0.7738 -

2−24 1.461e-3 1.086e-3 7.390e-4 4.850e-4 2.979e-4 1.743e-4

𝑁,𝑁
𝜀

0.42793 0.5547 0.6078 0.7029 0.7738 -

𝐸𝑁,𝑁 1.461e-3 1.086e-3 7.390e-4 4.850e-4 2.979e-4 1.743e-4

𝑁,𝑁 0.42793 0.5547 0.6078 0.7029 0.7738 -

Fig. 2. Surface graph with weak-interior layers of the numerical solution 𝑍 for Example 5.1, when 𝜀 = 2−6,𝑁 = 128, 𝑑1 = 0.5, 𝑑2 = 0.5.
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Fig. 3. Surface graph with weak-interior layers of the numerical solution 𝑍 for Example 5.2, when 𝜀 = 2−6,𝑁 = 128, 𝑑1 = 0.4, 𝑑2 = 0.6.

Fig. 4. Error of the numerical solution 𝑍 of the numerical solution 𝑍 for Example 5.1, when 𝜀 = 2−6,𝑁 = 128, 𝑑1 = 0.5, 𝑑2 = 0.5.

Fig. 5. Error of the numerical solution 𝑍 for Example 5.2, when 𝜀 = 2−6,𝑁 = 128, 𝑑1 = 0.4, 𝑑2 = 0.6.
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