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Abstract

AQME, automated quantum mechanical environments, is a free and open-source

Python package for the rapid deployment of automated workflows using

cheminformatics and quantum chemistry. AQME workflows integrate tasks

performed across multiple computational chemistry packages and data formats,

preserving all computational protocols, data, and metadata for machine and

human users to access and reuse. AQME has a modular structure of independent

modules that can be implemented in any sequence, allowing the users to use all

or only the desired parts of the program. The code has been developed for

researchers with basic familiarity with the Python programming language. The

CSEARCH module interfaces to molecular mechanics and semi-empirical QM

(SQM) conformer generation tools (e.g., RDKit and Conformer–Rotamer Ensem-

ble Sampling Tool, CREST) starting from various initial structure formats. The

CMIN module enables geometry refinement with SQM and neural network

potentials, such as ANI. The QPREP module interfaces with multiple QM pro-

grams, such as Gaussian, ORCA, and PySCF. The QCORR module processes QM

results, storing structural, energetic, and property data while also enabling

automated error handling (i.e., convergence errors, wrong number of imagi-

nary frequencies, isomerization, etc.) and job resubmission. The QDESCP

module provides easy access to QM ensemble-averaged molecular descriptors

and computed properties, such as NMR spectra. Overall, AQME provides

automated, transparent, and reproducible workflows to produce, analyze and

archive computational chemistry results. SMILES inputs can be used, and

many aspects of tedious human manipulation can be avoided. Installation

and execution on Windows, macOS, and Linux platforms have been tested,

and the code has been developed to support access through Jupyter Note-

books, the command line, and job submission (e.g., Slurm) scripts. Examples

of pre-configured workflows are available in various formats, and hands-on

video tutorials illustrate their use.
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1 | INTRODUCTION

Continued improvements to computer hardware and algorithms have meant that quantum chemical studies are
increasingly applied to study ever-larger and conformationally more flexible molecules and molecular datasets of
increasing size. Computational high-throughput screening, chemical space exploration and molecular optimiza-
tion, and the construction of high-quality datasets to train emerging machine learning (ML) models rely on the
ability to execute, analyze and store the results of large quantum chemistry campaigns.1–8 These tasks typically
require more than one calculation per molecule. For example, a sequence of molecule building, conformational
analysis and refinement, optimization and thermochemical analysis, property prediction, and ensemble averaging
is often performed. Each step may involve a different model chemistry (e.g., molecular mechanics, MM, quantum
mechanics, QM, semi-empirical QM, SQM) executed by a distinct package. Further, these efforts are multiplied by
the number of molecules. Automating these multistep workflows minimizes manual effort and human error
and enables the complex protocols and their associated data and metadata to be fully captured and reused.9–13

Automated workflows for QM calculations, including those that address the important challenge of transition
state (TS) location and conformational analysis (e.g., Wheeler's QChASM14 and Duarte's autodE15), have
emerged as powerful software tools, such as AARON,16 ACE,17 Aiida,18 Auto-QChem,19 CatVS,20 Chemistream,21

ChemShell,22 FireWorks,23 molSimplify,24 PyADF,25 and QMflows,26 among others. In this work, we focus on the
development of an automated end-to-end workflow software, AQME, to perform multistep computational tasks
spanning multiple programs and theoretical methods.

The modular design of AQME provides opportunities for workflow customization, use in Jupyter notebooks, and
integration into other Python projects.27 Ready-to-use examples with different degrees of complexity are provided via
GitHub,28 supplemented by hands-on video tutorials.29 These examples can be trivially modified to create workflows
that implement different software and levels of theory, or for application to different prediction tasks. For example, a
researcher can create a workflow to calculate a reaction energy profile and, afterward, tune the module combination to
generate QM molecular descriptors to use in machine learning models.

Currently, the program contains five modules designed for different tasks (Figure 1) that can be executed in any
order; individual modules can be skipped if required. The input format can be a SMILES representation or many
types of structure formats (SDF, PDB, XYZ, among others). The first module, CSEARCH, automates conformational
analysis. This module is interfaced with molecular mechanics potentials through RDKit30 and semi-empirical poten-
tials through xTB. Searches can be performed externally using RDKit or CREST,31 or using internally-coded system-
atic or Monte Carlo torsion sampling protocols. Then, CMIN refines these geometries and relative energies obtained
from the initial conformer generation with semi-empirical methods (xTB)32 or ML potentials (ANI).33 However, this
module can also be used to independently process 3D input formats. The next module, QPREP, converts a wide vari-
ety of 3D formats into input files for QM calculations with several packages, such as Gaussian,34 ORCA,35 and
PySCF.36 Tedious tasks such as (in Gaussian) creating Gen(ECP) sections or including final lines (i.e., NBO extra key-
words) in the input files are handled automatically. QCORR is a cclib-based37 module that detects issues and errors
in QM output files, structures all output data, and creates ready-to-submit input files to correct those issues. User-
specified criteria (i.e., spin contamination, isomerization, etc.) can be defined to filter output data. The last module,
QDESCP, is designed to generate Boltzmann ensemble-averaged molecular QM properties or descriptors, which can
be readily used in ML models. Commonly used descriptors such as atomic charges, bond orders, dipole moment, and
solvation energy are included.

2 of 11 ALEGRE-REQUENA ET AL.

 17590884, 0, D
ow

nloaded from
 https://w

ires.onlinelibrary.w
iley.com

/doi/10.1002/w
cm

s.1663 by U
niversidad D

e Z
aragoza, W

iley O
nline L

ibrary on [31/03/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



2 | INSTALLATION AND TECHNICAL DETAILS

The program presented is a free, open-source Python-based software installed via conda-forge (conda install -c conda-forge
aqme) or Python Package Index (pip install aqme). All the dependencies required to run AQME are installed automati-
cally, except for RDKit and Openbabel when using pip install. Along with the software, we set up tests through Pytest,
Circle CI, and Codecov, which allows us to ensure a correct functioning of a significant proportion of the code. Also,
multiple code analyzers (CodeFactor, Codacy, and LGTM) were employed to improve the quality standards and readabil-
ity of the deployed code. A detailed documentation page is available at Read the Docs.29

3 | MODULES OF AQME

AQME is divided into modules that can be called as part of a workflow or separately. Four main applications enclose
these modules: (i) conformer generation and geometry refinement (CSEARCH and CMIN), (ii) generation of QM input
files (QPREP), (iii) postprocessing of output files (QCORR), and (iv) generation of Boltzmann weighted descriptors
(QDESCP). In this section, the technical details of the modules are disclosed in more detail.

3.1 | Conformer generation and geometry refinement: The CSEARCH and CMIN
modules

The availability of numerous conformer generators for small molecules (i.e., ConfGen,38 OMEGA,39 Frog2,40 etc.)
highlights the central importance of this task. In the CSEARCH module, AQME gathers multiple types of conformational
search tools. It can be used simply as an interface to the external conformer generation protocols available in RDKit or
CREST, or to perform torsion-based sampling internally while making use of the MM or SQM potentials in those pack-
ages (Figure 2a). When starting from SMILES strings, CSEARCH attempts to derive molecular charge and multiplicity,
although this can be manually overwritten (charge andmult options). The number of simultaneous processes is controlled
by themax_workers option; the number of processors used by each process with the nprocs option.

The Grimme group's CREST generates conformers by extensive metadynamics sampling using semi-empirical
methods (GFNn-xTB) or force fields (GFN-FF), with an additional genetic Z-matrix crossing step at the end. User-
defined constraints for atom positions, bond distances, angles and dihedral angles enable approximate TS structures to
be sampled. When starting from 1D and 2D structures, RDKit is used to generate the necessary 3D input for CREST.
Before the sampling, two initial xTB optimizations are performed to avoid errors. During the first optimization, the

FIGURE 1 General workflow including the modules available in AQME and their connectivity with external programs.
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calculations are performed with all the bonds frozen in addition to any user-defined constraints. This preparatory calcula-
tion avoids problems related to the superimposition of molecules when the input molecules are generated from 1D or 2D
inputs. In the second optimization, only the user-defined constraints are included. Afterward, the CREST search is carried
out, including any additional keywords specified in the crest_keywords option (i.e., crest_keywords=“--nci--cbonds 0.5”).

MM-based searches are faster and may be necessary for large systems or large numbers of molecules. The first
method (using program=“rdkit”) performs RDKit-based conformer optimization and filters duplicates based on energy
and geometry (with root mean square distance, RMSD). It starts with an energy window to remove high energy con-
formers (ewin_csearch option, default 5 kcal/mol above lowest), then removes conformers with similar energies
(initial_energy_threshold option, default 0.0001 kcal/mol), and finally removes conformers with similar energy and
RMSD (energy_threshold, default 0.25 kcal/mol and rms_threshold, default 0.25). The default values were chosen based
on a benchmark study of flexible druglike compounds and natural products to yield significant conformers while reduc-
ing duplicates (see the Benchmarking of CSEARCH-RDKit and CMIN section in the AQME_ESI.docx document avail-
able in FigShare41).

When the initial conformational sampling fails, the program automatically tries to address the problems through a series
of changes to its initial protocol (i.e., changing MMFF for UFF, using random coordinates for molecular embedding, etc.),
making the protocol more robust. CSEARCH also tries to overcome other severe limitations in the conformational sampling
of molecules that contain transition metals or atoms with uncommon hybridization (i.e., pentacoordinate P atoms). Addi-
tionally, common templates for organometallic compounds, such as linear, trigonal planar, and square-planar geometries,
can be used. These geometries are not usually obtained with standard RDKit protocols (i.e., square-planar metal complexes
lead to tetrahedral structures), which may then neglect an essential aspect of conformational behavior (see the Highlighting
the Importance of Specifying the Metal Type: ABEVUZ as an Example section in the ESI41).

Internal torsional sampling approaches, such as the systematic unbounded multiple minimum (SUMM)42 and
Monte Carlo Multiple Minimum (MCMM) algorithms, are also implemented.43,44 The SUMM approach surveys dihe-
dral angles that are progressively varied by a user-specified increment, while MCMM applies random values to a ran-
dom subset of the rotatable torsions. These two methods require more time than the standard RDKit sampling, but they
might render more accurate results in cases with complex conformational spaces. Finally, the CMIN module refines the
energies and geometries of the structures obtained with RDKit or other low-level methods before optimizing with more
demanding levels of theory, such as density functional theory (DFT). xTB or ANI methods typically result in a
reordering of relative conformational stabilities closer to QM results and the removal of duplicate conformations.

FIGURE 2 Modules in AQME. (a) Methods and parameter options in CSEARCH and CMIN modules. (b) Recognition of atoms to

include in the GenECP section of an example organometallic complex when using gen_atoms = [“Pd”]. (c) Outline of error fixed in the

QCORR module. Additional creation of input files for calculations for properties such as NMR, NBO, or higher-level single point energy

evaluation. (d) Generation of Boltzmann averaged molecular properties using the QDESCP module for conformer ensembles.
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3.2 | QM input file preparation: The QPREP module

The QPREP module is designed to convert multiple formats (SDF, XYZ, PDB, JSON, LOG/OUT) into input files for QM
programs ready to be submitted without further modification. When using SDF and XYZ files, a QM input is generated
for each structure in the files. For LOG/OUT calculations, only the final geometry is employed to create inputs for post-
optimization single-point calculations (i.e., energy corrections at a higher theory level, TD-DFT calculations, etc.).
QPREP currently generates inputs for Gaussian, ORCA, and PySCF. One of the most convenient features of this
module is that the Gen and GenECP specifications from Gaussian input files are automatically written. When the
user specifies atom types to use in gen_atoms, QPREP detects the atom types of the molecule and separates them
into two groups for the input GenECP section. For example, the users can set the 6–31 + G(d,p) basis set for C,
H, N, and P atoms while using def2-SVP for Pd atoms (Figure 2b). This automated protocol avoids the tedious man-
ual setup of all the types of atoms in the GenECP part, which is especially helpful when working with different
families of compounds or with big molecular datasets. The input keywords for the generated input files are speci-
fied through the qm_input option, and other parameters can be edited as preferred, such as charge, multiplicity,
generation of CHK files, number of processors, and memory. Also, the user can include final lines after the molec-
ular coordinates (i.e., NBO keywords).

3.3 | Postprocessing of output files: The QCORR module

Typically, a tedious manual search and correction for error terminations, convergence issues, and extra imaginary
frequencies is necessary after running QM calculations. Based on our experience with structure optimizations and
frequency calculations for large databases (i.e., many thousands) of organic compounds, such occurrences are relatively
common. QCORR structures output data and automatically detects issues or errors, creating new input files that try to
correct those issues, a cycle that can be repeated several times (Figure 2c).

We conducted a study of 2709 calculations with organic molecules to find the optimal number of QCORR cycles for
ground state optimization and frequency calculations in Gaussian 16 (QCORR_benchmarking.zip file in FigShare41).
The initial geometries were obtained with a CSEARCH-RDKit standard conformer sampling. In the first round, 24% of
the RDKit-generated conformers converged to duplicated QM conformers after optimization. From the unique struc-
tures, many outputs had problems: 1.5% showed imaginary frequencies, and 35% failed to converge to a stationary point
in frequency calculation (albeit they converged during optimization). QCORR then automatically generated new inputs
to fix the issues and these inputs were run. After the second round of QM calculations, 98% of the outputs had no
issues, indicating that two QCORR rounds might be sufficient for most organic molecules. In our experience, an addi-
tional cycle is normally needed for complex systems with metals or supramolecular aggregates. The freq_conv keyword,
which checks if a stationary point is found during optimization but not during frequency calculations, may be best
avoided for flat or complex energy surfaces.

Structural isomerizations can be automatically detected and filtered. Also, calculations with spin contamina-
tion will be removed if S2

� �
differs from s(s+ 1) by more than 10%, as previously suggested.45 The filter can be disabled

or adjusted to other thresholds with the s2_threshold option. QCORR uses the cclib Python library and stores all parsed
data as JSON files since this format allows other Python tools to retrieve the information easily. By default, QCORR
uses this information to detect all calculations for consistency in terms of calculation type and software version.

3.4 | Generation of Boltzmann weighted properties and descriptors:
The QDESCP module

When comparing computed results with experimental observables, Boltzmann-weighted values are generally advisable
for molecules with multiple conformers. This also applies to molecular descriptors, where the utility of approaches that
derive an ensemble average for a particular descriptor, or directly use minimum/maximum values, has been demon-
strated.46,47 AQME is integrated with xTB to compute and curate computed descriptors for large compound databases.
Starting from 3D geometries, atomic properties such as charges, fractional occupation densities, Fukui indices,
D3-dispersion coefficients, and molecular properties including dipole moment, HOMO-LUMO gap, polarizability,
energy are determined for every conformation of a molecule (Figure 2d). Then, the Boltzmann averaged values of each
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descriptor are calculated and stored separately. This protocol enables the generation of SQM molecular descriptors as
starting points for ML models. Additionally, QDESCP can be used to obtain Boltzmann averaged nuclear magnetic
resonance (NMR) chemical shifts from DFT calculations. The user can specify slope and intercept to scale the results to
the tetramethylsilane (TMS) scale using tools such as The Tantillo group's CHESHIRE repository,48 rendering simulated
spectra that can be compared directly with experimental spectra.

4 | END-TO-END WORKFLOWS

In this section, we detail three illustrative workflows that have been adapted for different applications regularly
carried out in our group, such as calculating energy profiles and generating molecular descriptors for ML
models. These workflows are available on Figshare41 along with associated data and metadata, and three formats
are available in the code and the Read the Docs webpage: Jupyter Notebook, SLURM script, and command-line
script. Hands-on tutorials have been uploaded to YouTube.29 For large systems or datasets, we typically execute
end-to-end AQME workflows on a cluster using SLURM commands: the overall time taken is dominated by
the QM calculation steps.

4.1 | The conformational distribution and 1H chemical shifts of strychnine from
SMILES input

Strychnine is a natural alkaloid produced by different plants of the genus Strychnos, whose complexity and pharmaco-
logical properties have attracted many organic synthetic groups over time.49 Recently, John, Reinscheid, and coworkers
reported two different conformers in a 97:3 ratio observed in NMR studies.50 The following AQME workflow aims to
identify these two structures and simulate an averaged NMR spectra starting from a SMILES string, using a combina-
tion of (i) RDKit conformer sampling, (ii) Gaussian geometry optimization with B3LYP/6–31 + G(d,p), (iii) fixing errors
and imaginary frequencies of the output files, (iv) GoodVibes51 calculation of Boltzmann distributions using Gibbs free
energies at 298.15 K, and (v) Boltzmann averaged shielding tensor calculations (empirically-scaled to obtain chemical
shifts) with B3LYP/6–311 + G(2d,p), SMD = CHCl3 (Figure 3). Using the CSEARCH module with RDkit yields two
conformers which are utilized further for DFT optimization. The calculated Boltzmann distribution for the two con-
formers is 99:1, which correlates well with the experimental observation of 97:3. Furthermore, the predicted 1H chemi-
cal shifts present a low mean average error (MAE, 0.14 ppm for nine known 1H signals) compared to the experimental
values.52 This workflow did not require manual intervention and suggests that further applicability of AQME to auto-
mate NMR prediction and organic structure elucidation merits investigation.

FIGURE 3 End-to-end workflow to calculate the conformer distribution and scaled (TMS) 1H NMR chemical shifts of strychnine

in CHCl3.
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4.2 | Comparing Diels-Alder activation barriers from multiple SMILES inputs

A common computational task involves comparing the reactivity of several different substrates or reagents, for which
the same elementary steps are studied separately for each of the related systems. Where transition states are involved, a
common approach to conformational analysis involves constraining forming/breaking bonds while flexible regions are
explored in much the same way as for a ground state structure, followed by saddle point optimizations. AQME can be
employed to generate and compare energy profiles by automating this sequence of steps that is often performed manu-
ally. Figure 4 summarizes a workflow where a CSV input containing a list of SMILES is used to generate the reaction
energy profiles for the Diels-Alder cycloadditions of multiple cyclic dienophiles, each reacting with cyclopentadiene.53

A Jupyter notebook was used to define SMILES strings and to identify the relevant atom numbers to define constraints
that are used for the conformational analysis of TSs. Performed manually, these tasks would typically each structure to
be built and visualized by the user. This approach is limited to reactions where the TS structures are intuitively known;
for automated TS location and energy profile generation without requiring prior knowledge, and mechanistic discovery,
tools such as autodE are highly recommended.15

The workflow presented illustrates a typical multistep combination of SQM conformer sampling, geometry optimi-
zations and single point energy corrections with different levels of theory, and the generation of a potential energy sur-
face diagram. AQME links together the following tasks: (i) CREST conformer sampling, (ii) Gaussian geometry
optimization (B3LYP/def2-TZVP), (iii) fixing errors and imaginary frequencies of the output files, (iv) ORCA single
point energy corrections using DLPNO-CCSD(T)/def2-TZVPP, and (v) Boltzmann weighted thermochemistry calcula-
tion and PES generation with GoodVibes at 298.15 K. There is minimal manual intervention and the use of separate
spreadsheets to create the PES is avoided.

4.3 | Generating QM or SQM molecular descriptors for a large dataset

Statistical and ML applications in chemistry are often enhanced by using feature vectors or parameters derived
from QM calculations, as opposed to features obtained solely from the 2D-molecular graph.54 For example, QM-
derived atomic charges or populations are often used in multivariate linear regression or neural network models.55

Figure 5 shows a workflow performed on the SMILES-containing ESOL database,56 which contains measured
aqueous solubilities, that uses a message passing graph neural network (GNN) model. There are 1126 structures
with experimental values available, which are split into training (901), validation (175) and test (50) sets. The pro-
tocol includes (i) RDKit conformer sampling, (ii) xTB descriptor generation (Boltzmann weighted), and
(iii) neural fingerprint (nfp)57 based GNN model creation. In the first step, the CSEARCH module creates 3D con-
formations using the SMILES strings of the database with RDKit. Then, QDESCP uses xTB to generate molecular
and atomic properties such as dipole moments, charges, Fukui indexes, dispersion parameters, polarizability, and
HOMO-LUMO gaps, among others. These properties are provided individually for each conformer and as

FIGURE 4 End-to-end workflow to generate the energy profile of multiple Diels-Alder reactions using a CSV as the input file.
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Boltzmann averaged values. In addition to properties generated from xTB, features in the Lipinski/Descriptors
modules of RDKit are also included in the QDESCP analysis.

Boltzmann-weighted xTB parameters are then used as descriptors in a GNN model. The GFN2-xTB atomic
properties are encoded as node features, and the molecular properties are passed as global features in the input graph
structure. This graphical representation of the molecule with embedded atomic and molecular properties is used to
build a message passing GNN. The GNN model utilized the AdamW optimizer, and model performance was assessed
by measuring the mean absolute error during training for 500 epochs. The model showed an R 2 and MAE of 0.9 in the
held-out test set of 50 molecules. Hyperparameter tuning can be performed along with feature selection to further
improve this accuracy. Other ML models, such as random forests can also be employed in this workflow instead of
the GNN shown.

5 | CONCLUSION

AQME is an open-source Python package for building computational workflows to perform multistep protocols effi-
ciently that combine different packages and model chemistries. The approach is well-suited to general tasks incorporat-
ing conformational analysis, geometry refinement, QM optimizations, and ensemble-averaged property predictions.
Representative examples of chemical shift prediction, reaction energy profile calculation, and dataset featurization are
shown here, in each case operating as a fully automated (“end-to-end”) workflow from the supplied inputs to desired
Boltzmann-averaged outputs. Inputs can be supplied in SMILES or several 3D structure formats. This approach cap-
tures and preserves protocols used at every stage of the research process: there are no extraneous Spreadsheets involved
and all steps can be reproduced by other researchers.

The software consists of independent modules that can be combined in any order. The CSEARCH module performs
conformational sampling or interfaces to external conformational analysis tools using MM (RDKit) or SQM (xTB,
CREST) levels of theory. CMIN allows the refinement of conformer ensembles with xTB or ANI methods. The QPREP
module converts files with different 3D input formats into input files for external QM programs, such as Gaussian,
ORCA, and PySCF. The QCORR module analyzes QM output data by systematically processing output files. Filters for
example, convergence errors, imaginary frequencies, and undesired structural isomerization, can be implemented to
create new inputs automatically. The QDESCP module produces Boltzmann-weighted descriptors and properties. The
modular structure means AQME can be used in Jupyter notebook environments or reused and imported by other
Python projects.
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