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ABSTRACT Many speech features and models, including Deep Neural Networks (DNN), are used for
classification tasks between healthy and pathological speech with the Saarbruecken Voice Database (SVD).
However, accuracy values of 80.71% for phrases or 82.8% for vowels /aiu/ are the highest reported for audio
samples in SVD when the evaluation includes the wide amount of pathologies in the database, instead of
a selection of some pathologies. This paper targets this top performance in the state-of-the-art Automatic
Voice Disorder Detection (AVDD) systems. In the framework of a DNN-based AVDD system we study
the capability of Self-Supervised (SS) representation learning for describing discriminative cues between
healthy and pathological speech. The system processes the SS temporal sequence of features with a single
feed-forward layer and Class-Token (CT) Transformer for obtaining the classification between healthy and
pathological speech. Furthermore, there is evaluated a suitable data extension of the training set with out-of-
domain data is also evaluated to deal with the low availability of data for using DNN-based models in voice
pathology detection. Experimental results using audio samples corresponding to phrases in the SVD dataset,
including all pathologies available, show classification accuracy values until 93.36%. This means that the
proposed AVDD system achieved accuracy improvements of 4.1% without the training data extension, and
15.62% after the training data extension compared to the baseline system. Beyond the novelty of using SS
representations for AVDD, the fact of obtaining accuracies over 90% in these conditions and using the whole
set of pathologies in the SVD is a milestone for voice disorder-related research. Furthermore, the study on
the amount of in-domain data in the training set related to the system performance show guidance for the data
preparation stage. Lessons learned in this work suggest guidelines for taking advantage of DNN, to boost the
performance in developing automatic systems for diagnosis, treatment, and monitoring of voice pathologies.

INDEX TERMS Voice disorder, pathological speech, Saarbruecken voice database, advanced voice function
assessment database, self-supervised, class token, transformer, deep neural networks.

I. INTRODUCTION
With recent COVID-19 pandemic it has emerged a way of
life where the remote access to health services has gained
relevance. The availability of automatic systems for diag-

The associate editor coordinating the review of this manuscript and

approving it for publication was Junhua Li .

nosis, treatment and monitoring of voice pathologies has
gained importance to help doctors provide timely assis-
tance to patients and, at the same time, screen those who
really need hospital visits. Currently, voice pathologies have
an impressive prevalence among population. Previous stud-
ies [1] reported that almost 30% of general population have
experienced a period of time with a problem of voice. While
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in [2] authors reported that one in every 13 adults has
voice problems annually, which means a prevalence of 7.5%.
For professionals that use the voice as primary tool is even
worst. Among teachers, the prevalence amounts to 58% [3],
and there are many more professionals in similar circum-
stances, e.g. singers, actors, telemarketers, etc. There are
many reasons why people with these problems do not go to
the doctor in time for assessment or treatment. If voice affec-
tation is not very annoying, it is usual to leave the problem
aside while getting worse. Therefore, there is an opportunity
to use smart solutions to assess voice pathologies as part of
remote health services contributing to early diagnosis.

The task of automatic voice disorders detection opens
the gate to health assistance systems, from the detection
of a voice disorder to the specification of the disease and
its severity. Then, tracing the pathology evolution and the
treatment are also important tasks.Many research efforts have
focused on this aim from the approach of binary classifica-
tion between healthy and pathological voices [4], [5]. Saar-
bruecken Voice Database (SVD) [6] has been widely used in
previous works considering that this one of the few options
among freely available datasets with healthy/pathological
voice recordings. Reported results in previous works are
showing accuracy values of around 80% when the complete
set of pathologies available in SVD is used. For instance,
80.71% for phrases in [7] and 82.8% for vowels /aiu/ in [8].
All reported accuracies higher than this figure, have been
obtained with some selection of voice data using only certain
pathologies [9], [10]. This closed-set scenario is not realistic
for health applications. So, instead of the pathology selection,
we think that the evaluation of systems with a high variability
of pathologies reflects the real-life scenario of application,
where the AVDD system would probably be exposed to many
different voices. In this study we work with the wide amount
of pathologies included in SVD’s audio data for detecting
which one correspond to healthy speech and which one to
pathological speech.

The problem of data availability in voice disorder detection
emerges from the difficulty of obtaining healthy and patho-
logical voices manually labeled by experts. Usually, these
data result are the outcome of research projects with medical
institutions where frequently the condition is to keep data
private. Therefore, the availability of datasets for develop-
ing AVDD systems is quite limited. SVD [6] is one of the
scarce freely available databases for this task. More recently,
AVFAD and VOICED appeared in similar conditions. In this
work, we have used SVDmotivated by its availability and the
fact that it is almost a standard for assessing AVDD systems
due to the number of related papers employing it. SVD is
well endowed with recordings and speakers. However, it also
presents some issues, such as fewer samples of healthy speech
than pathological speech. There is great inequality in the
distribution of individual pathologies - some pathologies have
only one audio, and they can end up only in the testing set -
which is a problem for training AVDD systems. In this work
we propose a way to deal with these issues by using AVFAD

database to implement a suitable data extension for expanding
the training set of SVD.

A distinctive characteristic of Deep Learning approaches
are the requirement of a large amount of data for training
models. This issue has limited its use in AVDD, where voice
data availability is scarce. This motivated us to explore the
capability of SS representations, such as Wav2vec2.0 [11],
HuBERT [12] and WavLM [13], for extracting features
with information on healthy/pathological cues in the lim-
ited amount of data of SVD. For classification, we assess
a basic feed-forward layer and a CT Transformer design
based on aMultihead Self-Attention (MSA) mechanism [14],
[15]. The classifiers refine the information in the temporal
sequence of SS embeddings and provides a single vector
for each utterance which capture the essence of pathological
and healthy classes. We developed the AVDD framework
inside the SUPERB toolkit [16] and contribute with a new
downstream.1

Our contributions are:
1) Significant performance improvement in AVDD evalu-

ated in the Saarbruecken Voice Database including all
the set of pathologies without restriction. This system
achieves an accuracy improvement of 4.1% over the
baseline system and overcomes the unrealistic assump-
tion of previous related work that used to select a
set of pathologies for performing the AVDD system
evaluation.

2) The first approach for evaluating SS representations
and CT Transformer in voice disorder detection.

3) Evaluation of the strategy of training extension as a
suitable solution for the low-resource characteristic
of voice disorder-related tasks, that allows for effec-
tively employing DNN-based solutions. This strategy
achieves an accuracy improvement of 15.62% over the
baseline system.

4) Open-source code for reproducing results and further
investigations.

In the following, section II presents a review of related
previous works that allows to establish the performance
of state-of-the-art. Section III explains the experimental
setup including databases and performance metrics. Then,
section IV presents the AVDD system proposed and describes
an strategy for making a suitable use of the data available
for improving the performance of the small dataset used for
evaluation. SectionV presents the experimental configuration
to evaluate the proposed system and discusses on obtained
results. Finally section VI concludes the paper.

II. PREVIOUS WORKS
There are several approaches for developing AVDD sys-
tems using machine learning methods. Many of these works
focused on studying suitable representations for pathological
voice, such as spectral and cepstral features, voice quality
and perturbation measures, and complexity measures [17].

1https://github.com/dayanavivolab/s3prl/tree/voicedisorder
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Table 6 in [17] shows accuracy figures for 12 feature sets,
including MFCC, PLP, glottal source features, etc, that reach
76.19% and EER = 26.2% for SVD’s phrases. Furthermore,
Opensmile2 andMultidimensional voice program parameters
(MDVP) [18] (the latter is no freely available) are toolkits to
extract feature sets that include measurements in the previ-
ously mentioned categories. In [7] authors report results with
Opensmile for SVD’s phrases with top accuracy of 80.71%
(Table 2 in [7]) similar to accuracy of 82.8% reported in [8]
for /aiu/ concatenated vowels in SVD. Those feature sets have
been complemented with a variety of statistical classifiers
such as GMM [19], SVM [9], among others that are fur-
ther mentioned in [4]. More recently, some works have pre-
sented systems based on DNN including architectures such as
CNN [20] reporting an accuracy of 71% for SVD’s /a/ neutral
vowel, LSTM [21] reporting accuracy of 68, 98% for SVD’s
/aiu/ sustained vowels, and ResNet [22] with accuracy of
69.37%3 for /a/ neutral vowel in SVD, and also BLSTM [23].
There are other recent works employing DNN [24], [25], [26]
with similar configuration and performances. Summarizing,
table 1 shows reported accuracy results in the last three years
as comparison starting point of the state-of-the-art perfor-
mance. These previous works reported best accuracy values
of around 80%, including the most recent approaches based
on DNN.

TABLE 1. Summary of previous reported results of voice disorder
detection using SVD dataset.

The review in [4] shows a large table of research works
describing the database, methods used for AVDD systems,
and the system performance reported by authors. It is inter-
esting to see that accuracy values of 100% are also reported.
However, note that each of these works uses a selection of
data with a few pathologies, usually including those that have
a large number of audio samples or are easily distinguishable
from healthy speech. These experiments are designed in a
close-set classification scenario, where the evaluation set
contains only audio from a known set of pathologies. This
is far from a real-life application scenario, so these reported
results are hardly useful beyond the literature. Unfortunately,
this kind of experimental design are very frequent among the
voice disorder previouswork [9], [24], [26], so this fact makes
hard the task of comparing several approaches.We agree with
other researchers that in this field the wide variety of AVDD
reported performances and the reproducibility of results is
quite an issue [22]. Recently, Huckvale and Buciuleac [7]

2https://github.com/audeering/opensmile
3This figure was taken from the reproduction of the experiment in [7].

approached over this problem using SVD. They found that
re-implementations of previous works using DNN-based sys-
tems under-performed the reported results.

On the other side, in the framework of the recent flow
of DNN-based solutions SS representations have raised as a
general purpose frontend. The high capability of SS represen-
tation learning for finding underlying relations on data and
providing substantial features has been assessed in several
speech-related areas.4 Related to the voice disorder topic
there are a few recent works that use SS representations for
automatic speech recognition with pathological speech [27],
[28]. However, from the best of our knowledge there are
not previous studies for SS representations in AVDD. From
the classifier point of view, there are recent deep learn-
ing solutions based on Transformers [29] that are achiev-
ing very promising performances for classification tasks
related to speech processing, for instance in biometric appli-
cations [30], [31], although not yet for pathological speech.

In voice disorder related task the use of DNN-based solu-
tions is limited because the low availability of resources is
a problem for using solutions based on deep learning. The
augmentation of training data using different sets of data
available has been previously explored with positive results
in many speech related tasks. However, apparently in voice
disorder related tasks, data augmentation strategies have not
being widely used. Anyway there are a few related works that
could be mentioned. In [32] authors evaluated their AVDD
system with three databases exchanging train and test sets
among them. In [23] authors evaluated an AVDD systemwith
audio recorded with smartphone, so they employed domain
adversarial training to increase the performance robustness
against channel mismatch. In [33] and [34] authors explore
the generation of synthetic samples for augmenting the
minority class for handling imbalanced datasets.

Motivated from these issues, in this study we evalu-
ate a training extension strategy as a suitable solution
for the low-resource characteristic of voice disorder-related
tasks that allows to effectively use DNN-based approaches.
We design an AVDD system using SS representations and
DNN-based classifiers as a framework for studying the per-
formance of SS representations for healthy and patholog-
ical speech information. Then, we use this framework for
assessing the performance of the training extension strategy.
Worth highlighting that the experimental design consider the
wide amount of pathologies and levels of severity intrinsic
to SVD corpus for evaluation, because this data structure
resemble a real life scenario of application where the AVDD
system would face any kind of patient and pathology. Note
that reported results using different features and classifiers
for the AVDD system, including the most recent approaches
based on DNN, have reached maximum accuracy values of
around 80%. Then, beyond the issue of comparability with
previous works, we can consider this performance figure as
the state-of-the-art. Anyway, we choose the system presented

4superbbenchmark.org
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FIGURE 1. Distribution of more frequent pathologies in databases SVD and AVFAD.

in the previous paper [7], which has a performance among the
best reported in literature, and recompute it with our data list
for establishing the baseline.

III. EXPERIMENTAL SETUP
A. DATABASES
1) SAARBRUECKEN VOICE DATABASE (SVD)
This database in the German language [35] contains
voice recordings of 687 healthy persons: 428 females and
259 males, and 1356 patients: 727 females and 629 males
with one or more pathologies. The database includes
71 pathologies, although there is a great inequality in the
distribution of individual pathologies even some pathologies
have only one audio. Fig. 1 shows the pathologies with more
audio representation.

For experiments we used the full set of pathologies without
any selection, because this is the most related scenario to a
real case in a hospital triage. We use the phrase included in
each recording session: Sentence ‘‘Guten Morgen, wie geht
es Ihnen?’’ (‘‘Good morning, how are you?’’). The original
sample rate of the audio is 50 khz, but for these experi-
ments we downsampled the audio to 16 Khz. The database
was divided in 5-fold and a two-to-one ratio is maintained
between pathological and healthy samples. Therefore, the
minimum reasonable accuracy is around 70%, less than this,
the system is worse than a random classification. The audio
of speakers included in training is not in the test partition.

2) ADVANCED VOICE FUNCTION ASSESSMENT DATABASE
(AVFAD)
This is an open-access dataset in the Portuguese lan-
guage [36] with 363 subjects with no vocal alterations:
250 females and 113 males, and 346 clinically diagnosed
subjects with vocal pathology: 249 females and 97males. The
patients are diagnosed with 26 different vocal pathologies,
however most of them are not included in SVD. The most
represented disorders in AVFAD are presented in Fig. 1. The
original sample rate of the audio data is 48 khz, but for these
experiments we downsampled the audio to 16 Khz.

B. PERFORMANCE METRICS
To evaluate the classification performance we use Accuracy
(ACC) (eq.1) and Unweighted Average Recall (UAR) (eq.2).
Among these indexes, we use values in the confusion matrix
for computing the score, i.e., true and false positive and
negative number (TP, FP, TN, FN). For balanced class dis-
tributions, ACC and UAR are quite similar. However, if this
is not the case, UAR considers each class by itself, while ACC
provides a more general metric.

ACC =
TN + TP

TN + TP+ FN + FP
(1)

UAR = 0.5 ·
TP

TP+ FN
+ 0.5 ·

TN
FP+ TN

(2)

Furthermore, as this is a detection task, we also used
performance metrics such as the Area Under ROC Curve
(AUC) [37] and Equal Error Rate (EER) [38]. AUC is a per-
formance measurement for the classification problems at all
threshold settings. It tells how much the model is capable of
distinguishing between classes. So, the closest to 1 the AUC,
the better the model is at distinguishing between healthy and
pathological speech. On the other side, EER is the operation
point where the false acceptance rate and false rejection rate
are equal. It is a widely used statistic to show biometric per-
formance, typically when operating in the verification task.
In general, the lower the EER value, the higher the accuracy
of the system.

For all experiments, we computed the classification scores
in the 5-fold scheme. Then, we pull all the scores of the
partitions together, and compute a single ACC, UAR, AUC
and EER for the whole experiment. Note that all performance
metrics are expressed in percent (%).

IV. METHODOLOGIES FOR AVDD SYSTEM
In this paper, we present a DNN-based AVDD system for the
binary classification task -healthy vs. pathological speech-
where the aim is to improve the performance by using the ben-
efits of SS representation learning in an under-resourced task.
In the last few years, a flood of DNN solutions has overspread
many areas of speech research. However, the small amount
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FIGURE 2. Flowchart of the AVDD system from the training of the SS representation models which are employed in two modalities, frozen and
fine-tuned, for the binary classification of healthy and pathological speech samples.

of healthy and pathological voice data available in related
datasets has limited the wide use of DNN in this field. Since
the performance improvement is limited in reported results
after studying handcrafted features and statistical classifiers
suitable for the task, to find ways of assessing the data-driven
paradigm is an interesting subject of study.

Fig. 2 depicts the AVDD system. It starts from the training
of the SS models employed as speech representations. These
models were previously trained with a huge amount of speech
data without any labeling related to the medical condition.
The other side of the figure illustrates the AVDD system
for the task of healthy/pathological classification, so the
speech data used in this case include labeling information
indicating the class. There are two modalities for using the
SS representations: frozen and fine-tuned. Fig. 2a) describes
the frozen mode, where gradients are inhibited such that the
back-propagation algorithm cannot modify the SS represen-
tation model with respect to the in-domain data. Fig. 2b)
describes the fine-tuned mode, where the gradients are active
such that the SS representation model can adapt to the in-
domain data. The speech representation block is followed
by a classification stage that trains an MLP or Transformer
model using the Cross-Entropy (CE) loss function. The fol-
lowing subsections further explain the characteristics of these
models, data, and loss function employed for training them.

We have developed the system in the framework of the
SUPERB toolkit [16]. Then, we contribute to the toolkit
development by releasing the code as a new downstream for
AVDD system. Also, to ensure reproducibility, we share the
audio lists employed in the experiments.

A. SELF-SUPERVISED REPRESENTATIONS
In this work we include three of the most remarkable methods
in our study, namely: Wav2vec2.0 [11], HuBERT [12], and

WavLM [13]. All these, were previously trained with a sig-
nificant amount of speech without any healthy/pathological
awareness. Now we use them to create feature vectors for
train/test partitions of SVD as part of the first processing stage
of the system. They describe the sequential evolution of the
utterance, so there is one feature vector by frame.

1) Wav2vec2.0
In this paper we used the Wav2vec2.0 base model, whose
embeddings are 768-dimensional. The model architecture
consists of a local encoder with several convolutional blocks.
It encondes the raw audio into a sequence of embeddings with
stride of 20 ms and receptive field of 25 ms.

The model is pre-trained in a self-supervised setting
inspired by BERT [15]. In this setting, the model is trained
to minimized a contrastive loss between the outputs of the
contextualized encoders ct and the quantized local encoder
representations qt of randomly masked contiguous time-
steps t

Lm = −log
exp(sim(ct , qt )/k)∑
q̃∈Qt (exp(sim(ct , q̃)/k)

(3)

where sim(ct , qt ) is the cosine similarity between the contex-
tualized encoder outputs ct and the quantized convolutional
encoder representations qt , k is the temperature set to 0.1, Qt
represents the union of candidate representations q̃ includ-
ing qt , and K = 100 is the number of distractors, which
are the outputs of the local encoder sampled from masked
frames of the same utterance of qt . Finally Lm is obtained
by summing over all masked frames, a L2 regularization is
added to Lm, and also a diversity loss to power the use of the
quantized codebook representations. The quantization mod-
ule is based on a Gumbel-Softmax layer [39]. It generates the
targets of the model by the quantization of the local encoder
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representations, and then these representations input the
contextualized encoder. The architecture employs 12 trans-
former encoder blocks [29] with 8 attention heads each. The
pre-training process is optimized with ADAM [40] and the
learning rate decays linearly after a warming up.

2) HuBERT
The HuBERT base model is the one employed in this study.
In this model [12], the contiguous time steps from the
local encoder representations are randomly masked similar
to Wav2vec2.0. A k-means clustering mechanism is applied
to 39-dimensional Mel Frequency Cepstral Features (MFCC)
features to generate labels for the first pre-training iteration.
In the following iterations, the k-means clustering uses the
latent features from the previous iterations to generate better
targets. In order to predict cluster labels, a projection layer
is added over transformer blocks. The system is trained to
minimize the cross-entropy loss (CE) defined as

Lm(f ;X , {Z (k)
}k ,M ) =

∑
t∈M

∑
k

log(p(k)f (z(k)t |X̃ , tz)) (4)

where Z (k) is the target sequences generated by the k-means
model, M ⊂ [T ] is the set of indices to be masked for a
length−T sequence X , and X̃ = r(X;M ) is a noisy version of
X where xt is replaced by a mask embedding x̃ when t ∈ M .
X̃ is the input of a masked prediction model f for predicting a
distribution over the target indices at each timestep pf (|̇X̃; t).
The pretraining is also based on the ADAM algorithm [40].

3) WavLM
In the same line of previously described representations
Wav2vec2.0 and HuBERT, WavLM [13] is a more recent SS
system built with transformer blocks and trained with several
amount of speech data. It learns the speech representation
by masking part of the speech signal to predict the hidden
part. The model is based on a convolutional representation
encoding over 25 ms of audio with stride 20 ms and a
transformer encoder [29]. In the training stage, the masked
acoustic features from the convolutional encoder get into the
transformer and it outputs hidden states. The training objec-
tive forces the network to predict a discrete target sequence.
Similar to HuBERT, to obtain these targets the system uses
the k-means algorithm for clustering on the training data.
This is an iterative processing, whereMFCC features are used
for the first step, and in the following iterations, the latent
representations learned are used.

To optimize the network WavLM uses the mask prediction
loss following HuBERT. The objective function is defined as

Lm =

∑
l∈K

∑
t∈M

log(p(zt |hLt )) (5)

where M corresponds to the set of masked indices in time
domain and hLt is the L−layer transformer output for step t .
In this paper we used the WavLM base model, which

have 12 transformer encoder layers, 768-dimensional hidden
states, and 8 attention heads. The model is pre-trained with

960 speech hours from Librispeech using the label generated
by clustering the 6 − th transformer layer output of the first
iteration of HuBERT base model.

B. DNN-BASED CLASSIFIERS
For classification we included two models: a basic
DNN-based architecture of Multi Layer Perceptron (MLP)
and a more recent architecture based on Transformer.

1) MLP
This DNN-based architecture consists of an average pool-
ing for obtaining a single representation vector from the
sequence of SS vectors by frame. This is followed by a
single feed-forward layer for classification between healthy
and pathological. This is a basic model for classification that
allows to evaluate the performance of the SS representation
without much more processing.

2) CLASS-TOKEN TRANSFORMER
Furthermore we use a classifier based on Transformers that
receive the full sequence of SS vectors and provides the
classification between healthy and pathological speech. This
is a more complex model than the previously described MLP,
that allows to evaluate the performance of the AVDD system
beyond the SS representation.

Recently, the Vision Transformer (ViT) [14] has employed
the concept of Class-Token (CT) [15] to concentrate the class
information in a single vector through several layers of self
attention mechanisms in a classification task. This inspired
us to use this learnable vector approach for refining the set of
embeddings from SS representations in order to perform clas-
sification. The CT captures the relevant information for the
final classification task from the whole sequence of embed-
dings through a configurable number of heads and layers in
the MSA block (Fig. 3). Each attention head (HEAD j in
Fig. 3) learns the weights to sum these embeddings for each
layer and obtains a vector consisting on the concatenation of
the attention heads (Hj in Fig. 3). This way the CT learns
a global description of the utterance, where the multiple
attention heads contribute to this final representation vector
of the utterance. The multiple heads implied in the process
are able to better capturing the underlying information in the
sequence than the usual pooling alternative.

C. TRAINING EXTENSION STRATEGY
Considering the low availability of resources in this task, our
purpose here is to explore a way of expanding the training
set of SVD, that only includes one hour of speech data by
fold, with the use of 32 hours of healthy and pathologi-
cal speech from AVFAD dataset. Looking at the descrip-
tion of the databases in previous section III-A there is a
clear difference between AVFAD and SVD in terms of the
pathologies included, the language, the recording conditions,
the speakers, and so on. However, they shared the common
characteristic about the fact that they have labelled speech
data from healthy and pathological speakers. Note that this
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FIGURE 3. AVDD system with SS representation and CT Transformer for
classification. MSA chart highlights only the attention relates to
Class-Token.

could perfectly be the case in a real application, where we use
to have access to some prerecorded dataset but with totally
different conditions than the audio under evaluation.

Fig. 4 shows a preview of the behaviour of speech vectors
obtained from the system using WavLM and CT-transformer
projected with UMAP [41] to 2D. These corresponds to
healthy and pathological utterances in the fold 2 using the
model trained only with SVD training data (left) and with
SVD+AVFAD (right). A priori, we can see that the training
extension seems to increase the separability between classes.
In the next section we present experiments to evaluate the
training extension strategy.

FIGURE 4. Representation vectors of healthy (blue) and pathological
(orange) speech compressed with UMAP to 2D.

V. EXPERIMENTS AND RESULTS
In this section we assess the performance of the AVDD pro-
posal bymeans of binary classification: healthy vs. pathologi-
cal speech using all audios with phrases in SVD. Experiments
are computed in a 5-fold cross-validation scheme.5 The audio
of speakers included in the training set are not used in test.
Datasets included in the training set changes as follow:

1) Train base: Train SVD (Speech duration = 1 hour in
each fold).

5We use the same 5-fold audio partitions as in [7]: ‘‘all pathologies’’
thanks to the collaboration of authors.

2) Train extension: Train SVD + AVFAD (Speech dura-
tion = 1 + 32 hour in each fold).

Segments of four seconds long of phrases, read, and spon-
taneous speech are employed for extending the training sets
of SVD. For all partitions, the same audio set of AVFAD was
appended to each SVD training fold.

A. SYSTEM CONFIGURATION
Experiments were carried out using the three sets of
embeddings obtained with SS representations: Wav2vec2.0,
HuBERT andWavLM available through SUPERB. For all rep-
resentations we used the base model in twomodalities: frozen
and fine-tuned. Frozen means that the model was directly
downloaded already pretrained and used for computing fea-
tures. While in the fine-tuned modality the parameters of the
SS models were adapted to the dataset characteristics. In this
process, the hyper-parameters of Wav2vec2.0, HuBERT, and
WavLM models were modified when processing the training
set with healthy and pathological speech. In the first exper-
iment, we used the training set of SVD, with five different
folds, and in the second approach, we extended the audio list
of the former five folds with phrases from AVFAD.

We use two classification approaches, MLP and CT-
Transformer. MLP starts with a pooling layer for obtaining
a single embedding from the sequence of feature vectors by
frame followed by a feed-forward layer with two outputs
for classification. The CT-Transformer has two-layer depth,
each with an MSA module with six heads. For training the
system, we reserved at each epoch 10% of the training data
randomly as validation set. We run 30000 epochs. At the end,
we checked the best result for the validation set and took this
model for evaluating the test set and presenting it as the final
result.

B. BASELINE SYSTEM
To establish the baseline performance, we use the AVDD
system in [7]. This system uses the feature set Com-
ParE6 designed for automatic recognition of paralinguistic
issues. The ComParE acoustic feature set has 6373 param-
eters including spectral, cepstral, prosodic, and voice quality
parameters of the speech signal obtained by applying a large
set of statistical functionals to acoustic low-level descrip-
tors [42]. For classification it employs a SVM model (Kernel
Poly, 1-dim, C=1) implemented with sklearn.7 The SVM
configuration of the kernel function was selected after an
auxiliary process of parameter sweeping where several com-
binations of parameters of the Polynomial and Radial Basis
Function (RBF) kernels were evaluated for this database.
Note that, despite this system is not based onDNN,we choose
it for establishing the baseline because it presents the best
results among all previously reported, including DNN-based
systems.

6http://www.compare.openaudio.eu/
7https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
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TABLE 2. Average of metrics for the baseline AVDD system.

C. TRAIN BASE EXPERIMENT
After presenting the performance of the baseline system,
we evaluate the proposal by training the model with the
SVD. From now on this experiment is refereed as Train base.
Results presented in Table 3 show the performance of the
system based on SS representations using both, the simpler
classifier based on MLP, and the CT-transformer. In the first
part of the table, SS models are frozen, while in the second
part, they are fine-tuned using the training set.

TABLE 3. Performance metrics for the Train base experiment using MLP
and CT-Transformer for classification (audio type: phrases).

With frozen models the system was not able to outperform
the accuracy of previously reported results in section II,
namely the baseline system of Table 2. Then, by fine-tuning,
the system improves the performance around 3 − 4% of
accuracy. This is an encouraging result considering that the
training data of SVD is very small (only 1 hour of speech).
Note that despite the small amount of training data SS rep-
resentation models are able to adapt to this specific domain.
Fig. 5 shows the corresponding ROC curves for the experi-
ments in Table 3 using WavLM and CT-Transformers. The
behaviour of the curves confirmed the improvement of the
fine-tuning over the frozen training for all operation points,
as well as the corresponding AUC and EER results.

About SS representation performance, the results for
frozen and fine-tuned systems show that the accuracy among
SS representations is very similar. Furthermore, Fig. 6 shows
ROC curves for the systems using SS representations evalu-
ated -Wav2vec2.0, HuBERT, andWavLM -where we can see
that the performance for all operation points is also compara-
ble, as well as the AUC and EER values for the three systems
evaluated.

About classifiers, accuracy results in Table 3 show a mod-
erate improvement with CT-Transformer but only for the
frozen models. When fine-tuning the SS representations,

results are very similar between the system using MLP and
CT-Transformer. Comparing the MLP and CT-Transformer
curves of the fine-tuned models in Fig. 5 we can see that
the performance for all operation points is also comparable,
indicating that so far, SS representations are carrying the
responsibility of the whole system performance.

D. TRAIN EXTENSION EXPERIMENT
In the previous section the AVDD system was able to obtain
an improvement of 3 − 4% over the baseline. Anyway,
we believe that this is still moderate considering the power of
the DNN models employed. These previous results indicate
that the capability of deep learning methods is not benefiting
the system’s performance. We think that the small amount of
training data in SVD folds (1 hour of speech) is hindering the
performance of the DNN classifier.

In this section we evaluate the performance of the AVDD
system introducing an extension in the training set. In order
to introduce out-of-domain information for providing more
acoustic variability to the model, we propose the use of data
from other corpus different from SVD. Then, we use audio
from AVFAD corpora, which also has healthy and patholog-
ical audio phrases but recorded in Portuguese instead of in
German, under different recordings conditions, and contain-
ing different pathologies than SVD. This experiment is called
Train extension and obtained results are presented in Table 4.

TABLE 4. Performance metrics in the Train extension experiment (audio
type: phrases).

Results in Table 4 show an impressive accuracy increase
for all SS representations. Comparing to the previous exper-
iment in Table 3 there is almost a 10% of absolute improve-
ment in ACC and UAR, indicating that the use of AVFAD in
the training set improves the performance. See that HuBERT
and WavLM representations reached great improvements
compared to Train base. For the baseline system, we can
see that the training expansion does not look in favor of the
system performance. Compared to the results in Table 2, the
training extension makes the performance of the SVM-based
system decreases.

Fig. 7 shows the ROC curves for the SS representations
evaluated along with the corresponding curve for Train base
experiment. First, the curves show a similar behaviour among
all SS representation performances. Then, the comparison
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FIGURE 5. ROC curve (True Positive Ratio (TPR) vs. False Positive Ratio (FPR)) for the Train base experiment using WavLM and
CT-Transformer in both training modes: frozen and fine-tuned (audio type: phrases).

FIGURE 6. ROC curve for the Train base experiment using fine-tuned SS
representations (Wav2vec2.0, HuBERT and WavLM) and CT-Transformer
for classification (audio type: phrases).

between the systems of the Train base and the Train extension
show a clear performance improvement for the last approach,
which is consistent for all operation points in the ROC curve.
So, we can confirm that the extension of the training set
benefits the system performance with a significant increase in
performance compared to the system trained only with SVD.

About classifiers, we see that comparing MLP and Trans-
former for classification, the accuracy results in Table 4 are
very similar. Fig. 8 shows that the similarity in performance is
consistent for all operation points throughout the ROC curves,
as well as for the AUC and EER results. This behaviour is
consistent with the previous section result’s.

When comparing Train base with Train extension exper-
iments, the obtained results indicate that both classifiers
needed more data to be able to perform. It is interesting to
see that in the training set there is only a small amount of

in-domain data. SVD data included in the training set amount
only 1 hour, while AVFAD data are 32 hours of healthy and
pathological speech. This fact indicates that even though the
DNN-based system needs more audio, the possibility of using
only a small set as in-domain data allows to keep it as a
practical solution for low resource scenarios. We also tried
to train the system using only AVFAD, but the accuracy went
down to 30%, so this confirms the need for in-domain data
even in a small proportion of the training set.

In conclusion, this experiment demonstrates the value of
SS representation with a suitable use of the data on top
of the model for classification. The extended training set
SVD+AVFAD used for fine-tuning SS representations was
able to accurately perform at separating healthy and patho-
logical speech, without using further complex classifiers.

Note that this conclusion agrees with plenty of previ-
ous work on the usefulness of data augmentation for DNN
approaches [43], [44]. However, this paper contributes with a
first attempt to perform a suitable augmentation strategy for
voice disorder classification task. This is a novel contribution
in the field, that opens the gate for taking better advantage of
deep learning solutions and also for further studies.

E. IN-DOMAIN DATA PROGRESSION
In the previous section V-D we saw the huge increase in
the performance obtained with the training set expansion
and using such a low amount of in-domain data. Namely
1 hour in-domain in a training set of 33 hours. In this section
we study the evolution of performance with the progressive
increase of in-domain data to the training set. We carry out a
sequence of experiments starting from training with AVFAD
alone and then progressively adding 5 minutes of speech data
of SVD (in-domain). Experiments stop after having added
the full training set of SVD (approximately 60 minutes).
The AVDD system selected for these study is among one is
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FIGURE 7. ROC curve throughout scores for all partitions in Train extension experiment vs. Train base experiment using SS representations (Wav2vec2.0,
HuBERT and WavLM) and CT-Transformer for classification (audio type: phrases).

FIGURE 8. ROC curve throughout scores for all partitions in Train
extension experiment using MLP and CT-Transformer for classification
and WavLM for representation (audio type: phrases).

the previously studied: the representation is WavLM and the
classifier is CT-Transformer. Table 5 shows these results as
borderlines of the progression in Fig. 9.
In the first experiment, data in training and evaluation sets

are totally miss-matched according to language, recording
conditions, speakers, text uttered, and pathologies. First row
of Table 5 shows the results of this set-up. In this case the
performance of the system decreases to a value of ACC =

36.3% and EER = 40.1%. The evolution of the performance
is shown in Fig. 9 showing the influence on the results of
the inclusion of in-domain data in the training set. Note that
with just five minutes of in-domain data there is a significant
improvement in the system performance, going from the
system being useless to having results that are better than a
random classification. Then, gradually with the addition of
in-domain data all metrics improve.

After adding 30-35 minutes, the system achieves a perfor-
mance similar to the system trained using only SVD without

TABLE 5. ACC, UAR, AUC and EER for borderline experiments training
with different sets and evaluating with SVD.

FIGURE 9. Performance metrics for the AVDD system with WavLM and
CT-Transformer where x-axis is the amount of minutes of SVD’s in-domain
audio data added to the training set starting with only AVFAD’s
out-of-domain audio data.

domain missmatch, when the train and test are fully matched
in domain (second row of results in Table 5). This result
shows the value of the augmentation considering the differ-
ence of 25-30 minutes of in-domain data in this experiment
with respect to SVD’s full training set which amounts 1 hour
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of speech. Note that in a realistic scenario of application, the
availability of in-domain data is usually the weak point (this
is the role of SVD in this experiment). While the availability
of a data with similar characteristic of the problem is feasible
to acquired (this is the role of AVFAD in this experiment).
Hence, a difference of 25-30 minutes is significant in this
case. In the third row of Table 5 we can see that the system
highly improves the performance obtaining ACC = 93.96%
and EER = 6.31% and using only 1 hour of in-domain data.
Looking at the previous experiment training only with SVD,
the training expansion (SVD+AVFAD) is able to increase the
performance for ACC in 9.3% and EER in 8.8%. Note that
looking at the ACC curve in Fig. 9, from 50 minutes there is
a flat behaviour of the curve. However, we can not be sure if
this is a maximum of performance because as usually happen
in realistic applications, we don’t have more data available
for progressing the curve. Anyway, undoubtedly, this result
is already remarkable for the development of voice disorder
related technologies, considering the previous works using or
not DNN were not able to go beyond 90% of accuracy.

VI. CONCLUSION AND FUTURE DIRECTIONS
Voice disorder related tasks are usually in low resources
scenarios, i.e. very often the datasets are small. This is a
clear problem for applying DNN-based solution. However,
in this paper we have found the way to face these chal-
lenges by proposing an AVDD system based on DNN by
using SS representations. The system achieves an impres-
sive capability for discriminating between healthy and patho-
logical speech either using a simple classifier such as the
MLP or a more complex one such as the CT-Transformer.
Jointly to a suitable strategy for expanding the training set
considering the low availability of resources, this system
reached a significant performance increase with more than
10% of absolute improvement in accuracy compared to the
previous work. Results indicate the feasibility of using other
healthy/pathological data even though this is out of the eval-
uation domain.

It is also remarkable that the performance achieved in these
experiments was using phrases. We believe this is due to the
increase in information provided by phonetic richness. The
clinical practice usually employs sustained vowels, so most
works in literature also utilize vowels. However, obtained
results indicate that automatic systems make an appropriate
use of phrases. So these paper results complement previous
studies by including phonetic variability, which also increases
the flexibility of applicationswhere specific restrictions of the
phonetical content are not feasible.

Conclusions about the usefulness of training extension
line up with previous work for DNN approaches. How-
ever, our contribution is a suitable strategy for implement-
ing data augmentation considering the resources available
for voice disorder-related tasks. Namely, some set of prere-
corded data but out of the domain of the application. The
fact that obtaining performances over 90% of accuracy in
these conditions and using the whole set of pathologies of the

database is a milestone for voice disorder-related research.
To contribute to reproducibility in the research community,
we released the code and shared the lists for experiments
https://github.com/dayanavivolab/s3prl/tree/voicedisorder.

In the future, we plan to approach the multiclass clas-
sification for detecting the specific pathology beyond the
binary classification of the speech sample in healthy and
pathological. For this task, we will study the clustering of the
voice pathologies considering their expression in the speech
signal. Themain objective of this task is tomake it feasible the
classification of the AVDD system, which only evaluates the
information provided by the speech signal. On the other side,
we will explore the multi-head self-attention configuration
architecture for adjusting better the DNN architecture.
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