
DEGREE PROJECT IN TECHNOLOGY,
FIRST CYCLE, 15 CREDITS
STOCKHOLM, SWEDEN 2022

Optimisation of parallel

KD-trees using heuristics

for neuron touch

detection task

Daniel Bened́ı Garćıa
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Abstract

Neuroscience has benefited from neuronal network simulation and an important task

in the simulation is finding points in space where two neurites approach each other

so a synapse could be formed. The task of finding the touching points could be seen

as similar to the ray collision in ray tracing in computer graphics. This thesis aimed

to investigate if the heuristics used in computer graphics and self-defined to speed up

ray tracing can be used in the neurite touchpoint task. For analysis, we measured the

time used for building the k-d trees (one per neuron), the time for querying and the

memory usage. The tests were made using one specific neuron type called interneuron

and realistic densities. This was made for simplicity, but the only difference with other

types of neurons is the conditions for generating a touching point. It was found that due

to their density, the interneurons do not benefit from these heuristics.
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Sammanfattning

Neurovetenskap har tagit nytta av neurala nätverkssimulering och en viktig uppgift i

simuleringar är att hitta punkter i rymden där tv̊a neuriter närmar sig varandra s̊a att

en synaps kan bildas. Uppgiften att hitta beröringspunkter p̊aminner om str̊alkollision vid

str̊alsp̊arning i datorgrafik. Denna studie syftar till att undersöka huruvida heuristiken

som används i datorgrafik för att p̊askynda str̊alföljning kan appliceras i neuron

beröringspunktsproblem. För analys mätte vi tiden som tar för att bygga en algoritm med

namnet kdtrees (en per neuron), tid för beräkningar, samt minnesanvändning. Testerna

gjordes genom att använda en specifik neurontyp som kallas för interneuron och realistiska

tätheter. Interneuroner är valda för att förenkla metodiken i studien, men den enda

skillnaden mellan interneuron och andra typer av neuroner är tillst̊andet att generera

en beröringspunkt. Resultaten visar att p̊a grund av neurondensitet, en interneuron f̊ar

ingen nytta av heuristiken i datorgrafik.
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Chapter 1

Introduction

In the last decade, neuroscience has benefited from simulating nerve cell behaviour or

neural networks. The simulation made use of large-scale and high-precision experimental

methods of data acquisition to develop fact-based tools that helped understand brain

functions and diseases [25]. Due to the amount of data collected, the simulations are

done with supercomputers integrating different levels of simulation.

A human brain consists of 100 billion neurons [14] of different types depending on their

function, shape and other factors. In physiology, a neuron consists of several parts

and from a morphological point of view, these parts, also called compartments, form a

tree. Therefore, every compartment has only one parent and can have several children,

typically no more than 2. When two cells are close enough, also called they have a

touchpoint, they can develop a synapse. A synapse is a structure that permits a neuron

to pass a signal to another neuron.

One usual workflow consists of first doing a single-cell morphology reconstruction, then

building a local network finding touchpoints and selecting possible synapses [30] and

finally simulating the signals exchange. Usually, a neuron has 1000 inputs that fire

at an average rate of 10 Hz and each connection requires around ten instructions.

These make the simulation in real-time of a human brain infeasible even with terascale

computers.

When building a local network, space-partitioning structures are used for faster searches

of touchpoints. This thesis will consider k-d trees as the space-partitioning structure

as previous research showed it performs better for this task[1]. A Kd-tree is a space-

partitioning data structure for organizing points in a k-dimensional space by dividing the
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CHAPTER 1. INTRODUCTION

Euclidian space into two convex sets using hyperplanes. The method that divides the

space into two subsets is called binary space partitioning (BSP). Other examples of BSP

are Octrees and Quadtrees. Some applications of BSP are robotics, computer graphics,

and computer-aided design.

The field of computer graphics uses a technique for rendering a scene called ray-tracing.

This technique models light transport along the stage to get the image. Although ray-

tracing generates realistic images, it has a high computational cost. Computer scientists

developed several techniques to reduce the high computational cost, for instance,

BSP [12]. Also, they introduced the usage of kd-trees and heuristics to improve the

performance [5, 16, 17, 23, 37].

1.1 Problem statement

This project aims to compare different heuristics used in computer graphics concerning

performance. We will measure the performance of the heuristics in terms of execution

time for building the kd-trees and for querying and random access memory (RAM) usage.

These measurements will occur during typical scenarios of data-driven reconstruction of

a neural network. Therefore, this thesis aims to investigate the following:

How does the usage of heuristics in Kd-trees affect the performance of touch

dectetion in neuronal morphometrics?

1.2 Scope and delimitations

This thesis will focus on analyzing the performance of four heuristics in Kd-trees: Surface

Area Heuristic (SAH) and Curve Complexity Heuristic (CCH), these two are common in

computer graphics, and the other two are our own proposal, the median of the hyperplane

with maximum variance split and minimum variance union split. We test the Kd-trees

data structure in serial and parallel execution.

We use a specific type of neuron called a fast-spiking interneuron to evaluate

the performance. Fast-spiking interneuron allows every kind of synapse, not only

axodendritic synapsis. We evaluate two different cases:

• Given a realistic density, try a different number of neurons.

• Given a certain number of neurons, try different densities.

2



CHAPTER 1. INTRODUCTION

Furthermore, we will try to extrapolate with densities larger than the commons

for interneurons to test how these heuristics will affect the performance of different

neurons.

However, this thesis will perform all measurements on a personal computer. Due to the

project’s time frame, all the desired measurement will not be possible.

1.3 Thesis outline

The background (Chapter 2) presents the used data structure and relevant algorithms

as well as the libraries used in this thesis. The methods (Chapter 3) explain in detail

how measurements were made and the motivations for choices made. The measurements

are then presented in the result chapter (Chapter 4) with the corresponding analysis.

Subsequently, the results are discussed in the discussion chapter (Chapter 5) and a

conclusion is presented (Chapter 6).

3



Chapter 2

Background

2.1 Neuronal morphology

Neurons are the fundamental units of the nervous system. There are different types

of neurons depending on their function, shape and other factors. If we classify by

function, there are three types: sensory neurons, motor neurons and interneurons.

The sensory neurons respond to stimuli and send signals to the spinal cord or brain.

The motor neurons receive information from the brain and spinal cord to control

everything, like muscles or glands. Interneurons connect other neurons within the

same region. A neural circuit or neuronal network is multiple neurons connected.

Figure 2.1.1: A sketch
of how a neuron may
look like [29]

In physiology, a neuron consists of a cell body or soma with the

nucleus, dendrites and axon, as seen in the figure 2.1.1. The

soma is a compact structure, whereas the axon and dendrites are

filaments from the soma. Typically a dendrite receives signals

from other neurons and the axon transmits information to other

neurons. The cell body, soma, is where the nucleus lies and

where proteins are made to be transported throughout the axon

and dendrites.

A point where the distance between two neurons is lower than a

certain threshold defines a touchpoint. If there is a touchpoint,

then a synapse can emerge. A synapse is a structure that permits

a neuron to pass an electrical or chemical signal to another

4



CHAPTER 2. BACKGROUND

neuron. There are different types of synapses. The most common

is axodendritic. But there are also other types, depending on which parts of the neurons

are in touch, such as axo-axonic (axon with axon), dendro-dendritic (dendrite with

dendrite), axo-secretory (axon to bloodstream), somatodendritic (soma to dendrite),

dendro-somatic (dendrite with soma), and somato-somatic (soma with soma) synapses.

A neuron can have up to 6000 synapses with neighbouring neurons[33].

2.2 Simulation of local neuronal network

The usual workflow in research consists of three main steps: single-cell morphology

reconstruction, building a local network and simulating the signals exchange.

The single-cell morphology reconstruction consists of retrieving the neurons’ morphology

to simulate. To do so, first, the bunch of neurons need to be separated to be able to do

a reconstruction of the morphology of the neurons and a classification. Also, a repairing

phase is necessary because there could have been errors in previous steps. This process

ends up with isolated single-cell models which basically is a file with 3D points in space

with their parent, extra data and some classification like dendrite or axon. There are

different databases with reconstructions of neuron morphologies, both private and public

access, but the most common and huge is NeuroMorpho.Org [3, 4].

The network building step is computationally more intensive because there is a large

number of points in the space where a lot of spatial calculations are involved. First, the

single-cell models are cloned, transformed and translated to their final position. Then,

all the touching points between the neurons need to be found. This task has a higher

computational cost because it implies checking almost all the points of the neurons against

all the compartments of the other neurons. Finally, the synapses are established according

to geometric and biological restrictions.

Finally, simulating the signal exchange of the neurons relies on different software tools

such as NEURON [8], Arbor [2], Brian [34] and IBM Neural Tissue Simulator [22]. These

programs allow the simulation of detailed biophysical models from single-cell models to

large-scale networks.
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CHAPTER 2. BACKGROUND

2.3 Space-partition data structures

Space partitioning is the process of dividing a space into disjoint subsets, non-overlapping.

The division can be done in two or more regions, and any point can then lie in only one

subregion. Space partitioning is often hierarchical, which means the subsets are also

divided recursively into other areas. The recursive division allows the organization of the

subsets into a tree called a space-partitioning tree.

The space-partitioning trees can divide the subsequent space into several regions each

time or just two each iteration. When splitting the area into only two subregions, it

is called binary space partitioning (BSP) tree. BSP trees usually use a hyperplane, a

generalization of the plane for higher dimensions, to divide space, so the points on each

side of the hyperplane form each subregion.

There is also another kind of tree that not only does it divides the space but also the

time. For example, the TPR*-tree [35], but they are out of the scope of this thesis.

2.3.1 Octree

Figure 2.3.1: Left: Recursive subdivision
of a cube into octants. Right: The
corresponding octree. [28]

An octree is a data structure to generate

partitions of a 3D space. Each node has

exactly eight children, except the leaves.

There are two types of octree: point

region (PR) octree and matrix-based (MX)

octree. In a PR octree, the node represents

one three-dimensional point, which is the

centre of the subdivision, and it is one of

the corners of the eight children. In an MX

octree, the division point is implicitly the

centre of the space. The root node of a

PR octree represents infinite space, while in an MX octree, it represents a finite bounded

space. When can see an example in the figure 2.3.1.

This data structure was proposed by Donald Meagher in 1980 [26] and the construction

goes as follows. First, it divides the current 3D volume into eight boxes. If any box has

more than one point then apply again the algorithm. If the box has zero or one point,

stop building that branch.

6



CHAPTER 2. BACKGROUND

Quadtree

A quadtree is another tree data structure proposed earlier by Raphael Finkel and Joun

Louis Bentley in 1974 [10]. This data structure is the two-dimensional version of the

Octree. Similar to the Octree, the algorithm divides the 2D space into four quadrants

recursively. No more detail is needed for this data structure because our data is 3D-based

and this solution works for 2D points.

2.3.2 R-tree

Figure 2.3.2: Visualization of an R*-tree for
3D points [9]

An R-tree is a data structure used for

spatial access methods for k-dimensional

data. Antonin Guttman proposed the

R-tree in 1984 [13] and the key idea

is to group nearby points under a tight

bounding box. The construction of

the tree is bottom-up, which means the

leaves are constructed first and it starts

associating nodes with their bounding

boxes until the root is reached. One

visualization of the space partition made

by an R-tree in a three-dimensional space

can be seen in the figure 2.3.2

This tree has different variations like

priority R-tree, R∗-tree, R+ tree, RR∗-tree,

Hilbert R-tree and X-tree. One common variation used in the touching point problem is

R*-tree. This variant has a slightly higher construction cost, but on the other hand, it

will have a lower cost while querying. The main difference between R∗-tree and R-tree is

that R∗-tree reduces the overlapping of subtrees, pruning more branches while querying

and improving the performance, therefore.

7



CHAPTER 2. BACKGROUND

2.3.3 k-d trees

Figure 2.3.3: k-d tree decomposition for a
point set [20]

k-d tree is a data structure for space-

partitioning k-dimensional points. It is

a characteristic case of space partitioning

trees called binary space partitioning

(BSP) trees. Being a BSP tree means

that each time it splits the space it is

done in two convex subsets. It was

proposed in 1975 by Jon Louis Bentley [5].

The construction of the k-d tree is done

recursively. First of all, one point and one

axis are selected. Originally, the dimension

was chosen by round-robin and the point

was chosen by the median in that axis, but

in this thesis, we will explore some other

options. The axis and the point will form

a hyperplane aligned with the axis. Then,

the algorithm splits the points into two

subsets: the point at the ”left” of the plane

and the points at the ”right”. Finally,

the left and right subtrees are constructed

using the same algorithm. One example of

the execution of this algorithm can be seen in the figure 2.3.3.

2.4 Previous research

There are several studies on spatial-partitioning structures, but a little few focus on

the touch detection problem. In their thesis, Adamsson and Vorkapic [1] analyze the

performance of different spatial-partitioning structures: k-d trees, vantage-point trees

and octrees. They discovered that vantage-point trees are the best option with small

populations, but k-d trees work better with larger networks. Because of their result,

we choose k-d trees over other data structures. In Beredent and Brask’s thesis [7], they

analyze the memory efficiency for R-trees and R∗-trees. They analyzed the performance

with realistic neuron densities and found out that R∗-tree has the same good scalability

8
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properties as k-d trees.

Compared with the studies on spatial-partitioning structures on the touch detection

problem, more studies are trying to optimize the k-d trees partition for different

applications, such as computer graphics or curve analysis. Hu, Nooshabadi and Ahmadi

in their paper [16] propose a method for constructing k-d trees and doing nearest neighbor

search (NNS) with a speed up of a factor of 30, compared with a serial CPU. Wald

and Havran [37] propose an heuristic for choosing the dimension and splitting point

called surface area heuristic that will speed up for raytracing with objects based on

triangles. In other paper by different authors [23], they propose a heuristic called Curve

Complexity Heuristic, which aim is to allow the exploration of 3D curves based on the

neighbourhood.

9



Chapter 3

Methods

3.1 Reconstruction of a neuronal network

First of all, we chose to reconstruct the neuronal network based on a single neuron,

a fast-spiking interneuron. NeuroMorpho.Org [3, 4] is an archive containing multiple

reconstructions of different types of neurons from across different researches. The choice

was completely arbitrary and was made to simplify the biological complexity of the

problem while keeping the computational complexity because fast-spiking interneurons

allow the creation of any kind of synapse. The exact neuron was ”NMO 36576” from

one research of 2013 [32], the figure 3.1.1 contains a representation of this neuron. This

specimen belonged to the subiculum of a rat and one characteristic of note is that the

neuron spatial distribution is not uniform, 298.75µm x 538.69µm x 66.28µm.

To avoid reading the SWC file every time that it was needed to replicate the neuron,

it was designed another file called RPL. This new format file defined a neuron per

line and each line contained which transformations were going to be applied. The

possible transformations defined were rotation and translation. Scaling and shearing

were discarded because they deform the morphological definition of the neuron. A

transformation was defined by three values: the first value defined which transformation

(0 for translation and 1 for rotation), the second value defined which axis (0 means axis x,

1 means axis y, 2 means axis 3) and the third value defined the amount of transformation

in micrometres for translation and radians for rotation. Any amount of transformation

could be concatenated, so every possible neuron was possible.

10
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CHAPTER 3. METHODS

Figure 3.1.1: Fast-spiking interneuron used in the thesis.

3.2 Data structure and construction algorithm

3.2.1 k-d tree

When building a k-d tree are necessary a list of the points and a depth. As shown in

algorithm 1, if the list of nodes is empty, we have finished building the tree and it is

none. Otherwise, it first needs to find the dimension along which the splitting plane (or

hyperplane) is going to be defined and then it chooses a point to create the plane (or

hyperplane). Then, the algorithm divides the space into two subsets that are at the left

or the right of the plane (or hyperplane) along that dimension. Finally, it creates the

subtrees recursively increasing the depth by one. The returned node needs to contain not

only the point and the left and right subtree but also the splitting dimension, so when

performing a spatial-query, it is possible to know which dimension is responsible for the

branches.

11
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Algorithm 1 Constructs a k-d tree

Require: N is the list of points to construct the k-d tree with.
Require: k is the depth of the k-d tree.

1: function BuildTree(N, k)
2: if |N | = 0 then
3: return nullptr
4: end if
5: d, p ← SplittingFunction(N, k) ▷ d is the splitting dimension and p is the point
6: LeftSplit ← {n ∈ N |nd ≤ pd ∧ n ̸= p}
7: RightSplit ← {p ∈ N | pd < nd ∧ n ̸= p}
8: LeftChild ← BuildTree(LeftSplit, k + 1)
9: RightChild ← BuildTree(RightSplit, k + 1)
10: return new Node(p,d,LeftChild,RightChild)
11: end function

3.3 Splitting function and heuristics

The canonical and original method for dividing the list of nodes is really simple and still

leaves a lot of room for improvement. That is the reason because there are several studies

trying to improve the splitting function for different applications. This thesis studied how

the proposed splitting functions work for the touching point detection.

3.3.1 Canonical splitting function

The canonical method was first described with, the k-d tree in its original paper [5]. This

method selects the splitting dimension by round-robin, that means the dimension cycles

along all the axis. For example, in a 3D tree, the first plane will be aligned with the

x-axis, the root’s children will both have y-aligned planes, the grandchildren’s planes will

be aligned with the z-axis, the root’s great-grandchildren will all have x-aligned planes,

and so on. Once the axis is chosen, the algorithm chooses the median point in that axis

from all the points. One possible implementation of this algorithm is the algorithm 2.

The main advantage of this method is that it leads to a balanced k-d tree, that means

that each leaf of the tree is approximately at the same distance to the root. Selecting the

median is a complex task were different approaches can be done. Sorting all the points

with a sorting algorithm such as heapsort or mergesort, will lead into a complexity

O(n log n). An improved solution with complexity O(n) called PICK [6] can be also

implemented. A common implementation that is approximate selects random points from

12



CHAPTER 3. METHODS

Algorithm 2 Canonical splitting function

Require: N is the list of points to construct the k-d tree with.
Require: k is the depth of the k-d tree.
Require: K is the number of dimensions.

1: function SplittingFunction(N, k)
2: axis ← (mod K)
3: select median by axis from N
4: return (axis,median)
5: end function

the total of points and use the median of those points. Although it is not optimal and does

not ensure a balanced tree, it is widely used and often results in nicely balanced trees.

In this thesis, we have used a built-in function from C++11 called ”std::nth element”.

It is a partial sorting algorithm that rearranges the elements in the vector such as the

element pointed at by the nth is changed so it would occur in that position if the vector

was sorted, all elements before are less than or equal to the new nth element and the

complexity is linear to the number of elements O(n) [18].

3.3.2 Surface area heuristic

The surface area heuristic (SAH) was proposed by MacDonald and Booth in their paper

of 1990 [24]. The main idea behind their proposal is that the number of rays likely to

intersect a convex object is roughly proportional to its surface area, assuming that the

ray origins and directions are uniformly distributed throughout the space. We believed

there was a similarity with our task because our neurons are uniformly distributed in

the space, and the orientation of the touching point does not matter, so it can be said

that the ”ray direction” is also evenly distributed. Instead of using the straight-forward

implementation from the original description of the algorithm that is O(n2) for building

the tree, we have used other implementation [37] that isO(n log2 n). This implementation

is the algorithm 3.

The called function in line 27, SAH, basically is defined as:

SAH(p,N,Nl, Nr, Np) = λ ∗ (KT +min(
(Nl +Np)|{t ∈ N | ti < pi}|+Nr|{t ∈ N | ti > pi}|

|N |
,

Nl|{t ∈ N | ti < pi}|+ (Np +Nr)|{t ∈ N | ti > pi}|
|N |

))

There are two values in this function that are unknown λ and KT , λ is a factor to

13
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Algorithm 3 Surface area heuristic

Require: N is the list of points to construct the k-d tree with.
Require: k is the depth of the k-d tree.
Require: K is the number of dimensions.

1: function SplittingFunction(N, k)
2: Ĉ, d̂, p̂← (∞,∞, ∅)
3: for i = 1..K do
4: E ← ∅
5: for all p ∈ N do
6: E ← E ∪ (p, pi,+) ∪ (p, pi,−)
7: end for
8: sort(E) ▷ First, it orders by pi and if they are equal, then it goes first the −

and then the +
9: Nl, Np, Nr ← (0, 0, |N |)
10: for j = 1..|E| do
11: p← Ej,p

12: p+, p−, p| ← 0
13: while j < |E| ∧ Ej,ξ = pξ ∧ Ej,type = − do
14: p− ← p− + 1
15: j ← j + 1
16: end while
17: while j < |E| ∧ Ej,ξ = pξ ∧ Ej,type = | do
18: p| ← p| + 1
19: j ← j + 1
20: end while
21: while j < |E| ∧ Ej,ξ = pξ ∧ Ej,type = + do
22: p+ ← p+ + 1
23: j ← j + 1
24: end while
25: Np ← p|

26: Nr ← Nr − p| − p−

27: C ← SAH(p,Nl, Nr, Np)

28: if C < Ĉ then
29: Ĉ, d̂, p̂← (C, i, p)
30: end if
31: Nl ← Nl + p+ + p|

32: Np ← 0
33: end for
34: end for
35: return (d̂, p̂)
36: end function

prioritize cutting empty space, and it will be 0.8 if Nl or Nr is 0, otherwise it is 1. KT is

a constant that represents the cost of a transversal step in the tree. We established it to

0.2 based on other paper [23]. The implemented version is not exactly the proposed in the

14



CHAPTER 3. METHODS

original article. In line 6, they firstly clamp the triangle containing the point and in case

the resulting triangle is planar, then it changes what is added to E, by E ∪ (p, p′min,k, |).
We have done this because we are creating one k-d tree per neuron, so the neuron will

always be inside the voxel of the k-d tree.

3.3.3 Curve complexity heuristic

The curve complexity heuristic propose a new splitting function based on SAH to optimize

k-d trees for curves abstractions [23]. The main idea behind their proposal is to adapt

SAH so they can perform radius nearest curve search better. We believed there is a great

similarity between their proposal and our problem because we also want to find all the

nearest neurons given a query point q and a distance r. A possible implementation could

be the algorithm 4.

Algorithm 4 Curve complexity heuristic

Require: N is the list of points to construct the k-d tree with.
Require: k is the depth of the k-d tree.
Require: K is the number of dimensions.

1: function SplittingFunction(N, k)
2: Ĉ ←∞
3: p̂← ∅
4: d̂← ∅
5: for i = 1..K do
6: Ci ← 0 ▷ C(T ) = Ctraversal(T ) + Cbacktrack(T )− nTdist

7: select median by axis from N
▷ Ctrasversal(T ) = Ttrasversal + [P (Tl|T )l + P (Tr|T )r]Tdist

8: Ci ← 0.2 + l ∗ Volume({p∈N | pi<mediani})
Volume(N)

+ r ∗ Volume({p∈N | pi>mediani})
Volume(N)

▷ Cbacktracl(T ) = λ(log 1
ρ
(n) + log 1

τ
(n))/2 ▷ ρ := l

n
, τ := r

n

9: Ci ← Ci + λ ∗ ( log (n)

log (
|{p∈N | pi<mediani}|

|N| )
+ log (n)

log (
|{p∈N | pi>mediani}|

|N| )
)

10: if Ci < Ĉ then
11: Ĉ ← Ci

12: p̂← median
13: d̂← i
14: end if
15: end for
16: return (d̂, p̂)
17: end function

In their paper, they do not study the time complexity of their solution, so we are going

to do it. Assuming that the volume functions and selecting the median are O(n) and the

15
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other operations are O(1). To obtain the cost function, it will sum the cost of finding

the median (n), the find of the volumes function (n), the cost of splitting (2n) and the

cost of constructing the subtrees recursively (2T (n
2
)):

T (n) = n+ n+ 2n+ 2T (
n

2
)

= 4n+ 2T (
n

2
)

= 4n+ 2[4
n

2
+ 2T (

n

4
)] = 8n+ 4T (

n

4
)

= 8n+ 4[4
n

4
+ 2T (

n

8
)] = 12n+ 8T (

n

8
)

= 12n+ 8[4
n

8
+ 2T [

n

16
]] = 16n+ 16T (

n

8
)

= · · · = 4 ∗ i ∗ n+ 2iT (
n

2i
), i ∈ Z+

This ends when
n

2i
= 1, because T (1) ∈ O(1)

n = 2i =⇒ i = log (n)

Therefore, if we substitute in the last one, we get

T (n) = 4n log (n) + 2log (n) = 4n log (n) + n ∈ O(n log (n))

3.3.4 Median of the hyperplane with maximum variance

This heuristic is our own proposal and is similar to curve complexity heuristic, because it

chooses the splitting point by the median and our heuristic defines the splitting dimension.

The main idea behind our proposal is that the dimension with a higher variance means

that the points are more separated between them and therefore if we split, we are

improving. To avoid a costly implementation of the variance, we have implemented the

algorithm proposed by Donald Knuth in his book ”The art of computer programming.

Vol. 2” [21] (page 232). So, the algorithm implemented can be seen in the algorithm 5.

The time complexity of this function is trivially O(n), and therefore when added to the

building tree function it is also O(n log (n)) as the other heuristics.
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Algorithm 5 Median of the hyperplane with maximum variance

Require: N is the list of points to construct the k-d tree with.
Require: k is the depth of the k-d tree.
Require: K is the number of dimensions.

1: function SplittingFunction(N, k)
2: n← 0
3: M ← {0, 0, 0}
4: S ← {0, 0, 0}
5: for all p ∈ N do
6: n← n+ 1
7: for i = 1..K do
8: δ ← pi −Mi

9: Mi ←Mi +
δ
n

10: Si ← Si + δ ∗ (pi −Mi)
11: end for
12: end for
13: d← max element(S) ▷ max element returns the index of the max element in S
14: select median by d from N
15: return (d,p)
16: end function

3.3.5 Minimum variance union

This heuristic is also our own proposal and it is an improvement from the previous. It

also uses the variance of the points in that dimension as a guide, but in this case it

tries to minimize the void. To do so, it will minimize for all the points the sum of the

variances at the left subset and the right subset. To avoid go through all the points

twice, it calculates all the variance at the same time using memoization. This technique

consists on save some values so you do not calculate them again. We are exploiting it

because if the data points are ordered, then the median of the left subset for the i-th

data point is the median of the i− 1-th data point but with some update, also happens

for the right subset. In this case the i-th median is an updated version of the i + 1-th

median. The purposed algorithm works as follow 6.

The time complexity of this function is trivially O(n log (n)) because there is a sort

function, and therefore when added to the building tree function it is also O(n log2 (n))

as the surface area heuristic.
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Algorithm 6 Minimum variance union

Require: N is the list of points to construct the k-d tree with.
Require: k is the depth of the k-d tree.
Require: K is the number of dimensions.

1: function SplittingFunction(N, k)
2: Ŝ ←∞
3: p̂← ∅
4: d̂← ∅
5: for i = 1..K do
6: sort by dimension(N,i)
7: Sl ← Array of size |N | with 0
8: Sr ← Array of size |N | with 0
9: Ml ← Array of size |N | with 0
10: Mr ← Array of size |N | with 0

11: for j ∈ [1, |N |) do
12: δ ← Nj,i −Ml,j−1

13: Ml,j ← δ/(i+ 1)
14: Sl,j ← δ ∗Nj,i −Ml,j ▷ Compute the variance left to right

15: δ ← N|N |−j−1,i −Ml,|N |−j

16: Mr,|N |−j−1 ← δ/(i+ 1)
17: Sr,j ← δ ∗N|N |−j−1,i −Mr,|N |−j−1 ▷ Compute the variance right to left
18: end for
19: for j ∈ [0, |N |) do
20: if Sl,j + Sr,j < Ŝ then

21: Ŝ ← Sl,j + Sr,j

22: p̂← Nj

23: d̂← i
24: end if
25: end for
26: end for
27: return (d̂, p̂)
28: end function

3.4 Neuron touch point task

Due to the fact that the implemented solution uses one k-d tree per neuron, the neuron

touch point task is trivial to implement, because it only needs to look for if there is a

point which distance to the query point is less than a certain threshold. In our case, we

choose that threshold to be 3µm, but it is a variable of our search function (algorithm

7).

On a sight, it is trivial to see that the computational cost in the worst case is O(n),

18
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Algorithm 7 Touchpoint query

Require: root is a k-d tree, rootp is the point represented in the node, rootd is the
splitting dimension, rootl, rootr are the left and right children.

Require: q is the query point where the touching point is looked for.
Require: dist is the distance to define a touching point.

1: function FindTouchpoint(root, q, dist)
2: if root = nullptr then
3: return nullptr
4: end if
5: δ ← |rootp − q|
6: if δ ≤ dist then
7: return root
8: else
9: if qrootd ≤ rootrootd then ▷ rootrootd means the value of the root in the

dimension which was chosen as splitting dimension
10: res ← FindTouchpoint(rootl, q, dist)
11: if res ̸= nullptr then
12: return res
13: end if
14: res ← FindTouchpoint(rootr, q, dist)
15: if res ̸= nullptr then
16: return res
17: end if
18: else
19: res ← FindTouchpoint(rootr, q, dist)
20: if res ̸= nullptr then
21: return res
22: end if
23: res ← FindTouchpoint(rootl, q, dist)
24: if res ̸= nullptr then
25: return res
26: end if
27: end if
28: return nullptr
29: end if
30: end function

but that probably in average will be O(log (n)) because every time that the algorithm

branches, it can discard the half of the data points.
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3.5 Task parallelization

OpenMP 5.2 was used to introduce parallel programming. OpenMP is an API to

implement shared-memory multiprocessing programming in C, C++ and Fortran. To

avoid any race condition and to maximize the parallelization of the processes, it was

only applied when there were no shared resources between the possible sub-processes.

It was widely used for creating the subtrees, where every time that it was needed to

call recursively the building function with a subset of the data points, it was done with

parallel tasks. Also, when performing the query makes use of parallelizing the search of

all the k-d trees.

3.6 Test cases

Firstly, the distance to define a touchpoint was fixed to 3µm. Although it could seem

to be arbitrary, it was the middle value between 0.5µm and 5µm, the range proposed

by other studies [15, 31]. Once the distance to define a touchpoint was fixed, there were

two possible variables to vary for benchmarking the scalability of the data structure and

heuristics. The variable for each test case is the number of neurons of the neuronal

network given the density and the neuron density of the search space given the number

of neurons.

In order to reach realistic values for the number of neurons, we fixed the density to 16991

neurons/mm3 [36], but there could be other densities such us 2048neurons/mm3 and

2790neurons/mm3 [19] according to our neuron that is a fast-spiking interneuron in the

subiculum. The number of neurons was a range between 150 neurons and 85000 neurons.

This number is lower than the total amount of any type of neurons in the subiculum of

a rat’s brain which is between 46000 and 330000 neurons [27].

For the other test case, the number of neurons was fixed to 25230 neurons, so it does

not have a high time cost. Then the density of neurons by mm3 was defined in a range

of 50 neurons/mm3 and 20000 neurons/mm3. The value of the upper bound was chosen

to keep realistic densities [19]. Another test case was derivated with higher densities,

between 50000 neurons/mm3 and 500000 neurons/mm3, to be able to use the results to

other types of neurons and regions of the brain.

For the purpose of creating the tests of every test case, we developed a script (algorithm

8) that given a density and the number of neurons, it will rotate randomly each neuron
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and then translate it into the space so the distance of the origin of all the neurons is in

a grid such as the distance between them maintains the density. This system uses the

RPL files explained in section 3.1.

Algorithm 8 Create a test

Require: N is the number of neurons to use in the test
Require: D is the density in neurons/mm3 to use in the test
1: procedure CreateTest(N,D)

2: δ ← 1000 ∗ 3

»
1
D

3: n1 ← ⌊ 3
√
N⌉

4: n2 ← ⌊
»

N
n1
⌉

5: n3 ← ⌊ N
n1n2
⌉

6: for i = 1..n1 do
7: for j = 1..n2 do
8: for k = 1..n3 do
9: rotation ← RndChoice([[], [0], [1], [2], [0,1], [0,2], [1,2], [0,1,2]])
10: rotation ← RndShuffle(rotation)
11: for all r ∈ rotation do
12: ϕ← RndUniform(−π, π)
13: Write(’{} {} {} ’.format(1, r, ϕ))
14: end for
15: Write(’0 0 {} 0 1 {} 0 2 {}\n’.format(δ ∗ i, δ ∗ j, δ ∗ k))
16: end for
17: end for
18: end for
19: end procedure

3.7 Computer specification

During this project, we used a personal computer running Debian Live 11.3.0 Standard

with an architecture Amd64. The processor is an AMD FX(tm)-8350 with eight cores, 8

threads, working at 4.0 GHz, 384KB of caché L1, 8MB of caché L2 and 8MB of caché L3.

Furthermore, it has 16 GB of DDR3 RAM at 1600 MHz distributed in 3 modules: one

module of 8 GB (Kingston KHX1600C9D3K2/8GX) and two modules of 4 GB (Kingston

99U5584-012.A00LF). We hadn’t physical access to the computer, so it runs an OpenSSH

server.
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Results

The results presented were obtained from 5 individual runs for each test case to avoid

outliers bias our results. The ranges for each test case (section 3.6) were sampled with 200

points each, except the range to extrapolate the results to other cases that was sampled

with 450 points. The mean performance of each heuristic is shown in milliseconds.

4.1 Neuron Density

4.1.1 Computation time

Benchmarks for different densities were made in the range 50-85000 neurons/mm3 with

different heuristics. The figure 4.1.1 shows in the left graph the average building time of

the k-d tree, the middle graph shows its performance when doing the query and the right

graph show how many touchpoints were detected. Due to memory usage for surface area

heuristic and time consumption for minimum variance union, they were not out of the

usage limits.

4.1.2 Average approximation

Using the previous benchmark, a fitting to two different functions, m ∗ n + c ∈ O(n)
and m ∗ log(n) + c ∈ O(log(n)), were made. The figure 4.1.2 shows how it fits for every

heuristic and the table 4.1.1 shows the values of the fitted parameters and the coefficient

of determination, R2.
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Figure 4.1.1: Performance when varying density

Figure 4.1.2: Approximation to different curves for each benchmark

m*n+c m*log(n)+c
Heuristic Slope Bias R2 Slope Bias R2

Serial canonical splitting 0.00081 1247.19350 0.03084 4.05824 1219.13713 0.02088
Parallel canonical splitting -0.00002 312.46810 0.00121 -0.04199 312.62670 0.00012
Parallel curve complexity heuristic -0.00008 331.03052 0.01588 -0.42717 334.06362 0.01307
Parallel median of hyperplane with max variance -0.00012 337.86543 0.02981 -0.53776 341.46615 0.01643

Table 4.1.1: Approximation of the query time when varying density for different heuristic
to some functions
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4.2 Amount of neurons

4.2.1 Computation time

Benchmarks for different amount of neurons were made in the range 150-20000

neurons/mm3 with different heuristics. The figure 4.2.1 shows in the left graph the

average building time of the k-d tree, the middle graph shows its performance when

doing the query and the right graph show how many touchpoints were detected.

Figure 4.2.1: Performance when varying amount of neurons

4.2.2 Average approximation

Using the previous benchmark, a fitting to two different functions, m ∗ n + c ∈ O(n)
and m ∗ log(n) + c ∈ O(log(n)), were made. The figure 4.2.2 shows how it fits for every

heuristic and the table 4.2.1 shows the values of the fitted parameters and the coefficient

of determination, R2.

m*n+c m*log(n)+c
Heuristic Slope Bias R2 Slope Bias R2

Serial canonical splitting 0.04975 -1.93794 0.99865 936.47290 -7738.1621 0.77479
Parallel canonical splitting 0.01246 -1.29551 0.99958 235.04158 -1943.93362 0.77944
Parallel curve complexity heuristic 0.01319 -0.75093 0.99956 248.93553 -2058.14906 0.77913
Parallel median of hyperplane with max variance 0.01337 0.85753 0.99955 252.65924 -2087.86438 0.78123
Parallel minimum variance union 0.01741 -0.09999 0.99699 27.746100 -172.11974 0.92816

Table 4.2.1: Approximation of the query time when varying number of neurons for
different heuristic to some functions
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Figure 4.2.2: Approximation to different curves for each benchmark

4.3 High density

4.3.1 Computation time

Benchmarks for different densities out of realistic values were made in the range 150-

20000 neurons/mm3 for different heuristics to try to extrapolate the results to other

types of neuronal networks. The figure 4.3.1 shows in the left graph the average building

time of the k-d tree, the middle graph shows its performance when doing the query and

the right graph show how many touchpoints were detected.

4.3.2 Average approximation

Using the previous benchmark, a fitting to two different functions, m ∗ n + c ∈ O(n)
and m ∗ log(n) + c ∈ O(log(n)), were made. The figure 4.3.2 shows how it fits for

every heuristic and the table 4.3.1 shows the values of the fitted parameters and the

coefficient of determination, R2. Due to memory usage for surface area heuristic and

time consumption for minimum variance union, they were not out of the usage limits.
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Figure 4.3.1: Performance when extrapolating results with density

Figure 4.3.2: Approximation to different curves for each benchmark

m*n+c m*log(n)+c
Heuristic Slope Bias R2 Slope Bias R2

Serial canonical splitting 0.00003 1258.86561 0.02032 7.23026 1178.97566 0.01771
Parallel canonical splitting 0.00000 299.42317 0.00056 0.16195 297.71509 0.00026
Parallel curve complexity heuristic -0.00000 320.71691 0.00057 -0.23793 323.42042 0.00085
Parallel median of hyperplane with max variance -0.00000 328.95618 0.00001 -0.00972 329.04446 0.00000

Table 4.3.1: Approximation of the query time when extrapolating the density for different
heuristic to some functions
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Discussion

We investigated how performance differ for different heuristics in a k-d tree. The

results show that there is not a significant difference in performance between canonical,

SAH, CCH, median of hyperplane with max variance and minimum variance union

heuristics.

5.1 Building performance

Firstly, we needed to analyze how each heuristic affect to the time of building the k-d

tree. We considered that if an heuristic takes more time to build in parallel than the

canonical in serial it is not worth it, due to the great amount of time. In figures 4.1.1,

4.2.1 and 4.3.1, we can observe the difference between the building time for the different

heuristics in the left side. In those figures, we can observe that obviously implementing

everything with parallelization has sped up almost by a factor of 3.

The figure 4.2.1 shows that the minimum variance union heuristic includes a lot of

overhead and therefore it is not worth it. Similar happens with surface area heuristic.

Although a O(n log 2(n) has been implemented, the memory usage was so high than

anything above 150 neurons were over 16 GiB and therefore this implementation was

unfeasible. This is because in line 4 to 7 of algorithm 3 the number of data saved is

3 times the size of N, so it will require a lot of memory. In the other hand, curve

complexity heuristic and median of hyperplane with maximum variance have a lower

cost than the serial canonical splitting what means that they could be feasible to use in

a real case.
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5.2 Querying performance

Once the tree has been built, we were able to query it looking for all touchpoints close to

a given point in our reconstruction of the neuronal network. We have observed in figures

4.1.1 and 4.2.1 (middle figure) that all the heuristics performed the same . There were

no significant differences in the performance. We firstly believed it is since the points are

shown sparse that the heuristics do not have any effect, the number of touchpoints can

be observed in the right figures in 4.1.1 and 4.2.1. To prove this fact, we repeated the

experiments increasing the density. The results in the figure 4.3.1 show that although

the amount of touchpoints is higher, there is no better performance of the k-d trees built

with the heuristics.

Theoretically, we know that the worst-case for querying is O(n), but on average it should

be O(log(n)). Experimentally, we saw that our results fit better to a linear cost rather

than a logarithmic cost. Tables 4.1.1, 4.2.1 and 4.3.1 shows that the lineal function fits

with a lower R2 (coefficient of determination) and it is also evident in the figures 4.1.2,

4.2.2 and 4.3.2. Analysing the reasons for the lack of improvement in the performance,

we ended up with three possible reasons. The implemented algorithm to perform the

touchpoint query (algorithm 7) could be improved if in lines 14 to 17 and 23 to 26

another condition is added where those lines are only executed if the distance in that

dimension between the root and the query point is less or equal to the threshold distance.

Another reason could be if the distance between the query point and the data is far, the

number of points examined could be upper bounded by 2n [11]. This led to what we

believed to be the main reason. At the beginning of this thesis, we decided to create one

k-d tree per neuron. What we believed to be an improvement because we will examine

fewer points per neuron has turned out to be a flag because for some trees the query

point is so far that we need to examine all the trees. A solution to this problem could be

using a lower amount of k-d trees such as 1 to 5 and changing the query algorithm from

the nearest neighbour to a range search. We did some preliminary checks, not shown in

this thesis, implementing these improvements. As a result, the query time improved to

logarithmic in the number of neurons instead of lineal. Also, the time was reduced by one

order of magnitude. But the heuristics did not show any significant improvement.
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Conclusion

6.1 Future Work

The next step in this research is to optimise the query algorithm to discard some branches

of the k-d tree if the length in that dimension is too far from the query point. Also,

future research should experiment with the number of k-d trees, because it will vary in

performance. Finally, there should be more research on heuristics since it has helped

in other fields and usually improves the computational cost. In other fields, researchers

are introducing distributed computing due to its scalability compared to the price. So a

distributed k-d tree must be taken into account for bigger and more realistic cases.

6.2 Conclusion

This study has investigated the performance of four heuristics for building a k-d

tree, surface area heuristic, curve complexity heuristic, median of the hyperplane with

maximum variance and minimum variance union. The results show that none of the

heuristics increase the performance for the touchpoint task for one k-d tree per neuron.

Thus, more tests are needed on different values of neurons per k-d tree, larger populations

of neurons and mixed types of neurons, in order to find the most suitable one for whole-

brain simulations.
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Appendix A

Source Code

All the source code and documentation needed to repeat the results from this project

can be found on my personal repository on github.
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https://github.com/danielbenedi6/DegreeProject
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