
 
Abstract—Surface defect identification is an essential 

task in the industrial quality control process, in which 
visual checks are conducted on a manufactured product 
to ensure that it meets quality standards. Convolutional 
Neural Network (CNN) based surface defect identification 
method has proven to outperform traditional image 
processing techniques. However, the real-world surface 
defect datasets are limited in size due to the expensive 
data generation process and the rare occurrence of 
defects. To address this issue, this paper presents a 
method for exploiting auxiliary information beyond the 
primary labels to improve the generalization ability of 
surface defect identification tasks. Considering the 
correlation between pixel level segmentation masks, 
object level bounding boxes and global image level 
classification labels, we argue that jointly learning 
features of the related tasks can improve the performance 
of surface defect identification tasks. This paper proposes 
a framework named Defect-Aux-Net, based on multi-task 
learning with attention mechanisms that exploit the rich 
additional information from related tasks with the goal of 
simultaneously improving robustness and accuracy of the 
CNN based surface defect identification. We conducted a 
series of experiments with the proposed framework. The 
experimental results showed that the proposed method 
can significantly improve the performance of state-of-the-
art models while achieving an overall accuracy of 97.1%, 
Dice score of 0.926 and mAP of 0.762 on defect 
classification, segmentation and detection tasks. 
 

Index Terms—Deep learning, defect classification, defect 
detection, defect segmentation, machine vision, multi-task-
learning, quality control, surface defect detection. 

I. INTRODUCTION 

UTOMATED visual inspection plays an important role in 
industrial informatics based decision-making systems in  
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various industries, including steel manufacturing companies, 
automotive industries, electronic manufacturing, and 
pharmaceutical companies. The correct, consistent, and early 
detection of surface defects can make it possible to detect 
defective products early in the manufacturing process, which 
leads to time and cost savings. Inspection procedures for 
detecting such defects are usually performed using non-
destructive testing (NDT) methods. NDT procedure is a 
combination of various inspection steps used to identify 
discontinuities or defects in a product without causing damage 
to its usability. The most frequently used industrial NDT 
methods are Visual optic testing, Radiography, X-ray vision, 
Ultrasonic imaging, Dye penetrant testing, Magnetic particle 
testing, and Infrared thermal imaging. The testing procedure 
for each of these methods involves several steps, all of which 
can be easily automated. However, the final step of visual 
inspection is more complex in terms of automation and 
remains primarily a manual process performed by operators. 
 

The traditional machine-vision system relies on a hand-
crafted features such as color, contrast, texture, edges, 
foreground background statistics, etc. followed by machine 
learning classifiers such as support vector machines, decision 
tree or K-Nearest Neighbors. Consequently, hand-crafted 
features extraction plays an important role in classical 
approaches. However, these features are not robust and suited 
for different tasks, which lead to long development cycles. 
Deep learning methods, on the other hand, learn the relevant 
features directly from the raw data, without the need for 
handcrafted feature representations. In recent years, 
Convolutional Neural Network (CNN) has achieved and even 
surpassed human-level performance on computer vision tasks 
such as image classification. The key difference between CNN 
and traditional machine-vision algorithms is that CNN 
automatically detects significant features without any human 
supervision which made it the most widely used. A fascinating 
feature of CNN is its ability to take advantage of the spatial or 
temporal correlation of image data. There are three main 
problem categories for image recognition tasks using CNN: 
classification, segmentation, and object detection. 
Classification task aims to classify an image into a certain 
category. Starting with the ImageNet Large Scale Visual 
Recognition Challenge (ILSVRC) winning architecture of 
AlexNet [1], a series of increasingly complex architectures 
including ResNet [2], Inception [3], Densenet [4], and 
EfficientNet [5] have been proposed in the literature for the 
classification task. Object detection is a task that localizes an 

Attention Guided Multi-Task Learning for 
Surface defect identification 

Vignesh Sampath*, Iñaki Maurtua, Juan José Aguilar Martín, Andoni Rivera, Jorge Molina and Aitor 
Gutierrez 

A

This article has been accepted for publication in IEEE Transactions on Industrial Informatics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TII.2023.3234030

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



object using a bounding box. Some of the notable object 
detection algorithms include Fast R-CNN [6]
Mask R-CNN [7], Single Shot Detection (SSD)
Look Once (YOLO) [9], etc. Segmentation 
performing pixel-by-pixel classification. Several segmentation 
algorithms have been proposed in the literature includin
convolutional networks, encoder-decoder based approaches 
[10], multi-scale and pyramid architectures [11]
 

 

 

 
Fig.  1. Magnetic particle inspection on threaded fasteners 
surface finish (TekErreka dataset). Surface defects are marked by red 
circles and noise due to magnetic particle depositions are marked in 
yellow. 

However, industrial visual inspection systems barely 
utilized the potential of those complex architectures due to 
several reasons [12]. One of the main reasons is that the 
continuous improvement in industrial processes has resulted in 
fewer and fewer defective samples, or the number of defective 
samples is very limited [13]. This problem of learning from a 
limited number of samples is usually referred to as the small 
sample problem, which can easily lead to poor generalization 
ability of the trained model [14]. In addition, the target surface 
defects have different scales, making the deep learning models 
even more challenging to identify the small sized defects. On 
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Segmentation is the task of 
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the one hand, visual appearance of the real
defects varies with type of materials, imaging conditions, 
and camera position. On the other hand, it is challenging to 
distinguish tiny defects from the noise or non
components within an image (as shown in 
appearance of false positives in a defect free image is an 
inevitable circumstance. Furthermore, real time applications of 
complex CNN models are extremely limited due to the long 
inference time and the resulting higher computational resource 
and power consumption. 

To address these limitations, we present a novel univers
architecture that integrates classification, segmentation, and 
detection of surface defects in a single network. 
architecture, Defect-Aux-Net, is primarily motivated by a 
multi-task learning (MTL) scheme that exploits useful 
information from related learning tasks to help mitigate the 
problem of data scarcity. The proposed architecture is based 
on FPN-semantic-segmentation [11]
of defect classification and detection
generalization ability by utilizing the image level information 
as an inductive bias. Specifically, we developed a new multi
task learning network based on FPN, where 
task is carried out in the bottom-up
and segmentation is performed in the 
network. To create a bounding box 
networks in the top-down pathway, where one subnet 
determines the class associated with bounding box and the 
other performs the regression to adjust the 
position. 

 
The FPN-based Feature Extractor 

allows surface defects to be recognized 
scales by efficiently sharing features between image regions.
We further introduce the positional and the channel at
mechanisms that focus on learning the features of small 
surface defects to improve the robustness of detecting small 
defects surrounded by complex background.

 
We evaluate our model on TekErreka

surface defect datasets, with defect classification, 
segmentation, and detection tasks. Experimental results 
demonstrate that jointly learning features of related task
improve the performance of all tasks
 
Overall, the contributions of our work are as follows:

1) Firstly, we propose a 
architecture, which can 
segmentation, and detection of surface defects in a 
single network. Compared with the existing 
the-art CNN models, this 
and compact in terms of model parameters. From the 
model training point of view employing fewer 
parameters in the architecture enables model to 
efficiently learn potential surface defects from a 
smaller number of labelled examples.

2) In contrast to existing single task learning, our 
proposed multi-task learning in surface defect 
detection facilitates the model to learn useful 
representations of the data by exploiting 
information from related tasks.
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3) Considering surface defect detection with complex 
background, the positional and the channel attention 
mechanisms are incorporated to amplify target 
features and to reduce the influence of background 
noise. 

4) The proposed model is compact and efficient
state-of-the-art performance that meets the 
computational resource requirements of the real
inference speed. 

II. RELATED WORK 

A large and growing body of literature has explored the use 
of CNN for surface defect identification. Kim et al. 
adopted few-shot learning technique with Siamese Neural 
Network using CNN, which aims to classify surface defects 
with a limited number of training images. 
employed class activation mapping technique in CNN to 
simultaneously achieve defect classification and localization 
tasks in LED chip defect inspection process. Tao et al. 
designed cascaded autoencoder (CASAE) architectu
segment and localize defect region. The proposed architecture 
transforms the input image into a mask prediction and then 
defect regions of segmented mask is classified to their specific 
classes. Jing et al. [19] combined autoencoder with fully 
connected network (FCN) to detect keyboard light leakage 
defect from mere dust. Jian et al. [20] leveraged Generative 
adversarial network (GAN) to exaggerate the tiny defects 
within the images to improve the accuracy of differe
classifiers. Zheng et al. [21] proposed a 3-stage model for rail 
surface and fastener defect detection. At the first stage, 
YOLOV5 framework is employed to localize the rail and 
fasteners. Then, an object detection model based on Mask
RCNN is used to detect the surface defect of the r
At the final stage, the Resnet architecture is utilized to classify 
defects of the fasteners. To detect defects at different scale, Xu 
et al. [22] used a pre-trained ResNet model to extract the 
multi-scale features and fuse them using a multilevel feat
fusion network (MFN). In [23], U-Net and residual U
architectures were used for the fine-grained segmentation of 
surface defects on a steel sheet. The main drawback of these 
methods is that the model needs a large amount of annotated 
data and hence the localization of defect is very coarse in the 
real-time scenario.  

III. PROPOSED METHOD 

A. Network architecture 

Our proposed network is inspired by two deep learning 
architectures that are widely used: Feature pyramid Network 
(FPN) and ResNet-50. Recognizing surface defects at vastly 
different scales is a fundamental challenge in industrial 
machine vision system. For this reason, we use
a pyramidal hierarchy of convolutional
feature pyramids at different scales. FPN consists of two 
pathways: bottom-up and top-down. The bottom
also known as encoder, is the typical convolutional
network, which can be any image classifier for feature 
extraction. As we go up, the encoder gradually decreases the 
spatial resolution, while building high level feature maps.
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the positional and the channel attention 
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features and to reduce the influence of background 

proposed model is compact and efficient with 
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bottom-up pathway and build semantically strong feature 
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1) Bottom-up pathway 
 

We tested several standard image classificat
architectures to select the core model, and finally chose 
ResNet-50 as the backbone. ResNet
performance for surface defect classification
and detection tasks. ResNet-50 architecture has the advantage 
of using a stride of two for each scale reduction, which makes 
it easier to incorporate ResNet-50 into FPNs when we need to 
upscale feature maps in top-down pathway.  Furthermore, 
Resnet-50 is a relatively small network based on modern 
standards; therefore, it is suitable for our limited labeled data 
problem. However, existing ResNet
two problems in the way they apply convolution operations to 
the input features. Firstly, the receptive field of the encoder 
has the information only about the local region, 
information is lost. Secondly, the feature maps constructed 
from the learned weights are given e
importance, but some feature maps are more important for the 
next layers than others. For instance, a feature map that 
contains edge information of the defects might be more 
important than another feature map that has background 
texture information (as shown in Fig.  
channel attention we adopt Squeeze
module [24] in the encoder. SE module consists of three 
components 1. Squeeze, 2. Excite and 3.Scale components. 
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Fig.  4.  An overview of proposed Defect-Aux-Net architecture. It mainly composed of classification, segmentation and detection module that 
incorporates multi-task loss function. 
 

The main goal of the squeeze component is to extract global 
information from each of the channels c in a feature block U. 
The global information is acquired by applying a global 
average pooling operation across their spatial dimensions 
(H × W) for each channel U  of U to obtain global statistics 
(1 × 1 × C). Mathematically, squeeze operation can be 
represented as: 
 

𝑧 =  𝐹 (𝑈 ) =  
×

∑ ∑ 𝑈 (𝑚, 𝑛)  (1) 

 
After obtaining global information from the squeeze 

component, the excite component generate a set of weights for 
each channel. It uses a fully connected Multi-Layer Perceptron 
(MLP) bottleneck structure to dynamically calibrate the 
weights. This MLP bottleneck has two fully connected layers 
with sigmoid activation as the output layer. Output of the 
excitation component can formally be represented by the 
following equation: 
 

𝑠 = 𝐹 (𝑧, 𝑊) =  𝜎 𝑔(𝑧, 𝑊) = 𝜎(𝑊 𝜌(𝑊 , 𝑧))  (2) 
 
Where σ is a Sigmoid operation, ρ is ReLU operation, z is 

the output from the squeeze component, W  and W  refers to 
weights of the two fully connected layers. Subsequently each 
channel in the feature map is scaled by a simple element-wise 
multiplication of the input feature map and weights obtained 
from the excite component (as shown in Fig.  2). 

Surface defects only appear in some parts of the image but 
not the whole image. Unlike the conventional Resnet-50 
architecture, which gives equal importance to each region in 
an image, the spatial attention reduces background 
interferences by assigning a weight to each pixel in the feature 
map.  
 

The spatial attention focuses on the most relevant parts of 
the feature maps in the spatial dimension. The working 
principle of our spatial attention mechanism is as follows.  
Given feature block 𝑈, we use average and max-pooling 

operations along the channel axis and concatenate them to 
generate an efficient feature map summary M. A 
convolutional layer followed by sigmoid operation is then 
performed on the feature M to produce spatial attention map 
(as shown in Fig.  5). 

 
Fig.  5. Structure of Spatial Attention module. 
 

Resnet uses four modules consisting of residual blocks, 
each of which uses two blocks, Identity (ID) blocks and 
convolution blocks, depending on whether the input / output 
dimensions are the same or different. We arrange SE and SA 
module in series and integrate into residual block (as shown in 
Fig.  6) 

 

 
Fig.  6. FPN Bottom-Up structure with attention module 
 
2) Top-down pathway 
 

Deep features from bottom-up pathway are upsampled by 
convolutions and bilinear up-sampling operations until all the 
feature maps reach ¼ scale. Attention module outputs from 
bottom-up pathway {C , C , C , C } are fused to top-down 
pathway through lateral connections for an efficient multi-
scale feature fusion. Firstly, 1 x 1 convolutional filter is 
applied to the feature maps {C , C , C , C } to get a fixed 
number of channels and then merged with the corresponding 
top-down feature map by element-wise addition. Finally, the 
outputs are summed and then transformed into a pixel-wise 
output (as shown in Fig.  4). 
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3) Segmentation branch 
 

The segmentation branch from top-down pathway aims at 
classifying pixels into a set of pre-defined classes. The pixels 
corresponding to background are far numerous than pixels of 
surface defects in the real-world dataset, which causes the 
model to be biased toward the background element.  To 
address the pixel wise class imbalance, we employ Dice loss, 
which uses Dice coefficient to calculate overlapping of the 
pixels of the predicted mask with the ground truth label. 
Mathematically Dice loss function is defined as: 
 

𝐿 = 1 −          (3) 

 
Where, y  is the ground truth label, y  is the predicted label. 

The value of Dice coefficient ranges from 0 to 1, where 1 
indicates the perfect and complete overlap of pixels. 
 
4) Classification branch 
 
 The output of the bottom-up pathway encodes the rich 
abstract feature representations of the input image. Hence, we 
utilize the spatial average of the feature maps from the 
bottom-up pathway via a global average pooling layer and 
then the resulting feature vector is fed into the sigmoid or 
softmax layer depending on classification type. We employ 
binary cross-entropy (BCE) as classification loss function. 
Mathematically our classification loss is defined as: 
 

𝐿 =  ∑ 𝐶𝐸(𝑦 , 𝑦 )        (4) 

 
Where, y  is the ground truth label, y  is the predicted label 

of i  sample, k is the total number of samples. CE is the 
binary cross entropy function. 
 
5) Object Detection branch 

We extract bounding boxes and its associated classes by 
employing box regression and classification subnets at each 
level of top-down pathway. The classification subnet predicts 
the probability of defect presence at each spatial location of an 
input image. The box regression subnet is attached to top-
down pathway in parallel to classification subnet for the 
purpose of regressing offset from each anchor box to the 
ground truth bounding boxes. To handle class imbalance 
problem, we adopt focal loss [25], an improved version of 
cross entropy to focus learning on hard negative examples. It 
is defined as: 

 
𝐿 =  −𝛼 (1 − 𝑝 ) log (𝑝 )      (5) 

 
Where, α  is the weight parameter per class and γ is the 

hyper parameter focuses on hard negative samples. We choose 
α =0.25 and γ= 4 as suggested in [26]. 

B. Loss Function 

Our proposed method combines three loss functions from 
the classification, segmentation and detection tasks which 
provide mutual sources of inductive bias for each task. 
Specifically, the segmentation and detection loss functions 

signal back to the entire model (bottom-up and top-down 
pathway), while the classification loss signals back only to 
bottom-up pathway. We combine and weight the three losses 
into a multi-task loss L  to leverage the heterogeneous 
annotations and jointly optimize multiple tasks as follows: 

 
𝐿 =  𝛽𝐿 +  𝛽 𝐿 +  𝛽 𝐿       (6) 

 
Where, β,  β , and β  are weight parameters. We tested with 

different combinations of weight parameters and found that 
β = β = β = 1 yields the best result for all the tasks.  

IV. EXPERIMENTS 

A. Datasets 

In this paper, we evaluate our framework on real-world 
surface defect identification problems. We use two 
challenging datasets with increasing resolutions and 
complexities, Severstal steel sheet [15] and TekErreka steel 
fastener defect datasets. Severstal, the largest steel and steel-
related mining company, has recently published the largest 
industrial steel sheet surface defect dataset, which contains 
pixel-wise masks annotated by their technical experts.  The 
dataset contains 12568 grayscale images of size of 1600×256. 
Each image in the dataset has the possibility of having either 
no defects, a single defect, or multiple defects divided into 
four classes. Fig.  7 show the example of steel defect images 
on Severstal datasets. We randomly select 10% and 20% of 
the 12,568 original images as the validation and test data. The 
main challenge with this dataset is that the inter-class 
similarities between defective and defect-free examples are 
very high. 

Class 1 

 
Class 2 

 
Class 3 

 
Class 4 

 
Fig.  7. Sample images of Severstal steel with 4 classes of defect. 
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The TekErreka dataset is a self-collected steel fastener surface 
defect dataset based on magnetic particle inspection 
procedure. The magnetic particle inspection is an excellent 
method to investigate near surface defects in steel fasteners. 
The basic principle is to magnetize a steel fastener parallel to 
its surface. If the fastener is free from defects the magnetic 
field lines run within the fastener and parallel to its surface. In 
case of magnetic inhomogeneity, for instance, near cracks, the 
magnetic field lines will locally leave the surface and a 
leakage field occurs. When a suspension of ferromagnetic 
particles is applied onto the test piece surface the magnetic 
particles will run off at defect free areas. In the places of 
leakage fields the magnetic particles are attracted and 
clustered together thus indicating the location of the defect. 
The surface defects can be visible under ultra violet light. We 
acquired TekErreka dataset from a magnetic particle 
inspection apparatus located at the Erreka Fastening solutions. 
The defects in the TekErreka dataset differ in their size, shape, 
location and materials type and thus cover several scenarios in 
real time defect detection.  The difficulty in this dataset lies in 
the similarity of defects and noise due to magnetic particles 
deposition on defect free surface of the fasteners. There are 
many factors responsible for the noise component, which 
include magnetic particle size, the amount of magnetic particle 
used, ultra-violet light present, etc. The original examples are 
directly stored in a database as RGB images of size 2464 x 
2056. It has 450 positive and 1200 negative examples. We 
split TekErreka dataset into training and testing sets: 80% for 
training and 20% for evaluation of the model performance.  

B. Preprocessing 

We resized the images of Severstal dataset to 128x800 and 
TekErreka dataset to 600x600. To keep the pixel values in 
same scale, we normalized the images using min-max 
standardization. It rescales raw pixel values to range of 0 and 
1. This helps the optimizer not get stuck taking steps that are 
too large in one dimension, or too small in another.   

C. Data Augmentation 

To improve the diversity of the training set we apply 
random but realistic data augmentation such as rotation, 
vertical/horizontal flips, zoom, shear and channel shifts.  

D. Training details 

The Defect-Aux-Net is implemented using the Tensorflow 
framework.  All the experiments are run on Google-cloud 
TPU V2 infrastructure which contains 8 cores with 64 GB 
memory.  The network is optimized with the Adam optimizer 
and trained with a batch size of 128 for 50 epochs. We adopt 
one cycle policy [27] to find an optimal learning rate.  

E. Evaluation Metrics 

The classification results are evaluated using precision, 
recall, F1-score and binary accuracy.  
 

              𝑅𝑒𝑐𝑎𝑙𝑙 =          (7) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =              (8) 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
.( . )

( )
     (9) 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =        (10) 

 
Where TP, TN, FP and FN denote true positive (correctly 

identified surface defects), true negative (correctly identified 
non defect images), false positive (erroneously classified 
images as surface defect) and false negative (erroneously 
classified images as non defect). Precision measures the 
percentage of images with surface defect that are correctly 
classified, while recall is the ratio of correctly classified 
images with surface defect to all images with surface defect. 
F1- score can be interpreted as harmonic mean of precision 
and recall. The overall performance of the classification task is 
measured by its accuracy. 

The segmentation results are evaluated using Dice score  
and Intersection-over-Union (IoU), which quantify the 
percentage overlap between the predicted and target binary 
masks. To evaluate defect detection results, we used the mean 
average precision (mAP) that compares the detected bounding 
box to the ground truth bounding box and returns a score. 

F. Experiments on Defect Segmentation 

We performed series of experiments on TekErreka dataset 
to test the effectiveness of different loss functions. First, we 
trained Defect-Aux-Net using BCE,   and Dice loss alone as 
the segmentation loss. Then it was trained using a combination 
of loss functions. The results are shown in TABLE I. 
 

TABLE I 
PERFORMANCE OF THE PROPOSED APPROACH ON LOSS 

VARIANTS FOR THE DEFECT SEGMENTATION TASK 
 

Loss Function IoU Dice 
BCE 0.892 0.911 
Dice 0.903 0.926 
Jaccard 0.900 0.913 
Dice + BCE 0.901 0.920 
Jaccard + BCE 0.899 0.912 

 
Using Dice loss alone yielded more accurate results than 

using combination of losses. Additionally, Dice loss function 
assisted our model to converge faster. We use Dice loss 
function throughout rest of the experiments. 

To verify the effectiveness of segmentation task using 
multi-task learning strategy, we compared the proposed multi-
task learning network (Defect-Aux-Net) against the following 
network with same bottom-up backbone (Resnet50 + SE + SA 
attention module): 

1. FPN [11]: This is the original FPN architecture 
without multi-task learning strategy and serves as our 
baseline. 

2. UNet [10]: This network uses an encoder for multi-
level feature extraction and a decoder that scales 
them up and combines multi-level feature through 
stacking. 

3. LinkNet [28]: This is similar to UNet with the 
difference of replacing stacking operation with 
addition in skip connections. 
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4. PSPNet [28]:  Pyramid scene parsing Network uses 
pyramid pooling module for multi-scale feature 
extraction 

 
Fig.  8. IOU comparison between the state-of-the-art segmentation 
methods and the proposed approach on each type of defect 
classification. 
 

 
Fig. 9. Dice score comparison between the state-of-the-art 
segmentation methods and the proposed approach on each type of 
defect classification. 
 

Based on the experimental results, we observed that the 
proposed multi task learning strategy achieves better 
segmentation performance as compared to the state-of-the-art 
segmentation models.  The Dice and IoU scores of the various 
segmentation models on Severstal dataset are depicted in Fig.  
8 and Fig. 9.  
 

TABLE II 
PERFORMANCE OF THE COMPETING MODELS ON THE 

TEKERREKA DATASET 
 

Model Iou Dice 

FPN [11] 0.881 0.902 

LinkNet [28] 0.876 0.895 

Unet [10] 0.832 0.856 

PSPNet [29] 0.885 0.917 

Defect-Aux-Net  0.903 0.926 
 
 

We observe that Defect-Aux-Net is able to achieve higher 
scores for all classes as compare to the other segmentation 

models. TABLE II shows the performance of the various 
networks on TekErreka dataset. Experimental results from 
TABLE II showed that the proposed multi-task-learning can 
improve the performance of its corresponding single task 
model. Taking advantages of the classification-guidance 
module, Defect-Aux-Net avoids the over-segmentation of 
defects in complex background. 
 

G. Experiments on Defect Classification 

 
We evaluated and compared the classification task 

performance of proposed approach with the state-of-the-art 
deep learning architectures. While evaluating classification 
task, other two modules: segmentation and detection are 
removed from the network. Results of the experiments are 
summarized in  

TABLE III. It can be noted that the most errors are due to 
false positives. The visual similarity between defects and 
surface noise leads to false positive errors. Notably, Defect-
Aux-Net obtains overall accuracy of at least 92.9% and at 
most 99.4% across all defect types on Severstal dataset. Based 
on the experimental results, we observe that the proposed 
multi-task learning approach achieves a surpassing 
performance over the other models. Also, it is evident that 
incorporating segmentation task improves the performance of 
classification task and vice-versa.   

 
Fig.  10. Training data size vs. classification accuracy of Severstal 
dataset. 
 

To assess the effectiveness of the proposed approach 
against limited data problem, we removed part of the training 
data and conducted series of experiments leaving 90%, 75%, 
and 50% from the training data. The effect of training data 
size on its accuracy is shown in Fig.  10. The proposed Defect-
Aux-Net showed a consistent performance even when only 
50% of the original training data is used in training. As seen, 
the proposed multi-task loss function greatly improves 
performance of the classification task by talking image, pixel, 
and map level optimization into the consideration. 

To verify the importance of the attention mechanisms in 
Defect-Aux-Net, we compared accuracy the network with and 
without spatial and channel attention mechanism (squeeze and 
excite) on TekErreka dataset, as shown in TABLE IV. Further, 
we experimented with inserting combination of both spatial 
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and channel attention mechanisms.  
 

TABLE III 
COMPARISION OF PERFORMANCE OF DEFECT-AUX-NET AND 

STATE-OF-THE-ART CLASSIFICATION MODELS 
 

Model Dataset Class Recall Precisi
on 

F1-
Score 

Accu
racy 

 
 
 
Resnet-
50 [2] 

 
 
 
Severstal 

Class1 0.454 0.403 0.427 0.831 

Class2 0.591 0.533 0.561 0.958 

Class3 0.918 0.847 0.881 0.811 

Class4 0.857 0.852 0.854 0.963 

TekErreka Class1 0.759 0.979 0.855 0.949 

 
 
SEResne
t-50 [24] 

 
 
Severstal 

Class1 0.508 0.556 0.531 0.875 

Class2 0.617 0.580 0.598 0.970 

Class3 0.980 0.816 0.891 0.817 

Class4 0.559 0.940 0.701 0.940 

TekErreka Class1 0.803 0.968 0.878 0.955 

 
 
Effecient
net-B0 
[5] 

 
 
Severstal 

Class1 0.891 0.859 0.875 0.964 

Class2 0.872 0.732 0.796 0.984 

Class3 0.943 0.963 0.953 0.929 

Class4 0.946 0.924 0.935 0.983 

TekErreka Class1 0.858 0.928 0.892 0.958 

 
 
Defect-
Aux-Net 
(ours) 

 
 
Severstal 

Class1 0.891 0.926 0.908 0.975 

Class2 0.957 0.900 0.928 0.994 

Class3 0.982 0.929 0.955 0.929 

Class4 0.946 0.940 0.943 0.985 

TekErreka Class1 0.887 0.939 0.912 0.971 

 
TABLE IV 

EFFECT OF USING ATTENTION MECHANISMS ON TEKERREKA 

DATASET 
 

Model Accuracy Parameters 
(M) 

Defect-Aux-Net 
(without attentions) 

0.962 33.2 

Defect-Aux-Net 
(with SE attention) 

0.968 35.7 

Defect-Aux-Net 
(Spatial attention) 

0.963 33.5 

Defect-Aux-Net 
(with SE + Spatial 

attention) 

0.971 36.2 

 

H. Experiments on Defect Detection 

The proposed is compared with other object detection 
algorithms on the TekErreka dataset. The comparative models 
include SSD [8], RetinaNet [25], and cascade R-CNN [30]. 
Fig.  11 shows the mAP scores of the various detection models 
for the TekErreka dataset. We observe that Defect-Aux-Net is 
able to achieve higher mAP score as compared to the 
alternative networks. The mAP of the proposed algorithm is 
17.95%, 43.77%, and 26.03% higher than that of RetinaNet, 
SSD and Cascade RCNN. 

 

 
Fig.  11. mAP comparison between the state-of-the-art detection 
models and the proposed. 

I. Inference Time 

In addition to the model performance, we attempt to 
determine the effectiveness of multi-task learning framework 
on the inference time. We compared inference time of the 
proposed approach with conventional single task network 
where each task requires a separate pass through the network 
during inference. All the inference time was measured using a 
computer with an Intel Core processor. The CPU specification 
is summarized in TABLE V.  

 
TABLE V 

SYSTEM SPECIFICATION 
  

CPU Specification 
CPU Processor type Intel(R) Xeon(R) 

Processor Base Frequency 2.20 GHz 
Total Cores  1 

   From the TABLE VI, we can see that our proposed 
framework allows for a 57.1% reduction in the model size by 
solving different tasks jointly rather than independently. 
Compared to the single task network, the inference time of our 
proposed network reduce by 45.5%.  
 

TABLE VI 
COMPARISION OF INFERENCE TIME OF DEFECT-AUX-NET AND 

BASELINE MODEL  
  

Model  Task  Task Name  Inference 
time CPU 

(s)  

Parameters  
(M)  

  
  
Single Task Networks  

Task 1  Classification 
(ResNet-50)  

0.0654  23.5  

Task 2  Segmentation 
(ResNet-50 

FPN)  

0.1106  26.9  

Task 3  Detection 
(ResNet-50 
RetinaNet)  

0.1780  34.0  

Total  Classification 
+ 

Segmentation 
+ Detection  

0.3540  84.4  

Multitask Network  Multitask  Classification 
+ 

Segmentation 
+ Detection 

(Defect- Aux-
Net)  

0.1927  36.2  
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V. DISCUSSION 

By incorporating multi-task learning strategy, our proposed 
Defect-Aux-Net improves the performance of defect 
classification, segmentation and detection tasks. Intuitively 
multi-task deep learning system can provide regularization 
effects to the multi-scale feature learning and thus improve the 
performance as opposed to the single task algorithms. Also, 
the multi-task learning framework can save computational 
inference time as only single network needs to be evaluated 
for three different tasks. The experimental results show that 
our proposed algorithm greatly improves the performance of 
the surface defect identification tasks compared to other state-
of-the-art deep learning algorithms. 

VI. CONCLUSION 

In this work, we described an attention guided multi-task 
learning scheme which combines classification, segmentation 
and defection for automated surface defect detection. 
Specifically, we proposed an extended FPN architecture with 
Resnet-50 incorporated as the encoder section of the model. 
The hybrid loss function is introduced to enhance the 
performance of the model. An overall accuracy of 97.1%, 
Dice score of 0.926 and mAP of 0.762 on classification, 
segmentation and detection tasks of TekErreka dataset were 
achieved with Defect-Aux-Net.  
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