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A B S T R A C T

Discrete Global Grid Systems are spatial reference frameworks that associate information to multi-resolution
grids of uniquely identified cells; they are proposed as mechanisms to facilitate the efficient integration of
heterogeneous spatial data. They could provide an excellent reference system for Earth observation data cubes,
technological infrastructures that provide analysis-ready access to Earth Observation big data, as long as they
can be made compatible with them.

In this paper, we demonstrate that this is currently feasible without requiring new technological develop-
ments. We show how a Discrete Global Grid System with quadrangular cells, rHEALPix, and an existing data
cube platform, Open Data Cube, can be integrated without loosing the advantages of having all the data in a
Discrete Global Grid System, while keeping a straightforward access to all of the analysis tools provided by
an Earth Observation Data Cube.
1. Introduction

The development of Earth Observation data cubes (EO data cubes)
has been fueled by the increasingly pressing necessity to monitor the
global environment. There is a growing volume, variety and velocity
of big Earth observation data due to an increasing amount of Earth
observation satellites equipped with instruments which have higher
and higher spatial and spectral resolutions. These spatio-temporal data
are made available faster and faster to the environmental research
community through the implementation of better automatic processing
pipelines.

In order to cope with this increasing amount of information, the EO
data cubes have been proposed as a new paradigm where the access to
big Earth observation data is facilitated by an infrastructure, the data
cube, which provides analysis-ready spatio-temporal data to the data
scientists, who can focus on their research and not on the technical
issues of managing and efficiently accessing to those big data (Giuliani
et al., 2019).

Discrete Global Grid Systems (DGGSs) are a relatively new frame-
work for spatial referencing, focused on associating information to
well-known and well-identified areas, cells, on Earth. Their main focus,
and perhaps their strongest advantage, is also in the integration of
heterogeneous spatial big data.

EO data cubes can be understood as a new technological paradigm.
Their development has been focused on facilitating an efficient access

∗ Corresponding author.
E-mail address: rbejar@unizar.es (R. Béjar).

to big Earth observation data, while allowing the use of existing, well-
known tools for the processing of the data. The research presented
in this paper addresses the problem of extending the technological
capabilities of existing EO data cubes by considering other areas of im-
provement beyond data access performance and integration of common
tools. More specifically, we demonstrate an original way to integrate
DGGSs with EO data cubes.

This integration has been proposed before, but in a way that would
require major technological developments. We show that this integra-
tion is feasible with the current generation of data cubes, without
new technological developments, in the particular case of quadrangular
DGGSs. If DGGS datasets are pre-processed within certain constraints,
ingesting and processing those datasets in an existing data cube can be
done without losing the characteristics of a DGGS, such as the well-
known, uniquely identified and equal-area cells associated to some
information.

Among the existing DGGSs, rHEALPix is a good choice for this work
as its projected planar square grid is a good fit for the array-oriented
tools that data cubes provide and for the raster tools that most GIS
packages have. We will demonstrate that you can take an existing
raster dataset, pre-process it producing another raster dataset that
most common GIS applications and current data cubes can ingest and
process, and that this new raster dataset is strictly under the framework
provided by the DGGS: each pixel in the raster dataset corresponds
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exactly with one cell in the DGGS, and matching pixels to cells does
not require reprojecting or resampling.

In order to prove these points, we have carried out an experi-
ment. First of all, we have transformed some datasets, both raster
and vector, to rHEALPix rasters, being careful to preserve their DGGS
characteristics. Then we have configured an instance of Open Data
Cube loading it with both the original versions of these datasets and
the ones transformed to rHEALPix. And finally, we have designed and
implemented a simple geoprocess that combines those datasets in two
different ways: one using the original datasets and the other one using
the rHEALPix versions.

We have compared the results quantifying their differences to show
that both versions of the workflow can be implemented with the same
geoprocessing tools, that the results are quantitatively very similar,
and that the data projected to rHEALPix does not loose its DGGS
characteristics after this processing. This proves that, at least for some
problems and with the appropriate procedures, some DGGSs can be
used with the current generation of EO data cubes without requiring
any major changes to existing software systems. We have found some
issues that need to be addressed before this is immediately applicable
at a large scale, but they are small and definitely fixable.

The code used to run these experiments is available in a GitHub
repository: https://github.com/IAAA-Lab/rhealpix-opendatacube-dock
er.

In the following Section, we review some related work, focused on
DGGSs, Open Data Cube, rHEALPix, and how data cubes and DGGSs
are being currently combined. In Section 3 we describe the method
and tools used to carry out our experiment: the datasets used as inputs,
the transformation of those datasets to rHEALPix, the indexing of those
datasets in Open Data Cube, and the geoprocess that calculates some
results using them. In Section 4 we analyze the results produced by the
geoprocess, both using a common spatial reference system and using
rHEALPix, in order to quantify the differences. Section 5 discusses some
of the decisions we have taken, and the main issues which have arisen,
as well as some proposals for addressing or improving some of them. To
finish this paper, Section 6 summarizes the main results and proposes
some research lines for future work.

2. Related work

Discrete Global Grid Systems (DGGSs) divide the surface of the
Earth into tessellations of cells, organized hierarchically in multi-
resolution grids (Sahr et al., 2003). These grids are designed to contain
and process information associated to those cells, which are fixed areas,
and not as systems to support repeatable navigation (Purss, 2017).
Every DGGS must also provide an algorithm to generate a unique
identification, an index, for each of its cells.

Among the advantages of Discrete Global Grids over traditional
GIS projections, we can point out that there are not any singularities,
neither at the Poles nor elsewhere, that the spatial resolution of data
is always made explicit and that their multi-resolution nature makes
them good candidates for combining datasets with different spatial
resolutions (Goodchild, 2018). An additional advantage is that equal
area DGGSs allow to carry on spatial analyses which can be replicated
consistently anywhere on Earth (Purss, 2017), even in higher latitudes
where equal size pixels would create distortions for large areas (Hojati
et al., 2022).

Regarding its potential to integrate heterogeneous big data, men-
tioned in Section 1, that would be facilitated by their always congruent
multi-resolution cells and the hierarchical indexing schemes of those
cells (Goodchild, 2018). We are already starting to see interesting cases
of this in the case of big environmental data (Robertson et al., 2020),
and indeed this kind of data is being proposed as one of the main
drivers that justify the necessity for DGGSs (Hojati et al., 2022).

The rHEALPix is a cubic geodesic DGGS, compatible with the
OGC proposal (Gibb, 2016), with cells that are squares once they
2

are projected. This choice, square cells, makes it a better, at least
simpler, fit for some problems than other DGGS which are based on
hexagonal or triangular cells. For example, the integration of existing
gridded datasets to hexagons may require different sampling and ag-
gregation strategies for different resolutions of the DGGS (Bousquin,
2021). There are other advantages of quadrangular cells too, such
as the perfect congruency between adjacent levels of the DGGS, and
the widespread use of some data structures which match them per-
fectly (Amiri et al., 2015). On the other hand, quadrilateral cells, such
as those in rHEALPix, would be less adequate to model dynamical
systems where inter-cell distances are involved, as they lack uniform
adjacency (Bowater and Stefanakis, 2018). In our paper, we have
focused on a problem that uses existing gridded datasets, requires area
calculations and does not use inter-cell distances at all, which makes it
a good case for rHEALPix.

The rHEALPix DGGS has other positive attributes, such as low
average angular and linear distortions, and a perfectly congruent cell
structure where every cell at one resolution level is fully contained
into a cell at the previous resolution level, which is something that
hexagon-based grids do not support. There is a Python library that
implements the rHEALPix DGGS (Gibb et al., 2013a), and its projec-
tion is supported by the well-known PROJ library (PROJ contributors,
2022), which makes it automatically available in many GIS packages
and applications. The support provided by the PROJ library has allowed
us to use common GIS libraries such as Rasterio (Gillies et al., 2013)
more easily in our work.

Earth observation satellites and improved scientific instruments are
delivering growing amounts of better quality Earth observation data,
and the need to transform that increasing volume of data in information
in a timely fashion has encouraged the development of data processing
infrastructures, in many cases under the paradigm of the spatial data
cubes where the Australian Geoscience Data Cube is one of its main
examples (Lewis et al., 2017). This project is where the Open Data
Cube open software project (Killough, 2018) was born, a software that
we are using in this paper. The Open Data Cube intends to provide
a scalable, open and free tool to exploit satellite data, and is already
been used to support data cubes in Switzerland (Chatenoux et al.,
2021), several African countries (Mubea et al., 2020) and other regions.
Data cubes in general, with different technologies and implementations,
are getting more and more attention as platforms for the efficient
modeling and analysis of grid coverages that model multi-dimensional,
spatio-temporal data (Baumann, 2021).

Regarding the relationship among data cubes and DGGSs, there are
some advantages in using a DGGS as a base to implement a data cube
infrastructure, as its ‘‘data integration engine layer’’, and there are a
number of initiatives where this combination is being explored (Purss
et al., 2019). How that is related to the results in this paper is discussed
in Section 5.

3. A workflow to process data in open data cube using rHEALPix

This section describes the method and tools that we have used
to validate the hypothesis of this paper, which is the feasibility of
processing rHEALPix-based datasets under a data cube paradigm, with
standard geoprocessing tools, while keeping the advantages provided
by the use of this DGGS and while producing results which are accurate
when compared to the ones produced with more common reference
systems. This method is a geodata processing workflow which uses
datasets loaded into an instance of Open Data Cube, based on the
cube-in-a-box Docker container (Open Data Cube, 2022), and is imple-
mented using a Jupyter notebook (Kluyver et al., 2016). This workflow
produces its results in two different ways: using the source datasets
in their native reference systems and resolutions, and using versions
of those datasets previously reprojected and resampled to rHEALPix.
The workflow solves a simple geospatial processing task, because its
purpose as a validation tool for the hypothesis mentioned above does

not require it to be more complex.
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Fig. 1. System architecture and workflow design.
Both alternatives of the workflow calculate the same results:

• The average snow cover extension in a given date, April 26, 2022,
in two given areas: the Pyrenees, and the part of the Pyrenees that
belong to the Aragón region in Spain (a NUTS level 2 territorial
unit);

• The total surface, for each of these study areas, with a snow cover
of 75% or more.

In a more realistic context these, or similar, results would be cal-
culated and accumulated in a daily basis and used in some decision-
making process or analysis. For example, snow cover is a variable
used in forage production simulation (He et al., 2019) or in catchment
nutrient models in cold areas (Costa et al., 2020).

To delimit the study areas we have used a bounding box of the
Pyrenees, and kept only those parts above 1500 m in altitude. The
Aragón boundary, as a polygon, has also been necessary.

This workflow is designed as an experiment to test not only the fea-
sibility of using rHEALPix with standard data cube and geoprocessing
tools, but also the accuracy of the produced results, so we have also
made a quantitative comparison of the results, described in Section 4.
To keep the workflow simple and focused on testing our problem, we
are making our calculations with data for a single date, but with the
same tools that would be used for processing time series or data cubes
with more dimensions.
3

Fig. 1 provides a graphical view of this workflow. In this figure we
see that the original datasets, downloaded from their online sources, are
transformed to rHEALPix using a Jupyter notebook. Then, all datasets,
the original ones and the rHEALPix versions, plus their product and
dataset metadata, YAML files required by Open Data Cube which have
been created by hand for this example, are indexed in the Open Data
Cube. Finally, there is another Jupyter notebook which implements the
rest of the workflow, produces the intended results with both versions
of the datasets and calculates the differences among those results. All
this is available in a GitHub repository, https://github.com/IAAA-Lab/
rhealpix-opendatacube-docker, implemented using a Docker container
to facilitate its deployment and testing in different environments.

In the following subsections we will describe the steps of the work-
flow roughly following the pattern suggested by Apicella et al. (2022):
data selection & download, pre-processing, processing, data integration
and results presentation.

3.1. Data selection, download and transformation to rHEALPix

The workflow combines datasets extracted from three products: the
NASADEM HGT v001 (NASA et al., 2000), the Snow Cover Extent
500 m Europe (Copernicus Service Information, 2022), and the bound-
ary of Aragón, derived from the Administrative Units of Spain (Instituto
Geográfico Nacional (ign.es), 2021). These datasets, and the YAML

https://github.com/IAAA-Lab/rhealpix-opendatacube-docker
https://github.com/IAAA-Lab/rhealpix-opendatacube-docker
https://github.com/IAAA-Lab/rhealpix-opendatacube-docker
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Fig. 2. (1,0)-rHEALPix resolution 1 cells with 𝑁𝑠𝑖𝑑𝑒 = 3 and prime meridian at 10◦.
metadata associated to them and their product definitions, are indexed
into the Open Data Cube using its command line tools.

The rHEALPix system supports a number of parameters that can be
used to produce different geodesic grids. We have used the WGS84
ellipsoid and made 𝑁𝑠𝑖𝑑𝑒 = 3, so each cell is subdivided into 9 at
each new resolution level, and we have positioned the north and south
squares at positions 1 and 0: (1,0)-rHEALpix. These parameters are not
very significant given our problem and study area, so other choices
could have been made.

Another parameter is more relevant, and that is the planar origin.
This can be shifted if, for instance, a study area is divided between two
faces of the rHEALPix cube and you prefer it contained in just one.
Although software which is aware of the rHEALPix system should be
able to deal with data distributed in several faces of the cube, we have
found some issues with this (see Section 5 for more details) so we have
had to use 10◦ as our prime meridian. Fig. 2 shows the resolution 1
cells for the (1,0)-rHEALPix with 𝑁𝑠𝑖𝑑𝑒 = 3 and prime meridian at 10◦.

The choice of 𝑁𝑠𝑖𝑑𝑒 = 3 establishes the available resolutions, and the
cell sizes at those resolutions. We have chosen to work at the resolution
level which is closest to the one that we will be using for resampling
the original datasets, 500 m, and this turns out to be level 9, for a cell
width, and height, of 508.72 m.

Finally, we have decided that resampling is made with the nearest
neighbor strategy, for the rHEALPix transformation, and everywhere
else in this paper. Although other resampling strategies could have
produced slightly better results, we wanted to focus on comparing
rHEALPix vs non-rHEALPix, and thus we have kept other parameters
and choices as simple as possible.

To transform the raster datasets to rHEALPix we have used the
Rasterio (Gillies et al., 2013) library to warp, i.e., reproject and re-
sample, the datasets from their original coordinate reference systems
to rHEALPix, and the rHEALPixDGGS library (Gibb et al., 2013a) to
calculate the size of the cells to use the proper pixel size. Before the
actual warping, we have made the transformation matrix perfectly
4

aligned with the rHEALPix grid, so each pixel center corresponds with
an rHEALPix cell centroid.

For the transformation of the polygon vector dataset, Aragón bound-
aries, we have first rasterized its features using Rasterio, in its original
reference system, and then we have followed the same process as with
the other raster datasets.

The Python code used for these transformations is in a notebook
named rHEALPix_Data_Transformation. Although the rHEALPix
datasets are already included in the GitHub repository, so they can be
immediately indexed without using this notebook at all, it can be run to
verify that the produced rHEALPix datasets are identical to the included
ones.

We could have included this in the data pre-processing step, but
as this is done in a separate notebook, we think that it is clearer to
consider it an additional task within the data download step.

3.2. Pre-processing, processing, data integration and results presentation

Once the datasets are indexed in the Open Data Cube, the rest of the
workflow is implemented in the Snow_Cover_Workflow notebook
which has the following steps:

• Pre-processing: in the part that uses the original datasets, we
establish a common reference system and a common resolution
to work with, and then reproject and resample as needed. Given
the datasets, area of study and objectives, we have chosen to
use the Universal Transverse Mercator coordinate system, zone
30N and with the ETRS89 datum (EPSG:25830). For the common
resolution, we have chosen the highest resolution of the datasets
we are using, which is 500 m. We also have to create a raster mask
from the Aragón vector dataset, so we can use it in the processing
step.
Pre-processing using the rHEALPix datasets is simpler, given that
some steps have already implemented when loading the datasets
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Table 1
Snow cover values.

Study area Reference
system

Area ≥ 75% Mean Std dev Cohen’s d

Pyrenees

UTM 30N 1269.75 km2 28.86% 43.82%
rHEALPix 1253.90 km2 28.27% 43.55%

−0.013

Aragón Pyrenees

UTM 30N 33.25 km2 10.88% 30.72%
rHEALPix 32.51 km2 11.77% 31.85%

0.029

into the Open Data Cube (reprojection and resampling). We do
not even have to do anything special regarding the Aragón ge-
ometry, as at this point it is just another rHEALPix raster dataset
available in our Open Data Cube that can immediately be used as
mask.

• Processing, data integration and results presentation: these steps
are simple, as the calculations themselves are not complex. We
mask the snow cover dataset to keep only the cells inside our
study areas, calculate the values we are looking for in our study
with those masked datasets, using the tools provided by Open
Data Cube, the Xarray library (Hoyer et al., 2022) and other
Python geoprocessing libraries, and make a simple visualization
of the results.

The comparison of the results using the original datasets and the
HEALPix ones is also included in the notebook, and described in the
ext section.

. Results

We have compared the results from the two variants of this work-
low, with and without using a DGGS, and quantified the differences
etween them. There are three sources of systematic errors that would
xplain these differences: clipping raster data with a vector geometry
the Aragón boundary), resampling, and reprojecting. These processes
re common in geodata processing workflows, so we were not expecting
arge differences due to them. Our main focus is to make sure that
HEALPix and the software libraries that implement it do not introduce
arge systematic errors in our results, because it is not a commonly used
eference system, and also to test the code that we have implemented
or processing the datasets.

We summarize the differences in two tables. In Table 1 we see that
he data we are calculating in this study, total surface with a snow
over of 75% or more, and the mean and standard deviation of the
now cover percentage in the given study areas, are very similar using
oth approaches. Although in absolute numbers it seems clear that
he difference between the means is small, we have also calculated a
tandardized difference between them, the Cohen’s d, to confirm that
oint.

Fig. 3 shows the areas on the Pyrenees with a snow cover of 75%
r more as a raster dataset, at the top, and as a vector dataset at
he bottom. Both datasets are in rHEALPix, though they have been
rojected to Mercator just to show them on a map. The vector dataset
as been produced by taking the raster dataset we have created with the
pen Data Cube tools: reading each pixel, translating the coordinates
f that pixel to a resolution 9 cell of the (1,0)-rHEALPix, with 𝑁𝑠𝑖𝑑𝑒 = 3,
nd writing the centroid of that cell, with its snow cover and the unique
dentifier of the cell, to a vector file. A sample of the contents of the
ector dataset is shown in Table 2. In the provided notebook there
s code to produce both datasets, the raster and the vector ones, as

GeoTIFF and a GeoPackage respectively, so that they can be fully
5

xplored and compared with any desktop GIS application.
Table 2
Pyrenees. Cells with a snow cover of 75% o more, with their identifier in the
(1,0)-rHEALPix, 𝑁𝑠𝑖𝑑𝑒 = 3, DGGS.

Row Cell id Geometry Snow cover

0 N878818335 POINT (−1 166 244.489 5 095 865.234) 100.0
1 N878818343 POINT (−1 165 735.768 5 095 865.234) 100.0

. . . . . . . . . . . .
5705 N886764527 POINT (−962 247.089 5 028 205.249) 85.0
5706 N886764528 POINT (−961 738.367 5 028 205.249) 100.0
5707 N886765306 POINT (−961 229.646 5 028 205.249) 99.0

Table 3
MAE, BIAS and correlation between the rHEALPix datasets, reprojected to UTM 30N,
and the results obtained working directly in UTM 30N for both the Pyrenees and the
Aragón Pyrenees.

Study area Mean absolute error BIAS Spearman’s 𝜌

Pyrenees 2.66 −0.40 0.95
Aragón Pyrenees 0.35 0.07 0.99

The point we want to highlight here is that we have been working
with normal raster datasets, with the standard tools provided by Open
Data Cube, but the DGGS nature of the data has not been lost because
the input datasets were carefully reprojected, resampled and aligned
before indexing them in the Open Data Cube. And thus, in our raster
results, each pixel corresponds exactly with a DGGS cell, and producing
a vector version of those cells, that can be processed with any vector
GIS application, is simple and direct, in the sense that it does not
require any reprojection, resampling or any other operation that could
introduce additional systematic errors.

Table 3 shows the results of a different validation of the results. We
have taken the resulting datasets from the two different approaches,
UTM 30N and rHEALPix, and we have compared them on a pixel by
pixel basis, calculating the Mean Absolute Error (MAE), the BIAS and
their correlation. In these datasets the pixels with NODATA appear as
NaN (not a number), so we have made our calculations taking this into
account:

• To make the datasets comparable pixel by pixel we have repro-
jected and resampled, with the nearest neighbor strategy, the
dataset resulting from the rHEALPix process to the CRS and
resolution of the dataset produced with the other geoprocess.

• To calculate the mean absolute error (MAE), we have subtracted
the value of the pixels in one dataset from the value of the
corresponding pixel in the other one, taken the absolute value of
this difference and obtained a NaN-aware mean.

• The calculation of the BIAS is similar, but without taking the
absolute value.

• We have calculated a correlation coefficient, the Spearman’s 𝜌,
between both datasets.

Finally, Fig. 4 plots the absolute difference between both datasets
n a map, for the whole Pyrenees, to show the spatial distribution of
he differences.

. Discussion

The work by Purss et al. (2019) points out that data cubes ‘‘can
oexist with (and benefit from) an underlying DGGS-compliant data
iling and integration scheme’’. In this paper, we are contributing to
rove that point by actually integrating an existing data cube with a
GGS. However, Purss et al. (2019) also point out that this integration
ould normally require to replace the tiling and query processing in

he data cubes by DGGS/DGGS-like technology, and also that ‘‘a DGGSs
tructure [. . . ] does not need to employ spatial analytics operations
o perform routine search, aggregation, and decomposition tasks.’’. We
ully agree on the second point: with the proper DGGS structure and
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Fig. 3. Pyrenees. Areas with a snow cover of 75% or more, as a raster dataset (top), and as a vector dataset with the rHEALPix cells (bottom). Mollweide projection.
Fig. 4. Pyrenees. Absolute difference in snow cover between the UTM 30N and the rHEALPix datasets. Mollweide projection.
query tools you do not need spatial analytics operations. Nevertheless,
even if you do not need them, you can still use them: our solution does
use spatial analytics operations, those provided by the Open Data Cube,
and this makes the integration possible without new tiling and query
processing technology.

There are many spatial analytics/raster data processing tools and
libraries which expect or, at least, are very optimized for the case of
regular grids with rectangular, usually square, cells. Discrete global
grids based on hexagonal or triangular cells do not make easy cases
for these tools and libraries, but those global grids which are based on
quadrangular cells are a different case: they could offer the opportunity
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to make use of those tools and libraries with little, if any, changes. The
results presented in this paper do that, and thus they would confirm
that this opportunity is real. If other research confirms this for other
use cases, and also for other DGGSs and tools, we can have ahead of us
a path for the adoption of DGGSs in different raster data processing
communities: these communities could continue working with their
current tools while having the possibility to easily make profit from
some advantages of the DGGSs as they introduce them in their work.
This path could also lead to increase the adoption of DGGSs based
on hexagonal and triangular cells: as the quadrangular DGGSs become
better known, and more used, the interest in the applications where
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Fig. 5. Pyrenees study area (in red). Projected to rHEALPix with prime meridian 0◦ (left), and with prime meridian 10◦ (right).
hexagonal and triangular DGGSs might be better options could be
increased. Finally, this path could also facilitate the transition towards
data cube implementations which are more DGGS-aware as proposed
by Purss et al. (2019).

Nevertheless, there are some relatively minor issues that could make
it more difficult to follow the path proposed in the previous paragraph.
Although we have shown that we can calculate results which are very
close to those obtained with common projections using the same tools,
we have found a number of problems, specific to rHEALPix and Open
Data Cube, that have required solutions and workarounds that deserve
some discussion.

First of all, rHEALPix accepts a number of parameters that modify
both the grids and the projection of the data. As briefly mentioned in
Section 3.1, we have shifted the prime meridian to 10◦, so our area of
study falls in adjacent faces of the rHEALPix cube. This can be seen in
Fig. 5, where the area of study is approximately depicted in red: with
the default prime meridian, on the left, the study area intersects the
N, P and Q faces and, worse, although it is a bounding box that can
be expressed as two pairs of geodetic coordinates, once projected to
the plane with rHEALPix, it is not a rectangle anymore because this
area intersects non-contiguous faces. On the right side we can see that
with the prime meridian at 10◦ the study area is contiguous and a
rectangle after projecting to the plane. This should not be a major issue
for a software which is developed to deal with rHEALPix datasets, but
the load operation of Open Data Cube failed with the default prime
meridian. Shifting the prime meridian solved the problem in our case,
but a long term solution would require a more robust rHEALPix data
selection by extent in Open Data Cube.

This brings another issue to the table: the PROJ software library
supports shifting the prime meridian for rHEALPix projections, with the
lon_0 parameter, but not the prime parallel. In our case, shifting the
prime meridian has been enough to be able to work with Open Data
Cube and Rasterio as required, but the capability of shifting the planar
origin in both axes could be necessary, or at least convenient.

Besides this minor thing, the support provided by PROJ to the
rHEALPix projection has allowed us to use common GIS software,
such as Rasterio, easily in this work. However, with a DGGS, the
projection is not everything, you need to take into account at least the
allowed resolutions and cell identifiers, so the rHEALPixDGGS library
was also necessary. For this paper we have combined both libraries,
plus Fiona (Gillies et al., 2011–) to deal with vector geometries, to
reproject and resample the used datasets. This code, besides supporting
our experiment, can be useful for others working with this DGGS, but it
lacks the completeness, robustness and documentation that a library to
reproject datasets to rHEALPix should have. We propose this as future
work in Section 6.

Our rHEALPix datasets are produced as rasters, in the GeoTIFF
format, before indexing them into Open Data Cube and processing them
with the array-oriented tools provided there. Nevertheless, as described
in Section 4, implemented in the Jupyter notebook and shown in
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Table 2, they can be easily transformed into a vector dataset where
each pixel corresponds to a single cell in the DGGS, without requiring
any reprojection or resampling, and without losing any information
at all (neither spatial, nor thematic). As a collection of unique cell
identifiers where each one corresponds to one fixed area on Earth
with some associated variables (e.g., snow cover value), the results
produced within the data cube can be immediately exported to a CSV
file, processed as a DataFrame, loaded into a SQL or Non-SQL database,
with or without spatial capabilities, etc. For the small example shown
in this paper, this result proves, mainly, that DGGSs and data cubes
can be made compatible, at least for some DGGSs, right now. However,
in a big data context where this is done in a consistent way for many
datasets, with many different workflows, all of them updated often, and
with many other kinds of datasets, spatial and non-spatial, available,
this becomes much more interesting, because it underlines the major
expected advantage of using DGGSs: they facilitate the integration of
heterogeneous spatial big data. In Section 6, we propose as future
work the design of spatial data processing pipelines that integrate data
cubes, SQL and Non-SQL databases, big data frameworks and other
data storage and processing infrastructures, all of them mediated by
DGGGs. We have already seen some steps towards this kind of infras-
tructures (Robertson et al., 2020), and we expect that incorporating
data cubes in the way we propose here can provide further advances.

The validation of the proposal presented in this paper is done with
a specific variable, snow cover, and comparing rHEALPix with a UTM
projection on a specific study area. There is not anything special about
any of those choices. A DGGS defines a spatial structure with uniquely
identified well-known cells, but the contents of those cells can be any
kind of information. And the DGGSs are focused on the information
associated to the cells, so designing them with small area distortions is
important (an ‘‘information grid not a navigation grid’’ as succinctly put
in Purss (2017)). UTM has been chosen because it is a common choice
for the chosen study area, and the rHEALPix is a global projection
with a small areal distortion, see Gibb et al. (2013b, Appendix B), so it
should perform properly in any other study area.

To end this section, there are two technical decisions of our work
that deserve some discussion. First, as described in Section 4, when we
have compared cell by cell the spatial datasets resulting from working
in UTM 30N and in rHEALPix, we have calculated the Spearman’s 𝜌,
instead of the perhaps more common Pearson correlation coefficient
(Pearson’s r). This has been done because the Spearman’s 𝜌 makes
less assumptions on the distribution of the data: it only requires a
monotonic relationship, so it is often less biased than the Pearson’s r.
The monotonicity condition has been checked with a scatterplot of the
data, which is included in the Jupyter notebook.

And second, to index a product, and its datasets, in Open Data
Cube, there are certain metadata files, in the YAML format, which are
required. For this paper, these files have been created manually as we
just needed to show that it was feasible to index the rHEALPix datasets

in Open Data Cube. In a more realistic scenario, these files should
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be produced automatically at the same time that the reprojection and
resampling of the original datasets is done, something that could also
be done by that library that we are proposing as future work.

6. Conclusion and future work

In this paper we have demonstrated that a DGGS based on quadri-
lateral cells, rHEALPix, can be used to process raster datasets with
current data cube technology, in this case Open Data Cube, without
any changes to that software and with the usual, array-oriented tools
which are commonly used in data cubes and producing results which
are very similar to those produced using other projection systems. A
careful pre-processing of the raster datasets, taking into account the
characteristics of rHEALPix, allows us to process the raster datasets as
if they were projected with any common projection system, without
losing their DGGS-based structure. This way, we can produce, easily
and without losing any spatial or thematic information, the final results
as values associated to uniquely identified cells.

In larger information infrastructures, these uniquely identified cells
can be associated to values produced in other, completely unrelated
spatial processes, helping thus to create a view of the Earth where
all kind of information is associated to a congruent, multi-resolution
grid of cells, each corresponding a well-known, fixed area on the Earth
surface, and thus getting closer to that Digital Earth vision that DGGSs
intend to facilitate.

We have discussed some issues that we have found in our work.
The rHEALPix DGGS has a number of characteristics which are still
not completely supported by current spatial software libraries. We
have shown that some workarounds have been necessary, and that we
have needed to combine a number of different libraries to achieve the
intended results. Although some improvements in the management of
rHEALPix, and surely other DGGSs too, are required in common spatial
libraries, we think that a robust, generic implementation of some of the
code developed for the experiments in this paper, well-documented and
easy to install, would be a useful addition to the toolbox of any spatial
data analyst willing to work with rHEALPix.

The experiment conducted in this paper suggests that a deeper
integration of rHEALPix and the Open Data Cube is feasible without
too much work. The indexing of rHEALPix products and datasets in an
instance of the ODC just requires a proper configuration regarding the
coordinate reference system definition and the valid cell resolutions.
And regarding the Python API that allows the processing of the datasets,
a first step is using it carefully, for instance avoiding resampling
operations if they would produce cell resolutions outside of the allowed
resolutions of the DGGS, and including external libraries for rHEALPix
specific operations when needed; this is what we have done in this
experiment. A next step, that we propose as future work, would be
to design and implement a set of rHEALPix-aware, and rHEALPix-safe,
operations and integrate them in the ODC Python API.

This paper has presented a small example intended to prove the
feasibility of our approach and to quantify potential systematic errors.
However, most benefit from DGGSs will come when they are used to
facilitate integrating heterogeneous big spatial data. Introducing DGGS
processing steps in big data processing pipelines, and finding out how
to make those steps as efficient and automatic as possible, is necessary
to validate this point if we expect DGGSs to develop their full potential.
We intend to work on this problem in our next steps.
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